

Felix Weinrank
Michael Tüxen
Erwin P. Rathgeb

Agenda

- A brief introdcution to SCTP
- SCTP's default loss recovery
- RACK for TCP
- RACK for SCTP
- Performance evaluation
- Modfications and improvements

SCTP

FH MÜNSTER University of Applied Sciences

- <u>Stream Control Transmission Protocol</u>
- Connection ("association") oriented, reliable and message-oriented
- Provides network fault tolerance
 - Support of multihoming
 - Minimisation of head of line blocking
- Originally designed for signalling in telecommunication networks (SS7)
- Now a multi purpose transport protocol, e.g. for WebRTC Data-Channel
- Allows bundling of multiple chunks in a single message

32 Bit >	
Source Port	Destination Port
Verification Tag	
Checksum	
Chunk #1	
Chunk #N	

SCTP

Loss recovery

- SCTP uses two loss recovery strategies
 - timer based retransmission (slow! 1s / 200ms)
 - counting loss indications (3 GAP reports → retransmission)

RACK for TCP

- Originally developed by Google
- Proposed as a full replacement for existing error recovery algorithms
- Currently IETF draft
- Integrated into FreeBSD, Linux and Windows
- RACK ("Recent ACKnowledgment")
 - Fast recovery using time-based inferences
- TLP ("Tail Loss Probe")
 - Leverages RACK and sends a probe packet to trigger ACK feedback
- Sender side only
 - Requires no extensions apart from SACK

RACK for TCP

FH MÜNSTER University of Applied Sciences

How it works

- RACK records the transmission time for every outgoing packet
- If packet has not acknowledged within time and a subsequently sent packet has been acknowledged → retransmission
- RACK considers packet reordering → prevents spurious retransmission
- RackTimeout = rackRTT + 4 x reordering window

RACK for TCP

FH MÜNSTER University of Applied Sciences

Operation example

FH MÜNSTER University of Applied Sciences

- SCTP supports all required mechanisms out of the box
 - SACKs always enabled
 - Duplicate packets are always reported to the sender
 - Better reordering window calculation
- Difference: SCTP records transmission time per chunk

FH MÜNSTER University of Applied Sciences

Testbed for simulation

FH MÜNSTER University of Applied Sciences

Simulative evaluation

Tail Loss Probing (TLP)

FH MÜNSTER University of Applied Sciences

- Tail Loss: Either the last payload segment(s) or acknowledgements get lost
 - Can not be detected by dupthresh or RACK
 - Are recovered by timer-based retransmissions → slow!
- Common problem for request/response style traffic
 - Google reports that 70% of their losses are recovered by timer-based retransmission
- After every transmission, a probing timer is armed
 - Timeout depends on smoothed RTT and number of packets in flight
- Evaluation shows that the mechanism works well
- But: TLP tends to mark large ranges of packets as lost
 - Burst mitigation needed

FH MÜNSTER University of Applied Sciences

Example

Tail Loss Probing (TLP)

FH MÜNSTER University of Applied Sciences

Burst mitigation

- TLP tends to create large bursts
 - RACK draft suggests Proportional Rate Reduction [RFC6937]
- SCTP already has built-in burst mitigation
 - Limiting the number of packets per acknowledgment (default : 4)
 - Is this mechanism sufficient? It depends!
- We have developed a dynamic burst mitigation algorithm (initial: 2)
 - Max burst reduced by 0.25 if retransmission gets lost
 - Max burst reset to 2 if retransmissions are delivered without loss

Tail Loss Probing (TLP)

I-Bit

- If only a single packet is in flight, the TLP timer must consider delayed ACKs
 - Delayed ACK reduce the number of ACKs
 - Every second payload carrying packet is acknowledged
 - The worst case delayed ACK timer (WCDelAckT) is 200 milliseconds
- The sender can set an I-Bit to request an ACK without waiting for a subsequent packet

FH MÜNSTER University of Applied Sciences

Faster Tail Loss probing

Thank you!

