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Abstract—With the development of the Internet of vehicles
and 5G, there emerge more and more challenging application
scenarios with fast time-varying channels and high mobility
nodes, such as high speed trains environment and vehicle-to-
infrastructure (V2I) communication in highway. To support the
reliable vehicular communication and mobile edge computing
(MEC), it is important to obtain the future channel state informa-
tion (CSI), which can help optimize system transmission scheme.
In this paper, we propose an efficient blind CSI prediction model,
called BCPMN. We first reshape the sampled signal into a specific
2-dimensional matrix. Then we propose a learning framework
contains of convolutional neural network (CNN), long short-term
memory (LSTM) network and fully connected layers. To validate
the proposed model, we conduct extensive experiment in three
modulation modes. The results show that the BCPMN achieves
highly accurate signal-to-noise ratio (SNR) prediction in the fast
changing channel model with different modulation modes. In
particular, the proposed model can obtain better performance
than other methods, and can achieve better performance than
other methods without the payload cost of pilot.

Index Terms—Vehicular communication, V2I, CSI, BCPMN,
SNR prediction.

I. INTRODUCTION

With the development of 5th generation wireless systems
(5G), more and more vehicular communication scenarios are
beginning to apply 5G [1] such as vehicle-to-vehicle (V2V)
communication [2], vehicle-to-infrastructure (V2I) communi-
cation [3] and high speed train (HST) communication [4]–
[6]. Due to the high sensitivity of millimeter-wave (mm-
wave) wireless system to channel quality and environmental
conditions [7], providing more effective and reliable commu-
nication services for 5G vehicular communication system is
becoming more important. Recently, mobile edge computing
(MEC) [8] and adaptive transmission scheme [9]–[11] is
widely studied. Under low speed environments, Libo Jiao
[8] provided an MEC system using imperfect channel state
information (CSI) to achieve efficient resource allocation and
Gavin Holland [11] proposed an adaptive rate and modulation
scheme based on signal-to-noise ratio (SNR) to improve high
network throughput, which illustrates that CSI, such as SNR,
is highly essential for wireless communication systems to
optimize the performance.

D. R. Pauluzzi [12] compared some classic SNR estima-
tion algorithms and summarized several excellent and easy
to implement estimators such as maximum-likelihood (ML)
estimator, squared signal-to-noise variance (SNV) estimator

and second- and fourth-order moments (M2M4) estimator.
The SNV estimator is actually a special case of the ML
SNR estimator, and the ML estimator and SNV estimator that
rely on the pilot inserted in frame belong to data-aided (DA)
estimator. In contrast, the M2M4 estimator is independent of
the transmitted data and does not require carrier phase recovery
and receiver decision.

However, the conventional CSI estimation algorithms usu-
ally take a long time to obtain the current CSI and cannot sense
the future trend. In this case, many articles have intensively
researched on channel prediction, and proposed many classic
channel prediction models based on machine learning. Yadan
Zheng [13] proposed a modified ARIMA model for channel
quality indication (CQI) prediction to solve the long delay
problem in satellite environment. Furthermore, G. Liu [14] and
J. Joo [15] used long short-term memory (LSTM) network
to predict SNR in vehicle-to-everything (V2X) and V2V
communication system. C. Luo [16] proposed an OCEAN
model to predict CSI in 5G wireless communication system.

In high mobility scenario such as highway and HST, there
emerge many challenges in predicting CSI. Specifically, the
first problem is that the high speed movement of vehicles
will cause rapid changes in channel characteristics. As J.
Camp [10] mentioned, coherence time will decrease with the
increasing speed, which easily causes fast fading in millimeter-
wave system but the common regression algorithm such as
ARIMA cannot track rapidly changing channel information.
It usually leads to incorrect prediction results and makes
the adaptive transmission scheme unable to select the correct
modulation mode. Furthermore, the machine learning methods
[14]–[16] mentioned above are all based on pilot sequences in
the frame to extract CSI and the only way to adapt the fast
changing channel is increasing the inserted pilots. However,
the consequence is that the transmission efficiency is greatly
reduced and the system complexity is increased. Therefore,
we need to find an efficient way to perform CSI prediction in
such high speed scenarios.

