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Wireless Information Network
Laboratory (WINLAB)

| RUTGERS

e |
O Industry- unlverS|ty research center founded in1989
s Focus on wireless technology
1 Hosting world-class researchers
s 20 faculties from different departments
s 45 PhD students
[ Active research directions:
* Mobile ad hoc networks (MANET) for tactical applications
Mesh network protocols
Delay tolerant networks (DTN)
Software defined networks
Mobile content delivery
s Wireless network security
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Open-Access Research Testbed for Next-
Generation Wireless Networks (ORBIT)

ORBIT nodes USRP radio board Control room

0 400 - USRP open access research testbed
A Funded by NSF since 2003 with $12M
U Research Applications:
% 5G mm wave
“ Mobile edge cloud and future mobile Internet
% Healthcare IT and Internet of Things (loT)
*» Mobile sensing and user behavior recognition
** Network coding and spectrum management
¢ Vehicular networking




Cloud Enhanced Open Software Defined Mobile Wireless
Testbed for City-Scale Deployment (COSMOS)

O Funded by NSF PAWR for $22M in 2018 for deploying 5G network testbed
O Led by Rutgers and collaborating with Columbia University, New York University and
University of Arizona
0 Focus on 5G technologies
s Ultra-high bandwidth and low latency wireless communication
O Tightly coupled with edge cloud computing

A B 7 PN oz LN gttt
% Fiber connection to Rutgers, GENI/I2, NYU
% 9 Large sites and 40 Medium sites % Interaction with smart community

+ 200 small nodes to support edge computing
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0 Research Applications:
< Ultra-high bandwidth, low latency, and powerful edge computing
» Future mobile Internet and mobile edge cloud
» Healthcare IT and Internet of Things (loT)
AR and VR
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DAISY

Data Analysis and Information SecuritY Lab

Defeating Hidden Audio Channel
Attacks on Edge Voice Assistants
- via Audio-Induced Surface Vibrations




Motivation

1 Widely deployed voice controllable systems
(VCS) at the edge

“+ Convenient way of interaction
**Integrated into many platforms

Smart appliances

Mobile phones (e.g., Siri and Google Now)

,,,,,

6 Hey Siri

U Fundamental vulnerabilities due to the
propagation properties of sound

W Emerging hidden voice commands

“*Recognizable to VCS
s Incomprehensible to humans

stand-alone assistants

Hey Google, when is my
first meeting tomorrow?




Hidden Voice Command

O Attacks the disparities of voice recognition between human and

machine

Q Iteratively shaping their audio features to meet the
requirements:

«*Understandable to VCSs

*sHard to be perceived by the users
U Attack model

**Internal attack — embedded in | . oice  Adiusting MFCC

media and played by the command parameters
target device

Candidate
obfuscated
command

“External attack — played via a w_-) MFCC Feature L g} | erse MFCC

loudspeaker in the proximity Exdieeten

Ye No
browse evil.com .
No ecognize e ecognize
bytthurl?an the syste
call 911 acks
— Hidden voice
command
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Related Work

Defend acoustic attacks based on audio information

**Voice authentication models & & &
Only relying on speech audio features is vulnerable to hidden voice commands
**Speech vocal features (e.g., ) K .

dSpeaker liveness detection

AAAAAAAA

Restricted application scenarios by either requiring the microphone to be held
close to mouth or additional dedicated hardware

A multi-modality authentication framework is highly desirable

to provide enhanced security:
Audio sending modality + vibration sensing modality
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Basic Idea

Basic Idea: utilizing the vibration signatures of the voice command to detect

hidden voice commands
DOUITOVI O

dUnique audio-induced surface vibrations captured by the
motion sensor are hard to forge

dTwo modes for capturing noticeable speech impact on
motion sensors based on playback

Replay Device in Cloud
Mobile Device HomePod Service

Motion Sensor Speaker

Front-end playback Back-end playback




Capturing Voice Using Motion Sensors

O Shared surface between loudspeaker and microphone
O Low sampling rate motion sensors (e.g., < 200Hz)

U Nonlinear vibration responses
U Distinct vibration domain

falias = |f_Nfs|,N €/

Played Audio Vibration Responses

60 Time (s)

“show facebook.com”

Accelerometer data

Frequency (Hz)

0 5 10 15 20 25 0 5 10 15 20 25
Time (s) Time (s) 20




Why Vibration?

