Network-Centric Approach Using Task Migration for Drive-by-Wire Vehicle Resilience

Jeanseong Baik, Haegeon Jeong, Kyungtae Kang* Computer Science and Engineering, Hanyang University

Rise of the Autonomous Vehicles

Seamless services

Task migration + Network-centric

Vehicle accident Sudden unintended acceleration

- Suppose Three vehicles driving in same speed, and the middle vehicle suddenly accelerates
- Unintended, unexpected, uncontrolled acceleration of a vehicle
- Cause: Control failure of ECU (Electronic Control Unit)

Cost Reduction

Implementation of LEGO Vehicle

Results using Migration

Avoiding Sudden unintended acceleration

- Monitoring all nodes with central node
- Sustaining the process state (Copy and paste to secondary node)
 - Knows the speed, direction, etc.

Conclusion

- Implemented a task migration method on a single Lego vehicle
 - Recovers dead-end functions to avoid collisions
- Overcome the limitations of the SPOF
 - utilized the network connectivity of ECUs and used task migration techniques between ECUs to sustain the critical functions.
- Three main advantages
 - Maintains the main state of the previous task
 - Whenever a central ECU detects a fault with an observed ECU, it will identify a replaceable ECU dynamically
 - It is cost-effective because this method guarantees safety using existing mutually connected ECUs without redundant ECUs.

Thank you.

jsbaik@hanyang.ac.kr