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My Research History

2010 - 2015

2010

Mobile Sensing & Analytics
* Indoor Location

* Group Detection
* Queuing Detection

ﬁ(ey Research Thrusts \

* Fusion of multi-modal sensing
(inertial)

« Adaptive sampling & triggered
sensing

* Multiple live deployments
(campus, malls, museums) +

licensing /

Wearable Sensing &

Systems

Eating (Annapurna)
In-Store Shopping (IRIS, 14S)
VR+ mobile (Empath-D)

2022

*—0 0

-

fKey Research Thrusts

Optimize (Energy, Accuracy,
Latency) tradeoffs

Multi-modal sensor fusion
(inertial, image)

~

/

2018-2022

Wearable + loT Systems
Batteryless Wearables

Wireless/RFID Sensing

Fine-grained Gestural
Tracking

/Key Research Thrusts

N

~

Make Batteryless (or Utira-Low
Power) Sensing possible

Method: Utilize new sensing
modalities (video, wireless) &
collaborative ML at edge

/




]X{ School of i
S“I”\AWU Information Systems

W8-Scope: Exercise Monitoring using loT Sensors Percom 2020

Goals:

» Quantified insights on weight stack-based exercises—>
provide personalized digital coaching

Techniques:
« Simple weight stack sensor (accelerometer+ magnetometer)
to track & understand exercises Mol Purpose Cale , _
Pulley Machine Leg-Curls Machine Shoulder Press Machine
Results:
* Longitudinal Data Collection at 2 gyms # 95+% accuracy & o
. . . . 0
adaptation to medium-term evolutionary behavior
_50 L T O IO O O O O O O O O O
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ERICA: Earable-based Real-Time Feedback for Free-weights Exercises Sensys 2020

Goals:

 Associate User’s Earable with
Dumbbell-mounted loT sensors

* Perform exercise recognition &
real-time mistake detection

AR

* Provide “live” corrective feedback ‘ ) re—
Dumbbell ) wrigtcurl (o) Swingbody  (c)Bend & swing  (d) Arms ot straight (¢) ROM Drit &
BI'S - sensor duringBicep  duringBicep head during & Position Drift Incomplete ROM
(b] siensor Mecement Curls Curs Triceps Extension  during Lateral Raises during Laterl Raises
60% B AfterSet 2 i AfterSet3  AfterSet4
, L . Dumbbell Aceele:ntlon Data gso% g
& 1s al duddads Eu | ] »’ 3 “n M\ “,i
% n: '}{.,:,___1 | I, UMM N ‘ | !-."..'L, % 1 -“ I VIV , A My f‘; 40% 7% ,§§§ s . 0% seni §
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Some Lessons Learnt
-

Pure Wearable/Mobile Sensing or Infrastructure Sensing isn’t Enough

x. Need to fuse inputs from personal and ambient sensors

p
Computation vs. Communication Tradeoffs are Changing
_+ Comms getting cheaper; computation more complex

meinily NFC z%m BT WiFi Inception-va4

] Incepti @. ,:(C??t.i.?{‘ozl R -152
Distance | fmm  |10cm | 10-100m [10-100m |30-50m | ~km DNGQR“"N” | -
?1{1” ;mps % 70 4 ohﬁ:ﬁ:[::r:e‘?ls . .
0'021_ g g ENggogLeNet
8-32 00202 |08-21 g 65 p fd-MobileNet
Da@mte | Ghog &:ﬁs Mbps | Mbps (71?2’5 W00 | e
1d) ﬁ%ﬁmet
Energy_ 55 AlexNet
gy 4D [ 1800 | Sndb 150k [Sndb |1y ol | T . I

Source: doi: 10.1109/MIC.2018.011581520

Operations [G-Opsl]

Source: A. Canziani, A. Paszke, E. Culurciello, An Analysis of Deep Neural Network Models for
Practical Applications,, CoRR, May 2016
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Resource Bottlenecks & Trends

Improvement Multiple Since 1990

1. Where’s the Resource Bottleneck?

10000 -
1000 -
100 -

10 -

-k -Disk Capacity
——CPU Speed
-B-Available RAM

==Wireless Transfer Speed

=¥ -Battery Energy Density

o —------~-

?

