SPEED

Resource-Efficient and High-Performance

Deployment for Data Plane Programs

Xiang Chen, Hongyan Liu, Qun Huang, Peigiao Wang, Dong Zhang,
Haiteng Zhou, Chunming Wu

A\

) ST
LHEJIANG L

=
=

AB

Monitor

Background |

Security

8 0 %

Routing

Control Plane

Applications

Data Plane
Programmable Switches

(e.g., Tofino, Trident)

O ﬁ Control Plane

Applications

Monitor Security Routing
--
<[> <[> <[>

DP Programs (e.g., P4)

Data Plane

Programmable Switches

(e.g., Tofino, Trident)

Background | 1

élm/ O ﬁ Control Plane

Applications

Monitor Security Routing

Data Plane
Programmable Switches

(e.g., Tofino, Trident)

Background | 1

Data Plane Program Deployment

Input: data plane programs w/ match action tables (MATSs)

Pkt in
—>‘ MAC learn | | Switching |

Routing | ACL |—>

Program (4 MATs)

Data Plane Program Deployment

Input: data plane programs w/ match action tables (MATSs)

1 hit Output

Pkt in
—| MAC learn Switching Match to Portd
Pkt in . :
Pkt.srcip [e]lse | Action
Pkt out -
Routing ACL Pkt.dstip Drop

Program (4 MATs) Details of an MAT (ACL)

Data Plane Program Deployment

Input: data plane programs w/ match action tables (MATSs)

Target: programmable switches w/ switch stages

RAM for MAT rules ALUs for Actions of MATSs

Pkt in 5- B/'
—6‘ MAC learn | 6| Switching | — IE .B IE -1
B, B, _):I]]
Pkt out =B B B —
e Routing o‘ ACL |—> B D p| -
S1 S2 S

Program (4 MATs) Switch Arc

\WAVAY/

3~ S4
(4 stages)

-

2

Data Plane Program Deployment

Input: data plane programs w/ match action tables (MATSs)

Target: programmable switches w/ switch stages

Output: Mapping between an MAT and a stage

Pkﬂ; MAC learn eSWltChlI'lg -DJ B
Pkt out -B
e

Routi ACL
0—— ©o s sz s3
Program (4 MATSs) Switch Arch (4 stages)

v

>

\WAVAY
\WAVAY

Data Plane Program Deployment

Input: data plane programs w/ match action tables (MATSs)

Target: programmable switches w/ switch stages

Output: Mapping between an MAT and a stage

Enable deployment of advanced network applications

(1) Software-defined measurement: FlowRadar, Martini, PINT, OmniMon, etc.
(2) In-network acceleration: NetCache, NetChain, NetLock, Cheetah, etc.
(3) Traffic scheduling and optimization: PIFO, PIEO, HPCC, P4air, etc.

Background |

Requirements of Program Deployment

Given multiple input data plane programs:

simultaneously deploy these programs on network
1. Resource efficiency

given that switch resources are limited (e.g., <10 MB memory)
2. High end-to-end packet processing performance

satisfy tight latency/throughput requirements issued by apps

Problems

Limitations of Existing Solutions

(1) Compiler design: RMT (NSDI'15), dRMT (SIGCOMM'17), etc.

(2) Virtualization: Hyper4 (CoNEXT 16), P4Visor (CoONEXT 18), etc.

Problems

Limitations of Existing Solutions

(1) Compiler design: RMT (NSDI'15), dRMT (SIGCOMM'17), etc.

(2) Virtualization: Hyper4 (CoNEXT 16), P4Visor (CoONEXT 18), etc.

Support program deployment on a programmable switch
(1) as scaling to multiple programs
(2) due to lack of considering constraints

(device connectivity, traffic routing, etc.)

Problems

Goal

Program

Input output

Program

N

Programmable Networks

Provide program deployment that achieves:
(1) Resource Efficiency: make the best use of switch resources

(2) High Performance: low latency and high throughput

Challenges

Challenges

(1) case-by-case analysis and deployment
e.g., Count-Min (sequential layout), NetCache (branch-heavy)

Challenges

Challenges

(1) case-by-case analysis and deployment
e.g., Count-Min (sequential layout), NetCache (branch-heavy)

(2) complicated problem solving

switch resource limitations vs. network-wide constraints
(e.g., device connectivity)

Challenges

Challenges

(1) case-by-case analysis and deployment
e.g., Count-Min (sequential layout), NetCache (branch-heavy)

(2) complicated problem solving

switch resource limitations vs. network-wide constraints
(e.g., device connectivity)

(3) pkt scheduling among switches
to preserve original packet processing semantics

Challenges

SPEED Framework

(1) Table dependency graph for program diversity
(2) Program merging for achieving resource efticiency
(3) One big switch for heterogeneous constraints

(4) Inter-device packet scheduling for device coordination

Design

SPEED Framework

(1) Table dependency graph for program diversity
(2) Program merging for achieving resource efficiency - This Talk

(3) One big switch for heterogeneous constraints

Design

Table Dependency Graph (TDG)