In this paper, we develop a novel blind channel information
prediction model based on deep neural network (BCPMN)
to adapt the fast changing channel and predict SNR without
certain pilot. Unlike previous works that using pilot to estimate
CSI then make prediction, our model only needs the raw
receive signal as input instead of historical CSI or pilot
data and the output is the future channel characteristics. To
achieve our goal, we reshape the input data into a specific978-1-7281-6992-7/20/$31.00 ©2020 IEEE



2-dimensional matrix. The idea is to gather CSI and channel
changing patterns at the same time, so that CNN can extract
advanced features more easily. After reshaping and CNN
processing, only the features related to channel changes are
left, so LSTM can more accurately extract the time correlation
of data at different times and predict CSI.

The paper is organized as follows. We first introduced the
application scenario and the corresponding channel model in
Section II. Then we describe the proposed prediction scheme
in detail in Section III, including the data preprocessing
method and the network architecture. Afterwards, we present
the simulation results in Section IV, and finally conclude this
paper in Section V.

II. SYSTEM MODEL

Fig. 1. A typical V2I communication scenario on the highway.

A typical V2I mm-wave communication scenario on the
highway is shown in Fig.1, where the vehicles with different
speeds communicate with base stations using mm-wave bands.
In this scenario, the vehicles need to predict the rapid changes
of CSI in real time, perform MEC and work with base stations
to complete and the implementation of adaptive transmission
scheme to improve the efficiency [8] and throughput [10] of
wireless communication systems. To be more specific, we
consider the SNR in the V2I channel as the prediction target
than vehicles can use the predicted SNR to switch proper
modulation modes to improve the communication quality.

Since there is no mature highway mm-wave channel model
and the scenario is highly similar to HST environment. There-
fore, in this work, we use a high speed trains wireless dynamic
channel proposed by Y. Chang [4], which is based on a 60GHz
mm-wave wireless system. In the HST scenario, the high speed
trains are the vehicles and the base stations are placed on the
beams directly above the rails. The envelope of the channel
response is subject to the Rician distribution, and firstly the
received signal model can be defined as:

r(k) =

L−1∑
l=0

hl(k − l)s(k − l) + n(k), (1)

where k represents the index of sample in time domain. s(k) is
the transmitted signal and n(k) is the Gaussian noise. L is the
number of multipath, and hl(k) is the lth multipath channel
model. When l = 0, h0(k) is the LoS path as below:

h0(k) =

√
K

K + 1

xLoS

|xLoS|
× ej2πfdkTs cos(θLoS) cos(φLoS), (2)

fd =
vfc
c
, (3)

where K is the Rician factor, xLoS is a complex Gaussian
variable with zero mean and unit variance, Ts is the sampling
period, fd represents the maximum Doppler shift, fc is the
carrier frequency, c is the light speed and v is the vehicle
speed. Notation θLoS and φLoS represent the AoAs of the
azimuth and elevation. When 0 < l < L, hl(k) is the lth
NLoS path:

hl(k) =

√
1

K + 1

h′l(k)

α
, (4)

h′l(k) = xNLoS × ej2πfdkTs cos(θNLoS) cos(φNLoS), (5)

where xNLoS is multipath channel gain and α is the power
normalization parameter:

α =

√√√√L−1∑
l=1

|h′l(0)|2, (6)

In the HST channel, our goal is to accurately predict the
change of SNR with minimum frame overhead. From Eq.
(3), we can see that in the millimeter wave system, due to
the high carrier frequency, the maximum Doppler shift fd
will be greatly increased as the vehicle speed increases. As
a consequence, the coherence time Tc will decrease, which is
defined as:

Tc =
0.423

fd
, (7)

when the symbol period is greater than the coherence time
Tc, fast fading occurs, which denotes that channel change rate
is faster than symbol rate. However, the pilot-based channel
estimation and prediction algorithms need to increase the
insertion density of the pilot to adapt this rapidly changing
channel, which will significantly reduce the system transmis-
sion efficiency and estimation accuracy in the rapidly changing
channel. Therefore, we propose a blind channel prediction
algorithm that can adapt to rapidly changing channels and
does not rely on pilots, while the objective function can be
expressed as:

G = arg min
f,N,L

‖n− f(RN×L)‖22 , (8)

where n is the true SNR value, f represents the function
that the neural network needs to fit, R is the received data
matrix and N × L is the matrix dimension. RN×L is the
matrix obtained from the received signal sequence after data
preprocessing.