-~
e e e e e e e e e e e e

1992 1994 1996

1998 2000 2002 2004 2006
Year

Data size

2. The Rise of the “Edge”

By 2022, 7 out of 10 bytes of data
will never see a data center

Dataon

edge

Data at

core

40%

2006 2008 2010 2012 2014 2016 2018  2020° 2022

1 International Data Corporation (IDC) https:fwwwidc.com/getfile dyncontainerld=US4188301 68attachmentld=47265871&id=nullabidenullicid=nullspatnerid=null
2. M2MGlobal Forecas! & Analysis 2011-22



This Talk: Summary of Collaborative Machine Intelligence (CMI)

Collaboration is the Key to Realizing this Vision. Among:

 Wearable devices & Edge infrastructure
» Multiple loT devices & Edge infrastructure

DS: Distributed & Triggered Sensing

Tightly coordinate Cheaper  Expensive Sensor
Triggering

CMI: Collaborative ML-based Edge Intelligence
Distribute Inferencing Pipelines across multiple pervasive
devices & across modalities - (Accuracy, Energy, Latency)

Coordinated, Emagg 5.;“5;“9)

Multi-Modal Sensing
- Energy Efficient '[ Hadar Sensmg

- Finer-grained Context
- Wireless Sensing

E r
Camera) iGet me that '
. R =

1 R'd'r Q ﬁ blue wrench" k3

qumm_n:n
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RF/Wireless: A Swiss-Army Knife

Sensing Energy Harvesting
« Use Radio signal reflections to capture gestures « Multiple emerging modalities: light >
» WiSee: Doppler Shifts = Movement vibration > temperature > RF
Frequency

» Factors: size/form factor, on-body

 Human Motion Artefacts o :
position, intrusiveness.

« WiBreathe: Breathing

Rate
« Doppler Shift
* Object Composition =L

- RFID Phase Shift =™ Shape & Liquid Detector

Ambient

g 1 © Coke . . .
£ — 4 & woer light Vibration
g‘ 2 ¥ Vinegar

i Bom

5 0% S-mik W-milk Vinegar Waler Pepsi 5’ E’

A ™ ;2&5,(:: Thermal
T o

z 8 .

B clp—e gradient
2

- 0

o 5 0 15 20

o S-milk W-milk Vinegar Water Pepsi Coke Liquid Height (cm)

(a) Experimental setup. (b) Phase/RSS changes in different materials. (c) Phase changes vs liquid heights.
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DS1. Battery Free Wearable/loT Sensors

Percom 2019

Vi S i on Accl:efs.Pgint
o [ il
+ Utilize battery-free sensors on M
wearables & loT devices to provide

fine-grained tracking

+ Key breakthrough: Charge devices
wirelessly via WiFi “power packet”
transmissions

Applications Device harvests and stores

energy in a super capacitor

 Activity Tracking of Workers & Moving Equipment
* Product Monitoring in Warehouses
» Elderly Monitoring in smart homes

Challenges

* Low energy density using omnidirectional WiFi antenna
(< 1TuW at 1.5m)
» WiFi AP coordination to charge multiple devices

AP estimate AoA of “ping”

N
o

[EY
(2]

(9]

o

Harvested Power (UW)
[y
o

ce sends
AP transmltquqyg@kgpckets

=='!! 5

Person with Wearables

N

N

AN

\\.:

0.5

1 1.5
Distance (m)
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The Wearable + AP System

e » Micro-controller

@

Power Management Storag

F B DU LU WA TRl meem Q6
M.' * %0 " Ra2d/Ral: | EARTL
: /=]l The
..... Beamforming
AP

tC
Ant D

Sync Cable

1st WARP
: Ant A
Ant B

Motion Trigger
Super Capacitor

Raw Rx Buffer m—

Raw Rx Buffer

Sync Cable

The Harvester:
» Matching Circuit
* Rectifier

* Ping detection (nRF24L01+)
* Rx Buffer for AoA
* Tx Phase Sync for Beamforming
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The WiWear++: Low-power downlink (LPD)

Under submission

Content-free uplink trx

(« Base version: Ping triggered by significant motion;No MAC
* New: Use Wake-up Receivers to support low-power downlink (AP to device)
* Proactive ping request (update orientation)

"N

WLAN Gvice Aocess Pon

l 801 o
chael a00ess

(ata transmision

Node & Data
Minagement

. wleapdlov
pover dowlink

|| Koy
Beaorng || s

Sensor Node

RF ey
Harvestr

_
START STOP LPUART compatible
N L 77//) (1 START + 2 STOP bits)
W—W—W—WW—W& Raw OOK signal (From AP)
Wakeup uController o I Vi v
Receiver LPUART s gy [ ARD TS

Prototype -
[ MController only wakes up to ] o

read LPUART data register

Main Radio
(nRF24L01+)
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The Cloud RAN & The Future of Multi-AP Operation

« Harvesting Power levels drop with multiple
wearable devices

-Average Puwet.
0.16 CIMin Power |4
0.14 4
g D12 ]
E 01
Lo0sf
<]
o
0.06
0.04
D.02f
0 s s
Max-Sum Max-Min Multiplex

Power harvested (4 devices, 0.2m)

* Future: What about multiple APs, that
coordinate their transmissions?
« Complex balance between sensing,

communication and energy transfer
capacity

 Lots of distributed transmitters (915/964 MHz
channels) surrounding the target.

