
SPEED  

Resource-Ef+icient	and	High-Performance	

Deployment	for	Data	Plane	Programs
Xiang	Chen,	Hongyan	Liu,	Qun	Huang,	Peiqiao	Wang,	Dong	Zhang,	  
Haifeng	Zhou,	Chunming	Wu

Data	Plane
Programmable	Switches
(e.g.,	To+ino,	Trident)

Monitor Security Routing

Control	Plane
Applications

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 1

Data	Plane
Programmable	Switches
(e.g.,	To+ino,	Trident)

Monitor Security Routing

Control	Plane
Applications

DP	Programs	(e.g.,	P4)

gen

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 1

Data	Plane
Programmable	Switches
(e.g.,	To+ino,	Trident)

Monitor Security Routing

Control	Plane
Applications

DP	Programs	(e.g.,	P4)

Program	Deployment

gen

input

deploy

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 1

Data	Plane	Program	Deployment

MAC	learn

Routing

Switching

ACL

Pkt	in

Pkt	out

Program	(4	MATs)

Input:	data	plane	programs	w/	match	action	tables	(MATs)

2

Data	Plane	Program	Deployment

MAC	learn

Routing

Switching

ACL

Pkt	in

Pkt	out

Program	(4	MATs) Details	of	an	MAT	(ACL)

Match
Pkt.srcip
Pkt.dstip

hit

Action
Output
to	Port1details

Rules

Action
Drop

else
Pkt	in

Pkt	out

Input:	data	plane	programs	w/	match	action	tables	(MATs)

2

Data	Plane	Program	Deployment

Switch	Arch	(4	stages)

MAC	learn

Routing

Switching

ACL

Pkt	in

Pkt	out

Program	(4	MATs)

ALUs	for	Actions	of	MATsRAM	for	MAT	rules

S1 S2 S3 S4

Input:	data	plane	programs	w/	match	action	tables	(MATs)

Target:	programmable	switches	w/	switch	stages

2

Data	Plane	Program	Deployment

Switch	Arch	(4	stages)

MAC	learn

Routing

Switching

ACL

Pkt	in

Pkt	out

Program	(4	MATs)
S1 S2 S3 S4

Output:	Mapping	between	an	MAT	and	a	stage

Input:	data	plane	programs	w/	match	action	tables	(MATs)

Target:	programmable	switches	w/	switch	stages

2

Data	Plane	Program	Deployment

Output:	Mapping	between	an	MAT	and	a	stage

Input:	data	plane	programs	w/	match	action	tables	(MATs)

Target:	programmable	switches	w/	switch	stages

Enable	deployment	of	advanced	network	applications 
(1)	Software-de+ined	measurement:	FlowRadar,	Martini,	PINT,	OmniMon,	etc.	
(2)	In-network	acceleration:	NetCache,	NetChain,	NetLock,	Cheetah,	etc.  
(3)	Traf+ic	scheduling	and	optimization:	PIFO,	PIEO,	HPCC,	P4air,	etc.

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 2

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Requirements	of	Program	Deployment

Given	multiple	input	data	plane	programs:

1.	Resource	ef+iciency

given	that	switch	resources	are	limited	(e.g.,	<10	MB	memory)

2.	High	end-to-end	packet	processing	performance

satisfy	tight	latency/throughput	requirements	issued	by	apps

simultaneously	deploy	these	programs	on	network

3

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Limitations	of	Existing	Solutions

(1)	Compiler	design:	RMT	(NSDI’15),	dRMT	(SIGCOMM’17),	etc.

(2)	Virtualization:	Hyper4	(CoNEXT’16),	P4Visor	(CoNEXT’18),	etc.

4

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Limitations	of	Existing	Solutions

(1)	Compiler	design:	RMT	(NSDI’15),	dRMT	(SIGCOMM’17),	etc.

(2)	Virtualization:	Hyper4	(CoNEXT’16),	P4Visor	(CoNEXT’18),	etc.

Support	program	deployment	on	a	single	programmable	switch

(1)	Poor	resource	ef+iciency	as	scaling	to	multiple	programs

(2)	Low	performance	due	to	lack	of	considering	constraints
(device	connectivity,	traf+ic	routing,	etc.)