III. CHANNEL PREDICTION SCHEME

In this section, we propose a BCPMN channel information
prediction scheme based on CNN, LSTM and DNN, where
only the received signal is needed to predict the future SNR.
The conventional waveforms, like those in 802.11ad [17], use
pilots to estimate transmission power and SNR. However, they
cannot adapt to the rate of change of rapidly changing channel
and the increased payload cost of pilot is unacceptable. For
a certain modulation mode, its power statistics are regular,
so our scheme can use neural network to learn signal power
statistics from raw received signal then estimate SNR. In
fading channel, the channel parameters change randomly, but
within a relatively small time window, this change can be
fitted and predicted, so the main idea of this scheme is to use
CNN’s excellent capability on feature extraction and LSTM’s
remarkable ability on time sequences analysis to extract the
channel information hidden in the received signal. We first
preprocess the data so that the hidden channel features can be
better extracted by BCPMN. Then we fed the reshaped data
into the BCPMN to predict the CSI we need.

A. Data Preprocessing
In this subsection, we propose a data preprocessing method

to convert the raw data into the format we need. Since we need
to extract the time correlation of channel information changes
hidden in received signal, data sent to the network needs to be
sufficient and chronological. Assuming that the channel state
remains stable within the same frame. As is shown in Fig. 2.
When the receiver detects a data frame, we randomly truncate
and buffer a signal with a fixed time window length L. Then
we stitch the cached data of N adjacent windows into a two-
dimensional matrix R̃N×L, which can defined as:

Rt = [rt,1, rt,2, · · · , rt,L],
R̃t = [RT

t−N+1, · · · , RT
t−1, R

T
t ]

T (9)

This matrix is the input data matrix we need, where the R1×L
is the truncated data of each frame, r is a sample, t is the
index of frame and N is the time step. The value of N refers
to the pilot length of 802.11ad [17] and L is determined by
minimizing the validation loss in simulation experiments.

Fig. 2. The 1-dimensional data of t0-th frame is converted into a 2-
dimensional matrix in the data preprocessing scheme.

The main idea of constructing the matrix in this way is
to make full use of CNN’s feature extraction capabilities.

The convolutional layer uses a convolution kernel to multiply
its value element-by-element with the input matrix and then
sum them up. Each row vector of the input matrix represents
the channel information of different frames, and the change
trend of channel information is implied between each row
vector. Similar to the basic image edge detection problem
[18], when the channel information of adjacent row vectors
changes, the convolutional layer can extract the edge features
between adjacent row vectors. The edge features represent
the change trend and also the short-term time correlation of
channel information. Therefore, when the input matrix is fed
into CNN, the channel information of each frame and the
short-term time correlation of adjacent frames can be well
extracted. The rapid change of channel information makes
the edge more obvious, and the extracted edge features are
also clearer, so our model can achieve good performance in
tracking fast changing channel.

B. Structure of the BCPMN

The structure of the BCPMN is shown in Fig. 3. The
network consists of two 2-D convolutional layers, four LSTM
layers and two fully connected layers. The motivation of using
the proposed neural network structure is to make it easier for
LSTM to fit and predict the hidden channel information from
the raw received signal.

Fig. 3. The BCPMN model contains of 2 convolutional layers, 4 LSTM layers
and 2 fully connected layers.

