High Speed Route Lookup for Variable-Length IP Address

Wanli Zhang, Xiangyang Gong, Ye Tian, Jifan Tang

Beijing University of Posts and Telecommunications

Background

IP addresses are facing more and more problems

- Address exhaustion
- Low packet efficiency
- Low flexibility

Why?

• Fixed-length design

New IP

- Variable-length and structured addresses
- Address space smoothly expands

New IP Communication

- Short address
- Long address

Active BGP entries (FIB)

Contribution 1

Analogy with IPv4

- Large address space:
 - $2^{32} \approx 4 * 10^9$
- Small routing table:
 - 9 * 10⁵

Plot Range: 30-Jun-1988 1430 to 09-Oct-2020 0109

www.cidr-report.org

Contribution 1

New IP Address

- Structured design
- Assign IP based on geographic location

New IP can aggregate better

- BCAMs: Map each segment of New IP to a shorter segment
- TCAMs: Longest prefix matching

Contribution 2

Contribution 1

□ TCAM width should be more than the longest address length

□ Waste TCAM storage space

✓ Most addresses are much shorter than the longest address

- ✓ Long address shortening method
- ✓ Reduce TCAM storage space consumption

Long Address Shorten

- TCAM1: Stores short addresses
- TCAM2: Stores long addresses

Long Address Shorten

Short addresses lookupOnly TCAM1

Long addresses lookup

• TCAM1 and TCAM2

Evaluation

Lookup latency

- BCAM+TCAM: Two clock cycles
- ✓ Pipeline: One clock cycle

TCAM storage space consumption

- Random 1 million New IP address
- TCAM width for IPv6 : Always 128
- ✓ The router can choose appropriate TCAM width based on the size of its routing table.