4

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Goal	

Provide	program	deployment	that	achieves:

(1)	Resource	Ef+iciency:	make	the	best	use	of	switch	resources

(2)	High	Performance:	low	latency	and	high	throughput

Program#1

Program#2

Program#N

···
Our	Framework

Input output

P#1 P#2

P#3

Programmable	Networks

5

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Challenges

(1)	Program	diversity:	case-by-case	analysis	and	deployment  
							e.g.,	Count-Min	(sequential	layout),	NetCache	(branch-heavy)

6

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Challenges

(1)	Program	diversity:	case-by-case	analysis	and	deployment  
							e.g.,	Count-Min	(sequential	layout),	NetCache	(branch-heavy)

(2)	Heterogeneous	constraints:	complicated	problem	solving 
							switch	resource	limitations	vs.	network-wide	constraints

(e.g.,	device	connectivity)

6

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Challenges

(1)	Program	diversity:	case-by-case	analysis	and	deployment  
							e.g.,	Count-Min	(sequential	layout),	NetCache	(branch-heavy)

(2)	Heterogeneous	constraints:	complicated	problem	solving 
							switch	resource	limitations	vs.	network-wide	constraints

(3)	Inter-device	coordination:	pkt	scheduling	among	switches 
							to	preserve	original	packet	processing	semantics

(e.g.,	device	connectivity)

6

SPEED	Framework

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

(1)	Table	dependency	graph	for	program	diversity	

(2)	Program	merging	for	achieving	resource	ef+iciency

(3)	One	big	switch	for	heterogeneous	constraints

(4)	Inter-device	packet	scheduling	for	device	coordination

7

SPEED	Framework

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

(1)	Table	dependency	graph	for	program	diversity	

(2)	Program	merging	for	achieving	resource	ef+iciency

(3)	One	big	switch	for	heterogeneous	constraints

(4)	Inter-device	packet	scheduling	for	device	coordination

This	Talk

7

Table	Dependency	Graph	(TDG)

Universal	intermediate	representation	of	data	plane	programs 
T=(VT,	ET):	a	node	in	VT	is	an	MAT;	an	edge	in	ET	is	an	MAT	dep

L2/L3	routing	program

TDG	for	the	program

Figures	extracted	from	“Compiling	Packet	Programs	to	Recon+igurable	Switches”,	NSDI	2015 8

Table	Dependency	Graph	(TDG)

Universal	intermediate	representation	of	data	plane	programs 
T=(VT,	ET):	a	node	in	VT	is	an	MAT;	an	edge	in	ET	is	an	MAT	dep

L2/L3	routing	program

TDG	for	the	program

Bene+it#1:	Handle	program	diversity	

Bene+it#2:	Ease	SPEED	analysis	on	program	properties

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 8

Program	Merging	for	Resource	EfLiciency

Motivation#1:	Requirement	for	reducing	resource	usage  
Motivation#2:	Occurrence	of	redundant	MATs	among	programs

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 9

Program	Merging	for	Resource	EfLiciency

Motivation#1:	Requirement	for	reducing	resource	usage  
Motivation#2:	Occurrence	of	redundant	MATs	among	programs

In	Software-de+ined	Measurement	(SDM):

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Program#1
for	+low	count

Program#2
for	heavy	hitter

Program#3
for	anomalies

9

Program	Merging	for	Resource	EfLiciency

Motivation#1:	Requirement	for	reducing	resource	usage  
Motivation#2:	Occurrence	of	redundant	MATs	among	programs

In	Software-de+ined	Measurement	(SDM):

Program#1
for	+low	count

Program#2
for	heavy	hitter

Program#3
for	anomalies

A:	CRC	hashing	 B:	CRC	hashing	 C:	CRC	hashing	

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Redundant	MATs	(3×	hashing)

9

Program	Merging	for	Resource	EfLiciency

Motivation#1:	Requirement	for	reducing	resource	usage  
Motivation#2:	Occurrence	of	redundant	MATs	among	programs

In	Software-de+ined	Measurement	(SDM):

Program#1
for	+low	count

Program#2
for	heavy	hitter

Program#3
for	anomalies

Redundant	MATs	(3×	hashing)

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

(only	one	hashing)

Program#4
merge	#1-#3++ =

CRC	hashing	A:	CRC	hashing	 B:	CRC	hashing	 C:	CRC	hashing	

9

Program	Merging	for	Resource	EfLiciency

Algorithm	based	on	longest	common	subsequence	(LCS) 
Input:	n	TDGs				Output:	a	compound	TDG,	Tm	