Firstly, the input data matrix R̃ is sent to CNN. Similar to
Yoon Kim [19] using CNN and LSTM for natural language
processing, we consider a row vector of R̃ as a word and all
row vectors from Rt−N+1 to Rt are treated as a sentence,
which is a similar format with the input in [19]. Thus the
first 2-D convolutional layer can extract the low-level features
from the adjacent samples r and the adjacent frames R. The
low-level features represent the channel information of each
frame and are similar to the meaning of a word. Then the sec-
ond convolutional layer extracts the change trend of channel



information from the low-level features, which is similar to
the edge and correlation feature extraction of adjacent words
in a sentence. The convolutional operation can be described
as Eq. (10), where R̃k is the input matrix of the kth channel,
F kl is the convolution kernel in row k and column l and Ỹ l

is the output matrix of the lth channel. Assuming that the
convolutional layer has L output channels, K input channels
and the kernel size is I × J . Relu is nonlinear activation
function and b is a bias and Y l is the output of CNN. The
irrelevant features in the input matrix have been removed, and
the output features of CNN still retain time correlation.

Ỹ l(m,n) = R̃k(m,n) ∗ F kl(m,n)

=

K−1∑
k=0

I−1∑
i=0

J−1∑
j=0

R̃k(m+ i, n+ j)F kl(i, j),

Y l = Relu(Ỹ l + b)

(10)

Due to the fact that CNN’s receptive field is limited by the
size of the convolution kernel, it is impossible to capture the
long-term dependence of channel information and difficult for
CNN to accurately fit and predict it. Then the LSTM layers
are used to exploit the long-term change trend in the whole
time steps of R̃. Assuming that yt is the output from CNN
and the input of LSTM in time t and ht is the output in time
t. LSTM’s long-term memory comes from cell state Ct, and
the short-term memory comes from ht. These two parameters
can both be transmitted on the time axis, and the specific
update mechanism is as follows. Firstly, the cell state Ct−1
of the previous LSTM cell enters the current LSTM cell and
selectively forgets something through a forget gate, which can
be defined as:

ft = σ(Wf · [ht−1, yt] + bf ) (11)

The input of forget gate is concatenated by ht−1 and xt.
Secondly, the input gate is used to update the current cell
state Ct by following steps:

it = σ(Wi · [ht−1, yt] + bi),

C̃t = tanh(WC · [ht−1, yt] + bC),

Ct = ft ∗ Ct−1 + it ∗ C̃t

(12)

Then, the output gate selectively outputs the current short-term
memory according to the current cell state Ct:

ot = σ(Wo · [ht−1, yt] + bo),

ht = ot ∗ tanh(Ct)
(13)

Finally, two fully connected layers are used to map high-
level features back to low-level features and output the final
predicted value. The first long fully connected layer is used
to adapt the output dimension of LSTM, and the second short
fully connected layer is used to output prediction results.

IV. SIMULATION RESULTS

In this section, we verify the performance of the proposed
scheme in predicting SNR. Moreover, we compare the perfor-
mance of different methods and test the generalization ability
of the proposed model. The channel model we use is the
Rician channel in article [4] and the channel parameters are
shown in TABLE I. In this channel, The envelopes of the SNR
and K factor follow a Gaussian distribution, and the multipath
delay follows an exponential distribution with a parameter of
0.5×10−9. The Rt we use is truncated from a piece of data at
the end of the frame, which is a completely random sequence.

TABLE I
CHANNEL PARAMETERS

Parameter Value

Modulation mode π/2-QPSK

Symbol rate (Msym/s) 1760

Carrier frequency (GHz) 62.5

Number of multipath 2

Vehicle speed (Km/h) 320

Maximum Doppler shift (kHz) 18.5

TABLE II
TRAINING PARAMETER CONFIGURATION

Parameter Value

Training environment python3.6.10, tensorflow-gpu1.13.1

Initial learning rate 0.001

LSTM dropout 0.3

CNN kernel size 3× 3

Optimizer adam

Loss mse

Time step N 30

Truncated length L (symbol) 3328

Fig. 4. The MSE loss curve of the BCPMN model.

In order to improve the performance of the neural network
and accelerate the convergence speed, we normalized the
dataset into the range of [0, 1]. This paper uses python and
tensorflow to build the neural network. The environment and
main parameters of the neural network are shown in Table II.