» Adjust phase-> distributed beamforming

e 24 Trx (1.7W) in 20X20 m2 > 0.6-0.7mW power
harvested

EnergyBall, Ubicomp’19

'  Design Objectives | . ¥, X

- ((!)}

o] RN,)//

- e Tl G
@ R = o W
) 5 Y “:,'\?‘.'N
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Takeaways & Reflections

New opportunities:

» Edge-Coordinated Activation of sensing
on wearable devices.

« Combination of passive RF sensing+
battery-less wearable/loT devices

 Edge ML needed to perform real-
time multi-modal inferencing



Key Idea: Overcome limitations in resource & fidelity by performing machine
intelligence jointly

* Real-time decision making

» Complex ML pipelines being executed on individual loT
devices or with edge-assistance

 Key Resource & Performance Bottlenecks
= |Latency of DNN execution

= 550 msec+ for person recognition/frame on a
Movidius co-processor (1W)

= Low Accuracy
» |ndividual sensors subject to environmental artefacts
= Energy Overhead

» Need to support battery-less operations
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" . [
L S o 15 A's Inference
L *

L
L

'+ Collaborative Sensing

$  ama N : A’s view is :
B - L] . . .
i-TT AP ” ' partly ' = Spatial and/or

P * p— 5_9?9_".‘;9:‘?' ...... i temporal overlap
A N - e among sensors

_-' 3 A‘,’ .: Learning from ! = Sensor Multiplicity
: g 2:1’;;’:2':;’9 = Adjust Inferencing
: S 3 Pipeline on-the-fly
. Camens | enarwC

ﬂ'}iﬁm . Malicious C can :

piversarl 4 g::fuﬁex:{e ¢ Dependable Systems

.

 inferences ;. Resilience to
o ' Adversarial Attacks
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Collaborative loT & The Edge: Ongoing Work

Accuracy on
Learned
Task

Collaborative
models

Low complexity/

High
complexity/very
deep models

»

ann-Mmo

Latency

Closing the accuracy gap with collaboration

Design Goals

Requires NO re-training of the
DNN models

Backward compatibility to non-
collaborative mode when no
collaborators are available

Minimal latency and bandwidth
overhead for infusing
collaborative input

(3)
Collaborative
Qutput

i

’I
View 1 (1) Pass (2) Interject
intermediaf collaborator's int.
state from state to later layer =N
Layer i

&

View 2
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Approach #1: Run-Time Collaborative Inferencing

(a) CNMS: Collaboration at Decision Stage

Prlor Masks from Nelghborlffgm N

Cameras |

Extra Feature Layers
1
Cassitr o 0 Clasoesed) \:
R Classfer: Com ExCassessd)) 8
\ O\ \ 0
\\ A\ O i
E \\ 1 g
] 3 v\ \\\ ,E E>
r 0 | \ o
oot || fom [N CowadCansd) | @
cand 1 ot 2 3\ \\—‘g
'\;u \‘ \_\-: \\’ m:_z] a2 g 1
|\ \ N |
w Nl \sm N\a| \a f& T |
30301024 Corw. 1etx1026 Conv. 288 Conv. ixi28 Conv. X2 Conr: irixiZB
Con. 3x08512:2 Conv, 3025642 Cov 29861 Com: JAQSB-51
Concat
I{b Prior .
Masks Reputation

Score Update

-

Maximum Suppression

1

rusted
r4
nferences

(b) CSSD: Collaboration at Input Stage

Extra Feature Layers
V65316 ‘ . .
_T_M\M@BN Casstr o ShibaCassd) g
\\\\ T\\ T\\ Clossfer o ShuBrfCiassass | 3
\ LA 1
""" == \\ \ \\ R\ 8
IR TR I 8
! A\ N
I < N\ [ 0
H] 4 4 \ N
i ‘ PN B
S | ot i ’ A wm«wn 3
| ! o 2 | J\ X
| \l I \» \# \< \f )—_I ot 1
\\ I\ \ \ ‘\ \, 5:'\_"'
______ 2 ____1 \ [ \ e \‘vﬂ \NE