WorkLlow:	n-1	iterations;	each	iteration	takes	2	TDGs	to	merge

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 10

a1 a2 a3

b1 b2 b4

b3 b5

(a)	TDG	T1
(b)	TDG	T2

11

a1 a2 a3

b1 b2 b4

b3 b5

(a)	TDG	T1
(b)	TDG	T2

(d)	Pairs	of	  
Redundant	MATs

a1 b1

a2 b3

a3 b4

a1 a2 a3

(c)	Topological	Orderings

b1 b2 b3 b4 b5

11

a1 a2 a3

b1 b2 b4

b3 b5

(a)	TDG	T1
(b)	TDG	T2

a1 b1

a2 b3

a3 b4

a1 a2 a3

(c)	Topological	Orderings

(e)	Longest	Common  
Subsequence	(LCS)

b1 b2 b3 b4 b5

b1 b2 b3 b4 b5

a1 a2 a3

(d)	Pairs	of	  
Redundant	MATs

11

a1 a2 a3

b1 b2 b4

b3 b5

(a)	TDG	T1
(b)	TDG	T2

c1 b2 c3

c2

b5

(f)	Merging	T1	and	T2 
into	TDG	Tm

a1 b1

a2 b3

a3 b4

a1 a2 a3

(c)	Topological	Orderings

(e)	Longest	Common  
Subsequence	(LCS)

b1 b2 b3 b4 b5

b1 b2 b3 b4 b5

a1 a2 a3

(d)	Pairs	of	  
Redundant	MATs

11

One	Big	Switch	(OBS)	Abstraction

To	place	Tm,	SPEED	abstracts	substrate	network	as	an	OBS  
(1)	Separate	heterogeneous	constraints	in	two	phases	

(2)	In	each	phase,	only	consider	one	objective  
Bene+it#1:	Simplify	program	deployment	

Bene+it#2:	Achieve	multi-objective	deployment

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

S2	(4	stages)S1	(4	stages)

12

One	Big	Switch	(OBS)	Abstraction

To	place	Tm,	SPEED	abstracts	substrate	network	as	an	OBS  
(1)	Separate	heterogeneous	constraints	in	two	phases	

(2)	In	each	phase,	only	consider	one	objective  
Bene+it#1:	Simplify	program	deployment	

Bene+it#2:	Achieve	multi-objective	deployment

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

S2	(4	stages)

OBS	(8	stages,	+irst	4	of	S1,	last	4	of	S2)

S1	(4	stages)

Consolidate	all	stages 
of	all	programmable	switches

12

One	Big	Switch	(OBS)	Abstraction

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

To	place	Tm,	SPEED	abstracts	substrate	network	as	an	OBS  
Property#1:	Separate	heterogeneous	constraints	in	two	phases	

Property#2:	In	a	phase,	one	obj	and	one	type	of	constraints  
Bene+it#1:	Simplify	program	deployment	

Bene+it#2:	Achieve	multi-objective	deployment

12

One	Big	Switch	(OBS)	Abstraction

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

To	place	Tm,	SPEED	abstracts	substrate	network	as	an	OBS  
Property#1:	Separate	heterogeneous	constraints	in	two	phases	

Property#2:	In	a	phase,	one	obj	and	one	type	of	constraints  
Bene+it#1:	Simplify	program	deployment	

Bene+it#2:	Achieve	multi-objective	deployment

12

One	Big	Switch	(OBS)	Abstraction

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

To	place	Tm,	SPEED	abstracts	substrate	network	as	an	OBS  
Property#1:	Separate	heterogeneous	constraints	in	two	phases	

Property#2:	In	a	phase,	one	obj	and	one	type	of	constraints  
Bene+it#1:	Simplify	program	deployment	

Bene+it#2:	Achieve	multi-objective	deployment

Phase#1:	TDG	placement	on	OBS	  
Phase#2:	OBS	placement	on	network

Program	deployment  
in	SPEED

12

Phase#1:	TDG	Placement	on	OBS

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Formulate	as	ILP: 
Goal:	For	MAT	u	of	Tm,	place	u	on	an	OBS	stage	v	

Obj:	min	(#	occupied	OBS	stages)	

C#1:	Per-stage	resource	limitation	  
C#2:	MAT	dependencies	(i.e.,	edges	of	Tm)	

Solve	ILP	using	Gurobi	solver	[1]

Compound	TDG	Tm

[1]	Gurobi	solver:	https://www.gurobi.com/

a2

b2

c1

a3

b3

OBS	Stages

13

Phase#2:	OBS	Placement	on	Network

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Formulate	as	ILP: 
Goal:	For	OBS	stage	u,	place	u	on	a	real	stage	v	

