

Adaptive Address for Next Generation IP Protocol in Hierarchical Networks

Haoyu Song, Zhaobo Zhang, Yingzhen Qu, James Guichard

Futurewei Technologies, USA

Motivation

Resource limit

- Independent address space
- Identity retention
- Nondisruptive upgrade

Observation

Data Center Network

- Hierarchical network architecture
- Most communication happens between adjacent entities
- Communication possible if entities can be uniquely identified *mutually*

Adaptive Address in Hierarchical Networks

Entity Address = Network ID + Entity ID

- Delegate Network ID maintenance and operation to networks
- Entity only knows and uses its own Entity ID
- For communication, entity only get the peer's partial address up to the first network level they share
 - E.g., in the lowest level network, entity ID is enough

California

Los Angeles

New York

New York City

San Jose

Address Fields in Header & Border Router's Function

Src. Addr. Length

Source Address (variable)

Destination Address (variable)

- LGR keeps a prefix (network ID) for the network below it
 - Egress packet: add the prefix to the source address
 - Ingress Packet: remove the prefix from the destination address
- ILR for intra-level traffic forwarding

Interface with IPv4/IPv6 Networks

IPv4/IPv6 Network as a lowest level network in IPvn

IPvn networks within IPv4/IPv6 network

- IPvn with private addresses (NAT)
- IPvn with assigned public address block
 - LGR → IPT (IP Protocol Translator)

Control Plane Design

- DHCP
 - Entity ID assignment
- DNS
 - Hierarchical tree architecture
 - Name scoping and name overriding
- ARP/NDP
 - LGR as ARP proxy for its prefix
- Routing Protocol
 - Low level network can be a single AS
 - High level network can contain multiple ASes
 - With lower level network as stub AS

Data Plane Design

- End Entity
 - New IPvn socket supporting IPvn address family
 - Header convertible to IPv4/IPv6
 - Same L2, and L4-L7 protocol stack
- Routers
 - Smaller and simplified forwarding table
 - No nested prefixes
 - Network level address aggregation
 - New functions in LGR
 - Source and destination address manipulation
 - New functions in IPT
 - IP protocol translation

Implementation

IPVn header format

IPVn header parse graph in P4

Implementation and Simulation Environment

Evaluation I

(Sn) autil time | Proportion t

Per-Packet Processing Time in Different Types of Routers

Forwarding Performance Comparison

- Reflect relative performance in software implementation
- Insufficient support of variable length header in P4
- Not consider the performance for address lookups

Evaluation II

64%
32%

Sulvay

8%
4%
2%
1%
1 2 4 8 16 32 64 128 256 512 1024 1500
Packet Payload Length (Byte)

IoT Power Saving over IPv6

Conclusion

- Efficient addressing scheme for IoT and data center networks
- Future-proof extensible address space
- Incrementally deployable from the edge
- Fully interoperable with existing IPv4/IPv6 network and end entities
- Simplified network control/data plane protocol & implementation
- Open source (<u>https://github.com/Fizzbb/ResearchPaper/tree/master/Adaptive-Addresses-for-NG-IP</u>)

Thank You.