Concat Prior
Masks from N
Cameras

Tl

Prior Masks from Neighboring Cameras

Gow.e102d oo, a1026 Co: 1288 Cone. wnlZ8 G um commrza

Comv: 3xe§12:52 Conv. 025652 Conv: 828651 o, A2SH41

n_|

| Non-Maximum Suppression

High accuracy improvement with minimal latency

PETS Dataset (8 cameras)
* Person detection using SSD300; Homographic View mapping

(a) Reference camera view

(b) Collaborative camera |

(c) Collaborative camera 2

(d) Collaborative camera 3

SSD Baseline 80ms

Collaborative 85ms
SSD

CNMS 100ms

1%
82.2%

75.5%
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Approach #2.1: Adapting the ML Pipelines “On the Fly” for Improved Accuracy

Exploration #1
Improving Accuracy through Sensor Multiplicity ™

Cam1l
Improved
H I Detections
R
Class
Confidence
boosting

I
— Detections
S

T e (0]
Cam 2 \ J f N
. | t M
Same person object, Convolutional m S
perceptively clearerin Layers a
the collaborator view X
\_ 9%

4 ® Increase in TP% ®mIncrease in FP%
? Gain in TP for nominal

3 increase in FP

2

View 8+5 (33% overlap) View 8+6 (62%) View 8+7 (38%)
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Approach #2.2: Using Hidden Layer State for Collaborative Classification
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Exploration #2
Early Estimation and Hybrid Classification

Activated

“people” pixels

Feature cl
' > ass
Extraction/ Shallow Probabilities
S U Classification

i

l

Convolutional
Layers

|

A2

44.
Detections

><Q.)3c—l'—hom
mZZ

~

Accuracy of Discriminant FMaps in Detecting People Pixels
1 _
0.9 $ 1

i
07| i i
4
i
i

: _..__..._.__l

I + » PETS Dataset, Camera 7
! = as Reference View (over

1] I
2 g§ i : 795 frames).
o U. : |
2 04 ! i : ..
03 | H * Precision =
0.2 H 2 i
0.1 . . Pixels activated by discriminant fmaps
0 that overlap with Ground truth Bboxes

Conv Layer 1 Conv Layer 2 Conv Layer 3 Conv Layer 4 Conv Layer 5 " "
Pixels activated

Average precision of over 93% in detecting target-
specific pixels as early as Layer 1

Accuracy of Shallow
Person Classification 1
0.98

AUC >95% o9
as early as Layer 1 (g

0.9
H — Histogram of Feature values 0.88

only

L — Location of Anchor Boxes

S — Scale of anchor boxes

A — Aspect ratio of anchor boxes

m Precision ©ORecall

‘2\"

V\

# AUC
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Coupled Collaboration+ Sensing: CollabCam

Reduce Sensor Sampling Energy by Reducing Camera Image Resolution

Overlapping FoVs —

Object Matching

camera 1

camera 2

oy

I =

Resolution Reduction

estimated overlap

Estimated Overlap

actual overlap
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CollabCam: Mixed Resolution & Accuracy

L)
0 ,| Overlap Area | |
‘ | Estimator
- Cam 1
View 1
= - Object
NS | Detection
L * &=
—p— | PR SR, | Cowny
Cam2 W
View 2 Mixed Res Image Collab DNN
Sensors

Edge Node

Figure 4: CollabCam: Functional Components on Vision Sen-
sor & Edge

Overall Networked Vision Sensing
Architecture

Shared-Area
Resolution
Estimation

Mixed-

Varying Res Image

Prior

Resolution vs
DNN Accuracy

®baseline
collab_tr_db
#collab_tr_gt
acollab_gt

512 224 160 9 70
Shared Region Resolution

(a) PETS (Cam 8.5)

Ny Resolutioq

Collab DNN

0.55

=]
» O
o

o
I

Avg Precision

0.35

ebaseline
wcollab_tr_db
+collab_tr_gt
acollab_gt

512 224 160 9% 70
Shared Region Resolution

(b) WILDTRACK (Cam 1,4)
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Camera Prototype

CMUCam-5 (Pixy 2 Platform)
Camera: Aptina MT9M114 CMOS

NXP LPC4330 dual-core ARM
processor @ 204MHz

264kb SRAM | 2 Mb Flash Memory

Firmware modification > mixed
resolution capture

Observation from Experiments:

