Using IP to Underpin 5G Networks Making the Unreliable Reliable

Adrian Farrel

adrian@olddog.co.uk

28th IEEE International Conference on Network Protocols

October 13th, 2020

Topics

- What Services do we Want to Enable?
- What do the Services Demand?
- What is an Underlay Network? Why use IP?
- But IP is "Best-Effort" isn't it?
- How To Build Reliability over the Internet?
- Proposals to make IP Predictable
- Architectural and Deployment Considerations
- Evolution or Revolution?

5G and the New Services

- Lots of pizzazz and hype!
- But, this is not really about 5G, it's about new services on the Internet
 - 5G just makes them more broadly available
- New services will come along
 - Beware of using them as justification for technology
 - Look for the real services and applications
- What applications?
 - Remote surgery
 - Haptic interactions
 - Holographic conferencing
 - Multi-player VR or AR gaming
 - Vehicle automation
 - Manufacturing
 - Crowd-sourced video
 - Digital trading

New Services Need New Network Behaviours

- Most of the new applications demand some improvement in networking
 - Greater bandwidth (throughput)
 - Lower delay (less latency)
 - Less variation in delivery time (reduced jitter)
 - More independence (less impacted by other traffic)
 - Better reliability (less packet loss / corruption)
 - Better resiliency (less affected by network failures)
- This is not a new list!

The Underlay Provides Connectivity

- Every connection has an underlay providing connectivity
 - Even the fibre is carried in a duct
- But "underlay" is subjective
- We care about connectivity provided for our application
- The applications we are talking about run over the Internet
 - That makes IP the prime candidate
- 5G applications and network segments can be connected
 - Probably over the Internet
 - Again, IP is the candidate "underlay" network

So Who is Perfect?

- IP was designed with specific design goals
 - It is a simple encapsulation for end-to-end delivery
- The IP network also had simple-to-state goals
 - Connectionless network (no state in the network)
 - Recovery from network faults
 - Best-effort delivery
- Everything else happens in other layers
 - Lower layers may be made reliable and may include traffic engineering
 - Higher layers may include retransmission, security, prioritisation
- Thus, IP is not:
 - Predictable
 - Dependable
 - High-quality

How To Deliver Reliability Over the Internet

- Many technologies exist to underpin the Internet
 - Ethernet, MPLS, OTN
- These do not provide end-to-end quality of service
- Solutions in hand look at how to provide predictability over IP
 - Real-time Transport Protocol (RTP)
 - As old as the hills (1986) and widely used (e.g. VoIP and WebRTC)
 - Helps handle jitter, packet loss, out-of-order delivery
 - Multi-Path TCP (MPTCP)
 - Experimental (2013) moved to standards track (2020)
 - Inverse multiplexing to maximise use of bandwidth and improve throughput
 - QUIC
 - Google proprietary (2012) brought to the IETF
 - Already widely deployed
 - Multiplexed connections and somewhat reduced latency
- In the dustbin of history?
 - Differentiated Services (DiffServ)
 - Somewhat used, but not substantially
 - Colour packets for different services
 - Allows prioritised queuing and different treatments at transit routers
 - Integrated Services (IntServ)
 - Fine-grain description of traffic flows
 - Prioritisation of traffic and reservation of network resources in conjunction with a protocol such as RSVP
 - Too complex and requires end-to-end support in the network

Making IP Predictable

- Increased pressure to make IP behave in known ways
 - Guarantee the quality of service
- Tends to drive some form of connection-oriented approach
 - RSVP placed state in the routers (not talking about MPLS)
 - Segment Routing places state in the packets and the management station
- Today's discussions are about:
 - Placing flow quality identifiers in the packets
 - Programming the network to handle packets differently
 - Different queuing and prioritisation
 - Assumes many things:
 - "Sufficient" network resources are available
 - Traffic never swamps the network
 - Central management can predict how to distribute traffic
 - Routers are aware of marking schemes to not congest traffic

Deployment Considerations

- What have we learned about deploying new stuff in the Internet?
 - Sub-IP
 - Can be done hop-by-hop but requires adjacent nodes to interoperate
 - Usually done in islands and can be slow to achieve
 - Incentive is operational or commercial
 - IP
 - Needs all routers in an administrative domain to be updated
 - Better if full end-to-end path is upgraded
 - Remarkably hard to show incentive (just look at IPv6)
 - May be practical in specialist networks
 - End-to-end (application level, or transport)
 - Just update the end points
 - Old versions continue to be supported (with lower functionality)
 - Easy to achieve
 - Incentive is either additional features or bundled in regular release packs

"Ye cannae change the laws of physics"

- <u>But seriously, you can't</u>
- Yes, we're squeezing a little more out of hollow fibres
- No, the speed of light is a limiting factor

- Thus, round-trip latency is governed by distance
 - People talk about <1ms round trip times for some applications
 - That's 93 miles each way
 - Assuming no processing, routing, buffering
- That has many implications for how we architect our networks

Network Architecture is Evolving

- Processing is moving to the edge
- Bandwidth is increasing
- Private connectivity networks link remote data centres
 - The Internet is, once again, a network of networks

- This doesn't help you if you want low latency across the world
 - Battlefield surgery conducted from the home nation
 - Multi-player inter-continental games
 - High-speed market trading
 - Sensitive haptic interactions

Evolution or Revolution?

- Haven't we been here before?
 - Repeating cycle of concern
 - Internet will not scale
 - We need to do something
 - Bandwidth reservation
 - IntServ, etc.
 - But each time we have addressed concerns with increased capacity at a lower cost
 - Why do we think it is different this time?
- Do we try to "fix IP" or do we build a replacement?
 - Evolution or revolution?
 - Maybe neither, given what we know about deployment and architecture
- But what could we do instead?
 - Improve the underlay and the overlay
- We clearly need to spend time on research

Research

- What applications and services do we *really* need to support?
 - There is a difference between dreams and immediacy
- What can we achieve by enhancing tunnelling and transport protocols?
 - What have we learnt from RTP, QUIC, and MPTPC?
- What could we do through better operations and management?
- How should we design our applications to handle network effects?
 - Don't we already do this?
- What form does research take?
 - Experimental protocols and implementations
 - Quantitative measurements of network behaviour
- Where can we do our research?
 - Universities and corporate research labs
 - Publish in journals and at the IRTF

Questions and Follow-up

adrian@olddog.co.uk