(a) v = 60km/h,NMSE = 0.039

(b) v = 120km/h,NMSE = 0.011

(c) v = 320km/h,NMSE = 0.020

Fig. 5. SNR prediction results and NMSE at different vehicle speeds.

We use the normalized mean square error(NMSE) to calcu-
late the error between the predicted value and the true value.
The definition of NMSE is as follows:

NMSE =

∑n
i=1 |yp(i)− yt(i)|2∑n

i=1 |yt(i)|2
(14)

where yp is the predicted value and yt is the true value. The
dataset size is 20000 frames and the ratio of training set,
verification set and test set is 0.8, 0.1, 0.1 respectively. Fig. 4
shows that the BCPMN can converge within 10 epochs during
training.

Fig. 5 depicts the true and predicted SNR at different vehicle
speeds. According to Eq. (3) and (7), the maximum Doppler
shift in Fig. 5(a), Fig. 5(b) and Fig. 5(c) is 3472Hz, 6944Hz
and 18519Hz, respectively. The channel change rate increases
with speed. The average NMSE at each speed fluctuates
slightly due to different test set. It can be seen from this figure
that the predicted SNR is almost the same as the true value
and can perform well at different speeds, which shows that

the proposed model is very effective and can adapt well to
different Doppler shift.

Fig. 6. The comparison of prediction performance between LSTM, OCEAN
and BCPMN under different SNR.

Fig. 7. Adaptability experiment of BCPMN model to QPSK, 16QAM and
16APSK modulation modes.

We compare the SNR prediction performance of our
BCPMN scheme with the LSTM prediction scheme proposed
by G. Liu [14] and the OCEAN scheme under the same
simulation scenario in Fig. 5(c). Then we calculate the average
NMSE and the NMSE under different SNR. In the simulation,
both comparison algorithms use the estimated SNR based
on the pilot as the input CSI. Fig. 6 shows the comparison
results. The average NMSE of BCPMN, OCEAN and LSTM
is 9.14×10−3, 1.7577×10−2 and 5.9246×10−2 respectively.
Because the signal features are more obvious under high
SNR, the prediction error of each algorithm decreases with
the increasing SNR. However, the prediction accuracy of the
LSTM model is not improved when the SNR is high enough. It
illustrates that the model cannot track highly dynamic changes.
Simulation results show that the BCPMN model can achieve
better performance than the LSTM model and the OCEAN
model but our scheme only requires received signal instead of
historical CSI.



Adaptive modulation and coding is widely used in the
vehicular communication [10] and DVB-S2 system, including
BPSK, QPSK, 8PSK, 16QAM, 16APSK and 32APSK modu-
lation mode. Thus we select QPSK, 16QAM and 16APSK to
test the generalization performance of our model. We have
regenerated the dataset with the three different modulation
modes under the same simulation scenario in Fig. 5(c). Then
we have retrained the networks and tested the signals of
the modulation modes. Fig. 7 shows the performance of our
proposed model in QPSK, 16APSK and 16QAM modulation
mode. The average NMSE of QPSK, 16QAM and 16APSK
is 9.14× 10−3, 1.155× 10−2 and 1.962× 10−2 respectively,
which shows that the BCPMN can achieve similar prediction
performance in all three modulation modes and has good
generalization performance.

V. CONCLUSION

In this paper, we proposed a blind channel information
prediction model based on deep neural network in mm-wave
wireless communication system. The BCPMN scheme can
adapt to rapidly changing channel at different speeds and
achieve accurate CSI prediction performance. We propose a
data preprocessing method for the received signal, so that
CNN can better extract the channel information. We compared
the prediction performance of the three algorithms BCPMN,
LSTM and OCEAN. The BCPMN can achieve a lower NMSE
and only needs received signal instead of estimating the CSI
in advance. To validate BCPMN’s generalization performance,
we conducted experiments in QPSK, 16QAM and 16APSK
modulation mode and the results demonstrate that BCPMN can
achieve similar prediction performance in all three modulation
modes.
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