L Existing speech/voice recognition methods based on
audio domain voice vocal features

Hidden voice commands designed to duplicate these

audio domain features by iteratively modify a voice
command

JAudio-induced surface vibrations
+* An additional sensing domain, distinct to audio

{ The vibration domain approach can work in conjunction with the

1 audio domain approach to more effectively detect the hidden
voice commands.

physical vibrations, moiion Sensors)
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System Overview

Mobile Device or

Replay Device in

Vibration Feature Derivation

HomePod Cloud Service
= ad \*\ Time/Frequency Domain Acoustic Features
[ = — - ) Statistical Features (MFCC, Chroma Vector)
o v
- Vibration Feature Selection
Cor . Speaker
Motion Sensor Statistical Analysis based
Frontend Playback  Backend Playback Feature Normalization Selection
2
Accelerometer D li i - - -
[ Readings ]') e B O Hidden Voice Command Detection
Vibration Noise S ed L e based :
Removal upervised Learning-base Unsupervised
Classifier Learning-based
. ‘W ij,‘-n"ﬂ"}”}»\W.‘\J(‘\«,v_,,.N‘l"!lj\lwy‘w I Voice Command Simple Logistic Random Tree Classifier
‘ i
| ‘ Segmentation Random Forest SMO K-means K-medoid
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Vibration Feature Derivation

dUnique and hard to forge
s»Statistical features in time and frequency domains
“*Deriving Acoustic Features from Motion Sensor Data

»>MFCC “Show facebook.com”
» Chrome vectors 1 ; 233:2 :L'fi P ,XL'::EE"\D:M"
. . . 0.8 . .
dNonlinear relationship < o wiration :Xﬁan(ﬂ- s B
. o 0. NS~
between audio features and  §°° .- :n ]’
. . li
vibration features g 04 @\,
=02 o \g \
. \}b'rat?'o n’ g \* v Aullio Domain
0 - Domain S ’
0 \P&//
0.5 0.5 1
MFCC Coef7 ° MFCC Coef 2
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Vibration Feature Derivation

Unique and hard to forge vibration features
s»Statistical features in time and frequency domains

“*Deriving Acoustic Features from Motion Sensor Data

>MFCC “Show facebook.com”

» Chrome vectors 0-018 .
. . . 0.016 © HVC Speaker 1 3.,3
Nonlinear relationship o HvCSpeaker2 | el

between audio features and
vibration features

JFeature Selection Based on
Statistical Analysis

* HVC Speaker 3 [)

0.014 < Human Speaker 1 * %
> Human Speaker 2 ‘%
0.012 * Human Speaker 3 o 8

Mean Crossing Rate Y

Fria — Fhum kurtosis Z Entropy Z

VY Fria()=Fria)? VE(Frum
( - :

(].)—Fhum)2 )

max -
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Hidden Voice Command Detection

U Supervised Learning-based method

< Simple Logistic 33 o o T o
o : 3 oo 08 o 9o Coo&o 4
< Support Vector Machine g 5%%9%%%@?;:% S 0 o o
<*Random Forest R ° o’
<*Random Tree o 2r ) .
. : ® b .
QUnsupervised learning-based method ¢« wrae | sends
. = x X% x " xR X Xx % x»(xxx»é"“‘xx X .
“*k-means/k-medoids based methods u%J’ 1 T R .
“ Calculating the Euclidean distance of 0.5 © :idde" ‘é°i°ek°°g"ma';d
. x uman opeaker soun
the voice command samples to the 0 : - ' -
20 40 60 80 100

cluster centroid
“*Not require much training

Sound Sample Index




Experimental Setup

Front-end playback
U Front-end playback setup bl esnewppay - |
4 different smartphones

s+ On table :F\\‘ = Held by and
< Held by hand = E

«*Placed on SOfa 1 | What's my current location? | 6 | Call 911.
2 | Open Bank of America 7 | Open youtube.com
D BaCkend playbaCk Setup % | Turn on airplane mode. B Show facebook com.
< Imitated cloud service device | e

|

Raspberry

Pi
Y

s Prototype on Raspberry Pi
0 10 voice commands, 5 speakers
0 13,000 vibration data traces
++6500 benign commands
++ 6500 hidden voice commands

