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Wireless Information Network 
Laboratory (WINLAB) 

q Industry-university research center founded in1989
v Focus on wireless technology

q Hosting world-class researchers
v 20 faculties from different departments
v 45 PhD students

q Active research directions:
v Mobile ad hoc networks (MANET) for tactical applications 
v Mesh network protocols
v Delay tolerant networks (DTN)
v Software defined networks
v Mobile content delivery
v Wireless network security
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Open-Access Research Testbed for Next-
Generation Wireless Networks (ORBIT) 

q 400 - USRP open access research testbed
q Funded by NSF since 2003 with $12M
q Research Applications:

v 5G mm wave
v Mobile edge cloud and future mobile Internet
v Healthcare IT and Internet of Things (IoT)
v Mobile sensing and user behavior recognition
v Network coding and spectrum management
v Vehicular networking
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Cloud Enhanced Open Software Defined Mobile Wireless 
Testbed for City-Scale Deployment (COSMOS)

q Funded by NSF PAWR for $22M in 2018 for deploying 5G network testbed
q Led by Rutgers and collaborating with Columbia University, New York University and 

University of Arizona
q Focus on 5G technologies

v Ultra-high bandwidth and low latency wireless communication
q Tightly coupled with edge cloud computing

v Deployment in New York City
v 9 Large sites and 40 Medium sites
v 200 small nodes to support edge computing

v Fiber connection to Rutgers, GENI/I2, NYU
v Interaction with smart community

q Research Applications:
v Ultra-high bandwidth, low latency, and powerful edge computing
v Future mobile Internet and mobile edge cloud
v Healthcare IT and Internet of Things (IoT)
v AR and VR
v Vehicular networking
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Defeating Hidden Audio Channel 
Attacks on Edge Voice Assistants 
- via Audio-Induced Surface Vibrations

DAISY
Data Analysis and Information SecuritY Lab



Motivation
qWidely deployed voice controllable systems 

(VCS) at the edge
vConvenient way of interaction
vIntegrated into many platforms 

qFundamental vulnerabilities due to the 
propagation properties of sound

qEmerging hidden voice commands
vRecognizable to VCS
vIncomprehensible to humans 
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Mobile phones (e.g., Siri and Google Now) Smart appliances

stand-alone assistants 



Hidden Voice Command
qAttacks the disparities of voice recognition between human and 

machine
q Iteratively shaping their audio features to meet the

requirements:
vUnderstandable to VCSs
vHard to be perceived by the users
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Related Work
qDefend acoustic attacks based on audio information

vVoice authentication models
ØGaussian Mixture Models
Øi-vector models

vSpeech vocal features (e.g., )
qSpeaker liveness detection

vArticulary Gesture
vProximity detection leveraging a second microphone (e.g., on a 

wearable)
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Only relying on speech audio features is vulnerable to hidden voice commands

A multi-modality authentication framework is highly desirable 
to provide enhanced security:
Audio sending modality + vibration sensing modality

Restricted application scenarios by either requiring the microphone to be held 
close to mouth or additional dedicated hardware



Basic Idea
qMany VCS devices (e.g., smartphones and voice 

assistant systems) are already equipped with motion 
sensors

qUnique audio-induced surface vibrations captured by the 
motion sensor are hard to forge

qTwo modes for capturing noticeable speech impact on 
motion sensors based on playback
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Basic Idea: utilizing the vibration signatures of the voice command to detect 
hidden voice commands



Capturing Voice Using Motion Sensors
qShared surface between loudspeaker and microphone
qLow sampling rate motion sensors (e.g., < 200Hz)
qNonlinear vibration responses
qDistinct vibration domain
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Why Vibration?

qExisting speech/voice recognition methods based on 
audio domain voice vocal features

qHidden voice commands designed to duplicate these 
audio domain features by iteratively modify a voice 
command

qAudio-induced surface vibrations
vAn additional sensing domain, distinct to audio
vHard to be forged from audio signals in software
vSimilar audio features result in distinct vibration features
vResulting vibration responses are device-dependent (device 

physical vibrations, motion sensors)
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The vibration domain approach can work in conjunction with the 
audio domain approach to more effectively detect the hidden 
voice commands.