Obj:	max	(throughput)	|	min	(latency)	

C#1:	One-to-one	mapping	  
C#2:	Performance	metrics	

Solve	ILP	using	Gurobi	solver	[1]

[1]	Gurobi	solver:	https://www.gurobi.com/

OBS	Stages

Network

14

MAT a1

[Action] 
idx = crc32(pkt.srcIP);

[Match] None

[Action] 
update(CM, idx);

[Match] None

MAT a2

[Action] 
forward(output_port);

[Match] pkt.srcIP

[Rule Number] 1024[Rule Number] 1 [Rule Number] 1

MAT a3

[Action] 
idx = crc32(pkt.srcIP);

[Match] None

[Action] 
update(ES, idx);

[Match] None

[Action] 
forward(output_port);

[Match] pkt.srcIP

[Rule Number] 512[Rule Number] 1 [Rule Number] 1

MAT b1 MAT b2 MAT b3

TDG1	of 
Task#1

TDG2	of 
Task#2

Example:	Software-deLined	Measurement	(SDM)

SDM	deploys	two	measurement	tasks	via	SPEED:

15

MAT a1

[Action] 
idx = crc32(pkt.srcIP);

[Match] None

[Action] 
update(CM, idx);

[Match] None

MAT a2

[Action] 
forward(output_port);

[Match] pkt.srcIP

[Rule Number] 1024[Rule Number] 1 [Rule Number] 1

MAT a3

[Action] 
idx = crc32(pkt.srcIP);

[Match] None

[Action] 
update(ES, idx);

[Match] None

[Action] 
forward(output_port);

[Match] pkt.srcIP

[Rule Number] 512[Rule Number] 1 [Rule Number] 1

MAT b1 MAT b2 MAT b3

TDG1	of 
Task#1

TDG2	of 
Task#2

Step#1:	Program	Merging  
Tm	←	Merge(TDG1,	TDG2)

a2

b2

c1

a3

b3

c1	←	Merge(a1,	b1)

16

Step#1:	Program	Merging  
Tm	←	Merge(TDG1,	TDG2)

a2

b2

c1

a3

b3

c1	←	Merge(a1,	b1)

c1

a2

b2

a3

b3

Step#2:	Place	Tm	on	OBS

Stage 1 Stage 2 Stage 3 Stage 4

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 17

Step#1:	Program	Merging  
Tm	←	Merge(TDG1,	TDG2)

a2

b2

c1

a3

b3

c1	←	Merge(a1,	b1)

Path#1 
t=55ms

Link (N1,N2)

N2c1

a2

b2

a3

b3

Step#2:	Place	Tm	on	OBS

Stage 1 Stage 2 Stage 3 Stage 4

Step#3:	Place	OBS	on	Network

N1

S1 S2
Path#2 
t=32ms

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 17

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary

Evaluation

Testbed:	Sender	<=>	To+ino	<=>	Receiver;		Simulator:	Mininet	

Workload:	10	real	programs	(5	SDM,	5	switch.p4)

Comparison:	FFL,	FFLS	(NSDI’15),	Heuristics	(BFS,	NodeRank)

(1)	Can	SPEED	achieve	resource	ef+iciency?

(2)	Can	SPEED	achieve	high	packet	processing	performance?

More	results	can	be	found	in	our	paper	:-)

18

Can	SPEED	achieve	resource	efLiciency?

Deploy	SDM	programs Deploy	switch.p4	programs

Yes!	SPEED	reduces	number	of	switch	stages	by	up	to	25%

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 19

Can	SPEED	achieve	high	performance?

AboveNet	topologic Internet2	topologic

Yes!	SPEED	achieves	14%-59%	latency	reduction

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 20

Takeaways

SPEED:	Resource-Ef+icient	and	Performant	Program	Deployment	

(1)	TDG,	(2)	program	merging,	(3)	OBS-based	placement	

Evaluation	on	10	real-world	data	plane	programs:	

(1)	save	up	to	25%	switch	stages;	(2)	reduce	latency	by	14%-59%

Background	|	Problems	|	Challenges	|	Design	|	Evaluation	|	Summary 21

Thank	you	very	much!  

Xiang	Chen,	Hongyan	Liu,	Qun	Huang,	Peiqiao	Wang,	Dong	Zhang,	  
Haifeng	Zhou,	Chunming	Wu  

Email:	wasdnsxchen@gmail.com				Page:	wasdns.github.io