On-
board
Speaker

Logitech S120
Loudspeaker

On-board
Motion
Sensors

RUTGERS WINLAB 3
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Performance Evaluation
Unsupervised-learning

1 . — - . 1 _ .
|l kmedoids
. kmeans

0.8 - 0.8} =
< <
<067 0.6
o o
© ©
| . | -
S04} 004}
o o
< =

02l B kmedoids | 0.2}

[ |]kmeans
0 ! I 0 '
Note4 Nexus6 Note4 Nexus6

Front-end playback setup Back-end playback setup

Up to 99% accuracy for both frontend and backend setups to
differentiate normal commands from hidden voice commands

1766 | *ve - - o
10/28/
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Performance Evaluation

Partial playback to reduce delay

Front-end playback setup

Note 4 G3 Nexus 6 S6 Note 4 G3 Nexus 6 S6
Replay all 100% | 99.10% | 100% | 85.70% Replay all | 99.90% | 97.90% | 93.40% 76%
Replay 1s 100% | 89.10% | 99.90% | 85.60% Replay 1s 92.9 | 99.10% | 92.40% | 75.90%
Replay 0.5s | 99.90% | 85.20% | 95.90% 85% Replay 0.5s | 88.5 | 90.20% | 90.50% | 73.80%

Back-end playback setup

Various mobile device usage scenarios of frontend

playback setup
Tabl Held | Placed | 80%vol. | 2x speed
4% 1 in hand | on sofa | on table | on table
Kmed | 100% | 87.30% 100% 100% 88.30%
Kmea | 100% | 87.30% 100% 100% 85.20%




Take-aways

dDemonstrate that hidden voice commands can be detected
by their speech features in the vibration domain

Derive the unique vibration features (statistical features in the
time and frequency domains and speech features to
distinguish hidden voice commands from normal commands

dDevelop both supervised and unsupervised learning-based
systems to detect hidden voice commands

dImplemented the proposed system in two modes: frontend
playback and backend playback

llb ‘105&UTGE RS
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DAISY

Data Analysis and Information SecuritY Lab

Practical Adversarial Attacks
Against Speaker Recognition Systems




What’s Speaker Recognition?

dSpeaker Recognition (SR)

Enrolled
Speakers Score Result
> 95 v

ul*F*-'-‘Il]im

a pone

o Telephone ?anking"l X Acégss Contr”

O Bixby ?Q CHASE O @ yo(M)engg
WINLAB
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Attack Chances on Speaker Recognition

dTrend in Speaker Recognition
s»Adopting Deep Neural Networks (DNNs) for better
performance []

(IDNNs are vulnerable to adversarial examples [> 3]
LR 4%ibbon

Benign IBEHtgn Input erturbﬂ&'érsariﬂ%ﬁﬂﬂél Example

[1] Mitchell McLaren, Yun Lei, and Luciana Ferrer. 2015. Advances in deep neural network approaches to speaker recognition. In IEEE ICASSP 2015.
[2] 1an J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv:1412.6572 (2014).
[3] Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018.
1
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Limitation of Existing Attacks

dSpeaker Recognition Pipeline

i § Seprofam)

Microphone Model Classifier

g RUTGERS ' !
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Limitation of Existing Attacks

d Conventional Attacks
*» Replay attack, synthesis attack, voice conversion attack

*» Pros: injected via physical channel
<+ Cons: can be defended by modern SR models 4]

-

Microphone Model Classifier

[4] Hong Yu, Zheng-Hua Tan, Yiming Zhang, Zhanyu Ma, and Jun Guo. 2017. DNN filter bank cepstral coefficients for spoofing detection. IEEE Access 5 (2017), 4779-4787.
[5] Zhizheng Wu, Tomi Kinnunen, Eng Siong Chng, Haizhou Li, and Eliathamby Ambikairajah. 2012. A study on spoofing attack in state-of-the-art speaker verification: the telephone speech

case. In IEEE APSIPA ASC 2012. 1-5.