System Overview
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Vibration Feature Derivation

qUnique and hard to forge
vStatistical features in time and frequency domains
vDeriving Acoustic Features from Motion Sensor Data 

ØMFCC
ØChrome vectors
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Vibration Feature Derivation

qUnique and hard to forge vibration features
vStatistical features in time and frequency domains
vDeriving Acoustic Features from Motion Sensor Data 

ØMFCC
ØChrome vectors
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qNonlinear relationship 
between audio features and 
vibration features

qFeature Selection Based on 
Statistical Analysis

“Show facebook.com”



Feature Selection Based on Statistical
Analysis
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Hidden Voice Command Detection

qSupervised Learning-based method
vSimple Logistic
vSupport Vector Machine
vRandom Forest
vRandom Tree

qUnsupervised learning-based method
vk-means/k-medoids based methods
vCalculating the Euclidean distance of 

the voice command samples to the 
cluster centroid

vNot require much training

10/28/20 16



Experimental Setup

q Front-end playback setup
v4 different smartphones
vOn table
vHeld by hand
vPlaced on sofa

q Backend playback setup
vImitated cloud service device
vPrototype on Raspberry Pi

q 10 voice commands, 5 speakers
q 13,000 vibration data traces

v6500 benign commands
v6500 hidden voice commands
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Performance Evaluation
Unsupervised-learning

Up to 99% accuracy for both frontend and backend setups to 
differentiate normal commands from hidden voice commands
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Performance Evaluation
qPartial playback to reduce delay

qVarious mobile device usage scenarios of frontend 
playback setup
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Front-end playback setup Back-end playback setup



Take-aways

qDemonstrate that hidden voice commands can be detected 
by their speech features in the vibration domain

qDerive the unique vibration features (statistical features in the 
time and frequency domains and speech features to 
distinguish hidden voice commands from normal commands

qDevelop both supervised and unsupervised learning-based 
systems to detect hidden voice commands 

qImplemented the proposed system in two modes: frontend 
playback and backend playback

10/28/20 20
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Practical Adversarial Attacks 
Against Speaker Recognition Systems
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v Access Control
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What’s Speaker Recognition?

Enrolled
Speakers

95

40

60

Score Result

Who is this?

qSpeaker Recognition (SR)

qApplications
v Smartphone v Telephone Banking



qTrend in Speaker Recognition
vAdopting Deep Neural Networks (DNNs) for better 

performance [1]
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Attack Chances on Speaker Recognition

qDNNs are vulnerable to adversarial examples [2, 3]

[1] Mitchell McLaren, Yun Lei, and Luciana Ferrer. 2015. Advances in deep neural network approaches to speaker recognition. In IEEE ICASSP 2015. 

Benign Input Perturbation Adversarial Example

Recognized as Panda Recognized as Gibbon

Benign Input Adversarial Example

Recognized as Stop Recognized as Speed Limit 45

[2] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv:1412.6572 (2014). 
[3] Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition. 2018.
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Limitation of Existing Attacks

Microphone Model Classifier

qSpeaker Recognition Pipeline
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Limitation of Existing Attacks

Microphone Model Classifier

qConventional Attacks
vReplay attack, synthesis attack, voice conversion attack
vPros: injected via physical channel
vCons: can be defended by modern SR models [4, 5]

[4] Hong Yu, Zheng-Hua Tan, Yiming Zhang, Zhanyu Ma, and Jun Guo. 2017. DNN filter bank cepstral coefficients for spoofing detection. IEEE Access 5 (2017), 4779–4787. 
[5] Zhizheng Wu, Tomi Kinnunen, Eng Siong Chng, Haizhou Li, and Eliathamby Ambikairajah. 2012. A study on spoofing attack in state-of-the-art speaker verification: the telephone speech 
case. In IEEE APSIPA ASC 2012. 1–5. 
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Limitation of Existing Attacks

Microphone Model Classifier

qAdversarial Attack
vLeverage adversarial examples
vPros: strong, can fool state-of-the-art model
vCons: success in digital domain, sensitive to over-

the-air distortions

Our goal: Design a practical over-the-air adversarial attack 
against state-of-the-art speaker recognition system



qFirst practical adversarial attack against multi-class
SR system 
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Contribution

qUse the estimated room impulse response to launch 
over the air attack

q Implement gradient-based algorithms to make the 
attack unnoticeable

qEvaluate on a public dataset of 109 English 
speakers
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Threat Model

SR Model

… …

Legitimate User
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Threat Model

SR Model

… …

Legitimate User

Hidden Speaker Untargeted Attack
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Threat Model

SR Model

… …

Imposter
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Threat Model

SR Model

… …

Targeted Attack

Imposter

Speaker
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Target Model

Enrolled 
Speaker Profile 

Score 
Calculation

Identified 
Speaker

PLDA Classifier

qX-vector [6]
vThe state-of-the-art DNN-based multi-class speaker 

recognition model

vComponents
Ø Mel Frequency 

Cepstral Coefficients 
(MFCC)

Statistics Pooling

…

………

………

…

DNN Embedding Model

Embedding

Time-delay neural 
network layers

MFCC Feature ExtractionInput Audio

Ø Probabilistic Linear 
Discriminant 
Analysis (PLDA)