Reduced Resolution lowers sensing
energy

Energy proportionality requires additional
adaptive clocking of sensor

Opportunity #3:
Information Systems Sensing Energy Savings

Sensing Energy Savings

Net Energy = Total Energy — Baseline Energy

1200x800 600x800 600x400 300x200
Image Resolution

1200x800 -> 300x200 |~25% Energy Reduction

ML & Network Status Coupling:

* DNN can adapt to differing resolution and data rates from
individual sources

Net Energy
Consumption (mJ)
O =~ N W P> o1 O

« Data rate selection can depend on network congestion+ device
state




—
o SMU
%

UNTVERSTTY.

Takeaways & Reflections

New opportunities:

» Edge-Coordinated Activation of sensing
on wearable devices.

« Combination of passive RF sensing+
battery-less wearable/loT devices

 Edge ML needed to perform real-
time multi-modal inferencing

ML Coordination between a set of
distributed edge (loT) & wearable devices
Run-time Collaboration: Improve
Accuracy, Energy & Latency
Collaborative ML (Training) requires
 new DNN architectures
* network-aware DNN adaptation
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Edge Computing at Present

Offload computation to a nearby,
powerful-computational entity

« Edge provides isolation and resource
augmentation

Advantages
o Low-latency, real time ML pipelines

Isolated Interaction between

individual device & “cloudlet”

By 2022, 7 out of 10 bytes of data
will never see a data center

Dataon

70y edge

60%

Data at
40% 0% core

[}
- %
o Data privacy 4
-
E ffici a
o Energy-efficiency g
S e =
*f Data Producer
Data rResultll [ ] Reguest & i £l a
omputing offloa
l . Data caching/storage
) b Data processing
Request distribution
Service delivery
loT management
Privacy protection
=y e .
= — Courtesy: Weisong Shi

Data Producer/Consumer

2006

2008 2010 2012 2014 2016 2018  2020" 2022

ional Data C 00C) getfile.dyn’ US418830166attach 7265871 6id=nullibid idenull
2 M2MGlobal Forecast & Analysis 201122
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My Vision: Cognitive Edge for loT TolT 2020

Edge as a

Edge enables CMI
/A (3) Training & Model

l N\ Compression

—-—._.
—_—

Matchmaker/ broker for 7 00 '
loT (mobile) devices v I~
ML-as-as-Service %" -7 Ss o

e (1) “Scene” summary +

feature statistics

Monitor for Resiliency

(4) Priors & Collaborative

rudoSind w@g Tows “**re.....  Inferencing
ll 'I ha .."- .
Y

* Ty
. N
W IRBMz . "-....
....
Wo 1

(2) Establish.....b. ..."--.-
o segbe & .

T e T T I LI I L L LLLLLL LR L L

ﬂ Collaborative ML " atss
Y

10
= -
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Challenges for The Cognitive Edge

* Find Useful Spatiotemporal Correlations among Devices
o Minimizing Communication Overhead
o Handling Disparate Sensing Modalities
o Handle Redundancy in Dense loT Deployments

« Enable trusted interactions among Devices
o Find Correlations from non-sensitive Metadata/Features
o Identify and isolate malicious/non-conformant devices

 Handle Dynamic Workloads
o Mobile devices that temporarily reside in specific areas
o Changes in spatiotemporal human/event patterns
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Takeaways & Reflections

New opportunities:

« Edge-Coordinated Activation of sensing
on wearable devices.

« Combination of passive RF sensing+
battery-less wearable/loT devices

 Edge ML needed to perform real-
time multi-modal inferencing

R
(B

- Edge as a Dynamic Matchmaker &
Orchestrator between “dumb” loT
Devices

ML Coordination between a set of
distributed edge (loT) & wearable devices
Run-time Collaboration: Improve
Accuracy, Energy & Latency
Collaborative ML (Training) requires
 new DNN architectures
* network-aware DNN adaptation



Conclusion

* Need for greater interaction between wearable devices & edge
computing/network entities
* Key to 100-fold decrease in power consumption on pervasive platforms

* Need for inferencing orchestration among edge devices
o Significant opportunities for scaling up ML-based applications
o Need for standardized models for distributing computational state
o Need for stackable ML models for accommodating sensing diversity

* Need for Edge Platforms to be enablers of such multi-device orchestration
o Need to rethink the role of edge computing
o Adaptive computational resources to support DNN vs. network tradeoffs

)

(V)