Limitation of Existing Attacks

J Adversarial Attack
**Leverage adversarial examples
“*Pros: strong, can fool state-of-the-art model

“*Cons: success in digital domain, sensitive to over-
the-air distortions

i
§ Soofa) §

Our goal: Design a practical over-the-air adversarial attack
against state-of-the-art speaker recognition system

26




Contribution

First practical adversarial attack against multi-class
SR system

d Use the estimated room impulse response to launch
over the air attack

d Implement gradient-based algorithms to make the
attack unnoticeable

 Evaluate on a public dataset of 109 English
speakers




Threat Model

o)

Legitimate User

L
-
-

[ SR Model




Threat Model

o)

o S
w5
Legitimate User -
|||||.-|||‘||||.| ||-||||.
\

[ SR Model }
bl e
&
Hidden Speaker | Untargeted Attack |
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Threat Model

a

-

Imposter

-
-




Threat Model

a

-

—
Imposter '
'I'I""M'lll'l |l-|l|ll /
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SR Model
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Target Model

 X-vector (6]

** The state-of-the-art DNN-based multi-class speaker

recognition model f—————— -
9 | Input Audio }_’ MFCC Feature Extraction «

s Components
» Mel Frequency (F :
Cepstral Coefficients Time-delay neural | OOOOO O |
(M FCC) network layers | l
. ¢ ioacisssimer Y ([ P
» Embedding Model . | OOOOO 0 .
Enrolled o

> Probabilistic Linear Spea?(;?' Perofnle I I Statlstlcs Pooling I
DR » 1 '
Discriminant ' 1 lcooo0o ol |
Analysis (PLDA) , Score T — 1
: Calculation I \ ULt '“QJI

Identified

Speaker

[6] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev Khudanpur. 2018. X-vectors: Robust dnn embeddings for speaker recognition. In IEEE
ICASSP 2018.
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Problem Formulation

U Threat Model
+*White-box

J Notation

Input audio — X, original label y
Embedding model — f: X - P
Probability vector — P = [p4, ..., ;]

 Untargeted Attack
** Find minimal §
s.t. argmax(f (X + 6)) # argmax(y)
] Targeted Attack
¢ Find minimal §
s.t. argmax(f(X + 6)) = argmax(y;)

llb '. RUTGE RS
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Attack Overview

Original Audi '
' ginal Audio R | Speaker Recognition _ Predicted )
I » RIR > - |
I —\ V""\l— System Speaker :
| |
| + Gradient of loss with respect to input I
I Adversarial Noise <« |
. ““‘\'\f""‘— Untargeted Attack |
Adversarial Example __ | #) @) |_,| Speaker Recognition |  Incorrect
. System Speaker
Play over-the-air

CREIEL AT _| Speaker Recognition
System

Update noise via gradient descent No

N

a

Adversarlal Noise




Room Impulse Response Estimation

dRoom Impulse Response (RIR) — h(t)

** Model the transfer function between the played audio x(t) and
the received audio y(t)

y(t) = x(t)®h(t)
1 RIR estimation

% Play an excitation signal x,(t)

t 1.0t
xe(t) = sin(ﬂ(cﬁln(ﬁ) — 1))

: In(%)
< Record the response y,(t) /i
% Estimate RIR, where f(t) is the time-reversal of x,(t)

h(t) = ye()®f (t)




Room Impulse Response Estimation

dPreliminary Experiment
f =20-20kHz, T =5s
*Measured Mean Square Error (MSE)

»Recorded & Predicted = 0.112
»Original & Recorded = 0.84

Microphone

&
S

20

&

o
N
o

Hz)