Ø Embedding Model

[6] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev Khudanpur. 2018. X-vectors: Robust dnn embeddings for speaker recognition. In IEEE 
ICASSP 2018.



qThreat Model
vWhite-box
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Problem Formulation

MFCC Feature ExtractionInput Audio

Enrolled Speaker 
Profile 

Score Calculation

Identified 
Speaker

PLDA Classifier

Statistics Pooling

…

………

………

…

DNN Embedding Model

Embedding

𝑓(#)

𝑃

𝑋
q Notation

Embedding model – 𝑓: 𝑋 → 𝑃
Input audio – 𝑋, original label 𝑦

Probability vector – 𝑃 = [𝑝!, … , 𝑝"]

q Untargeted Attack
v Find minimal 𝛿

s.t. 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓 𝑋 + 𝛿 ) ≠ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑦)

q Targeted Attack
v Find minimal 𝛿

s.t. 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓 𝑋 + 𝛿 ) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑦#)
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Attack Overview

Adversarial Example
Play over-the-air

Speaker Recognition 
System

Incorrect 
Speaker

Original Audio
RIR Speaker Recognition 

System
Predicted 
Speaker

Adversarial Noise
+ Gradient of loss with respect to input

Untargeted Attack

Original Audio
RIR Speaker Recognition 

System

Adversarial Noise
+ Update noise via gradient descent

Target 
Speaker?

No

Targeted Attack

Yes



qRoom Impulse Response (RIR) – ℎ(𝑡)
v Model the transfer function between the played audio 𝑥(𝑡) and 

the received audio 𝑦(𝑡)
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Room Impulse Response Estimation

𝑦 𝑡 = 𝑥(𝑡)⨂ℎ(𝑡)
q RIR estimation

v Play an excitation signal 𝑥! 𝑡

v Record the response 𝑦! 𝑡
v Estimate RIR, where 𝑓(𝑡) is the time-reversal of 𝑥! 𝑡

ℎ 𝑡 = 𝑦!(𝑡)⨂𝑓(𝑡)



qPreliminary Experiment
v𝑓 = 20 − 20𝑘𝐻𝑧, T = 5𝑠
vMeasured Mean Square Error (MSE)

ØRecorded & Predicted = 0.112
ØOriginal & Recorded = 0.84
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Room Impulse Response Estimation

Original Signal Predicted Signal (w/RIR)Recorded Signal



qUntargeted Attack
v Due to the local linearity of DNN models, a linear perturbation

is sufficient for untargeted attacks [7]:
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Adversarial Example Generation

[7] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv:1412.6572 (2014). 

v Digital untargeted adversarial example

v Practical untargeted adversarial example



qTargeted Attack
v Adversarial example targeting at label 𝑦" can be generated 

through solving an optimization problem: 
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Adversarial Example Generation

v Lagrangian relaxation:

v Apply gradient descent to find the optimal 𝛿∗

v Digital targeted adversarial example
𝑋$ = 𝑋 + 𝛿∗

v Practical targeted adversarial example



qDataset
v CSTR VCTK Corpus
v Total 44217 utterances spoken by 109 English speakers with 

various accents, training & testing ratio = 4:1
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Experimental Methodology

q Baseline Model
v 30 dimensional MFCC with frame length of 25 ms
v Pretrained X-vector model provided in Kaldi [8]

q Evaluation Metrics
v Speaker Recognition Accuracy (%)
v Attack Success Rate (%)
v Distortion Metric (dB)

[8] Povey et al., The Kaldi Speech Recognition Toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. 



qDigital Untargeted Attack
v Test set : 8896 audio files
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Evaluation of Digital Attacks

q Digital Targeted Attack
v Tested on all original-target speaker combinations (total 

109*108 pairs)



qExperimental Setup
v Two realistic scenarios: office & apartment
v 10 digital/practical targeted adversarial example tested in each 

scenario 
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Evaluation of Practical Attack



qMaking Speaker #1 recognized as Speaker #20
vOriginal audio

Ø Recognized as Speaker #1

v Practical adversarial audio
Ø Misrecognized as Speaker #20
Ø Measured distortion: −42.35𝑑𝐵

v Genuine speech from Speaker #20
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Audio Samples



q We demonstrate a practical and systematic adversarial 
attack against DNN-based speaker recognition systems

q Apply gradient-based algorithms to launch both 
untargeted and targeted attacks 

q Integrate the estimated RIR into the adversarial 
example generation for a more practical attack

q Conduct extensive experiment in both digital and real-
world settings
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Take-aways
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Future work: Security Issues on Voice Recognition Systems at the edge
- Attacker could control your smart home
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Future work: Security Issues on Augmented Reality (AR) System
- Attacker could control your ‘reality’



Thanks to my collaborators and students