Universal intermediate representation of data plane programs

T=(VT, ET): anode in Vris an MAT; an edge in Et is an MAT dep

. ACL (7)
L2 /L3 routing program & Unicast Routing (3) = [y~ s \
fy: ipva.diP vlan_tag.vlan ' a,. std_meta.drop_code Fxit
ycast? ay. ethernet.sMac, as. std_meta.mcast_index
ethernet.dMac,
MAC Learning (1) =—>»| Routable (2) vian_tag.vian / IGMP (5) —) it to CPU
fy: ethernet.sMac, f,: ethernet.sMac, Mcg f- ipva.diP,
vlan_tag.vlan 2 ethernet.d Mac, St? Mum RWting (4’ ° :,‘l):n_tag.vlan’
3;-_ nul vlan_tag.vian fo: ipva.dIP std_meta.ig_port
a: null a,. std_meta.mcast_idx a.. std_meta.mcast_idx
learnin Routin
TDG for the program i ; "
Multicast
> : IGMP = » Exitto CPU
Routable Routing

=» Match dependency =» Successor dependency
= Action dependency -3 Reverse Match dependency

Figures extracted from “Compiling Packet Programs to Reconfigurable Switches”, NSDI 2015

Table Dependency Graph (TDG)

Universal intermediate representation of data plane programs

T=(VT, ET): anode in Vris an MAT; an edge in Et is an MAT dep

Benefit#1: Handle program diversity

Benefit#2: Ease SPEED analysis on program properties

Design

Program Merging for Resource Efficiency

Motivation#1: Requirement for reducing resource usage

Motivation#2: Occurrence of redundant MATs among programs

Design

Program Merging for Resource Efficiency

Motivation#1: Requirement for reducing resource usage

Motivation#2: Occurrence of redundant MATs among programs

In Software-defined Measurement (SDM):

Program#1 Program#2 Program#3
for tlow count for heavy hitter for anomalies

Design

Program Merging for Resource Efficiency

Motivation#1: Requirement for reducing resource usage

Motivation#2: Occurrence of redundant MATs among programs

In Software-defined Measurement (SDM):

Program#1 Program#2 Program#3
for tlow count for heavy hitter for anomalies

A: CRC hashing B: CRC hashing C: CRC hashing

Redundant MATs (3x hashing)

Program Merging for Resource Efficiency

Motivation#1: Requirement for reducing resource usage

Motivation#2: Occurrence of redundant MATs among programs

In Software-defined Measurement (SDM):

Program#1 N Program#?2 N Program#3 B Program#4
for flow count for heavy hitter for anomalies B merge #1-#3
A: CRC hashing B: CRC hashing C: CRC hashing CRC hashing

Redundant MATs (3% hashing) . (only one hashing)

Design 9

Program Merging for Resource Efficiency

Algorithm based on longest common subsequence (LCS)
Input: n TDGs Output: a compound TDG, T,

Workflow: n-1 iterations; each iteration takes 2 TDGs to merge

Design

10

(a) TDG T4

11

(d) Pairs of
Redundant MATSs

(b) TDG T>

(c) Topological Orderings

11

(d) Pairs of
Redundant MATSs

(b) TDG T> (c) Topological Orderings

(e) Longest Common
Subsequence (LCS)

11

(b) TDG T> (c) Topological Orderings

(d) Pairs of (e) Longest Common (f) Merging T1 and T>
Redundant MATs Subsequence (LCS) into TDG T

11

One Big Switch (OBS) Abstraction

To place T, SPEED abstracts substrate network as an OBS

—> > > -)I
]
]
]

S1 (4 stages) (4 stages)

Design

12

One Big Switch (OBS) Abstraction

To place T, SPEED abstracts substrate network as an OBS

stages

Consolidate all

I
pil

AAAAAA

HiREAN

AAAAAA

IRREAD

AAAAAA

-J--

AAAAAA

NI

AAAAAA

HENERD

AAAAAA

HENERD

AAAAAA

1

AAAAAA

A

T

of all programmable switches

OBS (8 stages, first 4 of S1, last 4 of S2)

i
_m__m_+_m_m

AAAAAA

000
A

AAAAAA

S HAlEle

AAAAAA

000

AAAAAA

NERERE
\

S2 (4 stages)

S1 (4 stages)

12

Design

One Big Switch (OBS) Abstraction

To place T, SPEED abstracts substrate network as an OBS
Property#1: Separate heterogeneous constraints in two phases

Property#2: In a phase, one obj and one type of constraints

Design

12

One Big Switch (OBS) Abstraction

To place T, SPEED abstracts substrate network as an OBS
Property#1: Separate heterogeneous constraints in two phases
Property#2: In a phase, one obj and one type of constraints
Benefit#1: Simplity program deployment

Benefit#2: Achieve multi-objective deployment

Design

12

One Big Switch (OBS) Abstraction

To place T, SPEED abstracts substrate network as an OBS
Property#1: Separate heterogeneous constraints in two phases
Property#2: In a phase, one obj and one type of constraints
Benefit#1: Simplity program deployment

Benefit#2: Achieve multi-objective deployment

Phase#1: TDG placement on OBS Program deployment
Phase#2: OBS placement on network in SPEED