—y
()]

&

o
b
[$)]

Frequency (ki
o

Power/frequency (dB/Hz)
Frequency (kHz)
&
o

Power/frequency (dB/Hz)
Frequency (kHz)
Power/frequency (dB/Hz)

©
o

Time (secs) Time (secs) Time (secs)

Original Signal Recorded Signal Predicted Signal (w/RIR)
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Adversarial Example Generation

dUntargeted Attack

“* Due to the local linearity of DNN models, a linear perturbation
is sufficient for untargeted attacks "

X' =X+6
{ 0 = esign(VxJ (X, y))
J(X,y) = -y - log(P)
s Digital untargeted adversarial example
X' = X +esign(Vx (- y - log(£(X))))
s Practical untargeted adversarial example

X' =X+ esign(VX( —y-log(f(X ® h))))

[7] 1an J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv:1412.6572 (2014).
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Adversarial Example Generation

U Targeted Attack

s Adversarial example targeting at label y;, can be generated
through solving an optimization problem:

minimize ||8]|2, s.t. f(X + ) = y;

s Lagrangian relaxation:
minimize — y; - log(f(X + J)) + c||d]|2
“* Apply gradient descent to find the optimal §*

*» Digital targeted adversarial example
X'=X+6"
*» Practical targeted adversarial example
minimize — y; - log(f((X + 6) ® h)) + c||5][2

,; ‘ RUTGE RS
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Experimental Methodology

dDataset
» CSTR VCTK Corpus

s Total 44217 utterances spoken by 109 English speakers with
various accents, training & testing ratio = 4:1

] Baseline Model

¢ 30 dimensional MFCC with frame length of 25 ms
% Pretrained X-vector model provided in Kaldi 8]

1 Evaluation Metrics
% Speaker Recognition Accuracy (%)
% Attack Success Rate (%)
¢ Distortion Metric (dB)

[8] Povey et al., The Kaldi Speech Recognition Toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition and Understanding.

@g) RUTGERS

39




Evaluation of Digital Attacks

WDigital Untargeted Attack
s Test set : 8896 audio files

Attack Strength (i.e., €) No Attack | 107> 1074 107> 1071
Speaker Recognition Accuracy (%) 92.81 84.71 | 41.33 12.11 1.37
Attack Success Rate (%) — 8.73 55.47 86.95 98.52
Average Distortion (dB) — —89.06 | —69.15 | —49.24 —-9.41

U Digital Targeted Attack

*» Tested on all original-target speaker combinations (total

109108 pairs)

Attack Strength (i.e., ¢) 0.4 0.1 0.05
Attack Success Rate (%) | 77.64 93.27 96.01
Average Distortion (dB) | —34.22 —29.66 | —25.94

@g) RUTGERS
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Evaluation of Practical Attack

dExperimental Setup
*» Two realistic scenarios: office & apartment
*» 10 digital/practical targeted adversarial example tested in each

scenario

=y

| - Speaker
i Microphone {
- (e |
(a) Office (b) Apartment
Playing digital Playing practical
adversarial examples | adversarial examples
Office 0% 50%
Apartment 10% 50%

gg RUTGERS
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Audio Samples

dMaking Speaker #1 recognized as Speaker #20
“ Original audio )
» Recognized as Speaker #1 _ b

¢ Practical adversarial audio
> Misrecognized as Speaker #20 [/ >)
> Measured distortion: —42.35dB N Y

% Genuine speech from Speaker #20

.; 1 RUTGE RS
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Take-aways

d

d

We demonstrate a practical and systematic adversarial
attack against DNN-based speaker recognition systems

Apply gradient-based algorithms to launch both
untargeted and targeted attacks

Integrate the estimated RIR into the adversarial
example generation for a more practical attack

Conduct extensive experiment in both digital and real-
world settings




Future work: Security Issues on Voice Recognition Systems at the edge

- Attacker could control your smart home




Future work: Security Issues on Augmented Reality (AR) System

- Attacker could control your ‘reality’
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