Design

12

Phase#1: TDG Placement on OBS Compound TDG T

Formulate as ILP:

Goal: For MAT u of T, place u on an OBS stage v

Obj: min (# occupied OBS stages)
C#1: Per-stage resource limitation T~

C#2: MAT dependencies (i.e., edges of T} i E E I

Solve ILP using Gurobi solver |1]
OBS Stages

|1] Gurobi solver: https://www.gurobi.com/

Design 1 3

Phase#2: OBS Placement on Network OBS Stages

Formulate as ILP:

Goal: For OBS stage u, place u on a real stage v —

Obj: max (throughput) | min (latency) T~——
C#1: One-to-one mapping @_,D ?
C#2: Performance metrics = —

| - N
Solve ILP using Gurobi solver |1] Y\~ N -~ N

Network
|1] Gurobi solver: https://www.gurobi.com/

Design 1 4‘

Example: Software-defined Measurement (SDM)

SDM deploys two measurement tasks via SPEED:

[Match] None [Match] None [Match] pkt.srcIP
TDG1 of [Action] [Action] [Action]
Task#1 idx = crc32(pkt.srclP); update(CM, i1dx); forward(output_port);
[Rule Number] 1 [Rule Number] 1 [Rule Number] 1024
MAT a1 MAT a> MAT a3
[Match] None [Match] None [Match] pkt.srclIP
TDG: of [Action] [Action] [Action]

Task#2 idx = crc32(pkt.srclP); update(ES, idx); forward(output_port);
[Rule Number] 1 [Rule Number] 1 [Rule Number] 512

MAT b; MAT b> MAT bs 15

[Match] None [Match] None [Match] pkt.srcIP

TDGq of [Action] [Action] [Action]
Task#1 Idx = crc32(pkt.srclP); update(CM, idx); forward(output_port);
[Rule Number] 1 [Rule Number] 1 [Rule Number] 1024
MAT a: MAT a> MAT a3
[Match] None [Match] None [Match] pkt.srcIP
TDG: of [Action] [Action] [Action]

Task#?2 idx = crc32(pkt.srclP); update(ES, idx); forward(output_port);

[Rule Number] 1 [Rule Number] 1 [Rule Number] 512

MAT b1 MAT b3

Step#1: Program Merging —v

C1 c1 < Merge(ai, b1)

Tm < Merge(TDG1, TDG2)
2 3

16

Step#1: Program Merging
Tm < Merge(TDG1, TDG?)

Stagel Stage?2 Stage 3

Step#2: Place Trn on OBS

Design

He
o]

Stage 4

c1 < Merge(ai, b1)

17

c1 < Merge(ai, b1)

Step#1: Program Merging .::.]

Tm < Merge(TDG1, TDG?)

— L Link (n2N2) |
el

Stagel Stage2 Stage3 Stage4 o —3ome S2

Step#2: Place Tm on OBS Step#3: Place OBS on Network

Design 1 7

Evaluation

Testbed: Sender <=> Tofino <=> Receiver: Simulator: Mininet
Workload: 10 real programs (5 SDM, 5 switch.p4)

Comparison: FFL, FFLS (NSDI'15), Heuristics (BFS, NodeRank])

(1) Can SPEED achieve resource efficiency?

(2) Can SPEED achieve high packet processing performance?

More results can be found in our paper :-)

Evaluation 1 8

Can SPEED achieve resource efficiency?

90 60
$ SPEED 7773 $ SPEED 5244
oy | W FFL 66 oy | W FFL a1l
© 60 W FFLS © 40| W FFLS 3836
4 o 30
’ - Y i
“ 30 512826 247+ 4= 20(;31616 1958
101312
: R <
ol I 0
2 3 4 5 2 3 4 5
of Merged Programs # of Merged Programs
Deploy SDM programs Deploy switch.p4 programs

Yes! SPEED reduces number of switch stages by up to 25%

Evaluation

19

Can SPEED achieve high performance?

—~ 150 — 150
V) V)

SPEED — SPEED
- Bl NodeRank a - B NodeRank
— 100| mm R-BFS ~— 100 mm R-BFS 91
5 R-Greedy 71I 5 R-Greedy 77'
o 50 364I654 II S 50 2250

27 26 32

+ 205822 22 -+ 1622 22II II
(O 11 O 10
] 0 <1<1|<1<1] 0 <1<1|<1<1

2 3 4 5 2 3 4 5

of Merged Programs # of Merged Programs
AboveNet topologic Internet2 topologic

Yes! SPEED achieves 149%-59% latency reduction

Evaluation

20

Takeaways

SPEED: Resource-Efficient and Performant Program Deployment
(1) TDG, (2) program merging, (3) OBS-based placement
Evaluation on 10 real-world data plane programs:

(1) save up to 25% switch stages; (2) reduce latency by 14%-59%

Summary

21

Thank you very much!

Xiang Chen, Hongyan Liu, Qun Huang, Peigiao Wang, Dong Zhang,
Haiteng Zhou, Chunming Wu

Email: wasdnsxchen@gmail.com Page: wasdns.github.io

