Machine Learning at the Edge: Efficient Utilization
of Limited CPU/GPU Resources by Multiplexing

Aditya Dhakal
University of California, Riverside
adhak001 @ucr.edu

Abstract—Edge clouds can provide very responsive services for
end-user devices that require more significant compute capabili-
ties than they have. But edge cloud resources such as CPUs and
accelerators such as GPUs are limited and must be shared across
multiple concurrently running clients. However, multiplexing
GPUs across applications is challenging. Further, edge servers
are likely to require considerable amounts of streaming data to
be processed. Getting that data from the network stream to the
GPU can be a bottleneck, limiting the amount of work GPUs
do. Finally, the lack of prompt notification of job completion
from GPU also results in ineffective GPU utilization. We propose
a framework that addresses these challenges in the following
manner. We utilize spatial sharing of GPUs to multiplex the GPU
more efficiently. While spatial sharing of GPU can increase GPU
utilization, the uncontrolled spatial sharing currently available
with state-of-the-art systems such as CUDA-MPS can cause inter-
ference between applications, resulting in unpredictable latency.
Our framework utilizes controlled spatial sharing of GPU, which
limits the interference across applications. Our framework uses
the GPU DMA engine to offload data transfer to GPU, therefore
preventing CPU from being bottleneck while transferring data
from the network to GPU. Our framework uses the CUDA
event library to have timely, low overhead GPU notifications.
Preliminary experiments show that we can achieve low DNN
inference latency and improve DNN inference throughput by a
factor of ~ 1.4.

Index Terms—GPU, Machine Learning, Deep Neural Networks,
Inference

I. INTRODUCTION

A large number of emerging applications, such as speech
recognition (e.g., Amazon Alexa, Apple Siri), image recog-
nition, vehicular safety, augmented reality/virtual reality
(AR/VR), etc. need low latency to satisfy the user’s quality of
experience (QoE) requirements. Frequently, these core services
also require accurate Inference and Machine learning (I&ML)
capabilities. These, I&ML applications often use compute inten-
sive Deep Neural Networks (DNNs) which require accelerators
such as GPU for low latency inference and learning. These
services typically depend on cloud resources to offload compute
intensive tasks. Locating the cloud facilities close to users is
highly desirable to ensure low latency and to guarantee QoE. In
this regard, the Edge Cloud (such as at the end of the first hop
link from the user, whether wired or wireless) are often the most
suitable to provide ’cloud’ services or act as an intermediary
to more centralized cloud services. Thus, the usage of
edge resources for I&ML is also becoming more attractive.

978-1-7281-6992-7/20/$31.00 ©2020 IEEE

Sameer G Kulkarni
Indian Institute of Technology, Gandhinagar
sameergk @iitgn.ac.in

K. K. Ramakrishnan
University of California, Riverside
kk@cs.ucr.edu

ONVM Shared Memory

ONVM .
NIC Manager || >Packet] [Packet] [Packet]
ResNext-50
NetML
PyTorch
ONVM/ Streams &
DPDK Str’(\elam_s &t'GPU { GPU
App 1 e Notification
GPU (70%) Application 1 & GPU (30%)App 2 ¢
GPU Memory | DNN Kernels | DNN Kernels | GPU Memory
GPU

Fig. 1. I&ML framework for edge cloud

However, unlike cloud environments that seek to provide
’almost infinite scalability’ of resources, edge resources are
likely to be constrained. Hence, the edge needs to judiciously
utilize resources by allowing multiplexing of multiple services.

Multiplexing several applications on GPU is critical to both
support large demand of I&ML applications and to improve
utilization of Edge cloud. However, GPU multiplexing is non-
trivial and is a major challenge. First, the GPUs have only
supported time-shared (temporal) multiplexing i.e., each task is
assigned a specific quantum such that multiple tasks appear to
execute concurrently on a GPU. As a task with lighter compute
requirement is given same amount of GPU time as heavier
task. This results in under-utilization of the GPU resources,
and increase in latency due to time-sharing between multiple
applications. Second, as edge cloud hosts multiple I&ML appli-
cations concurrently, lot of inference and learning data would
be streaming to the edge. GPU runtimes such as CUDA and
OpenCL also requires CPU to perform the heavy lifting of trans-
ferring data from network to GPU. CPU has to copy the data
from network packets to a contiguous buffer and push the data
to GPU using runtime APIs causing CPU to become bottleneck
in the process. Third, GPU being a different subsystem, does not
have effective task completion notification. Callback methods
present in current GPU runtime are limited in functionality and
stall execution in the GPU until callback is processed. This
can cause unnecessary delay and GPU idle time.

In this paper, we consider above challenge and describe and
evaluate different GPU multiplexing options. We then make
the case for controlled spatial sharing of the GPU with proper
resource allocation, so as to provide the DNN applications

with the right amount of GPU resources to meet their low
latency requirement. We use NetML [1], a cut-through
approach, to transfer data to the GPU using the GPU’s DMA
engines. This alleviates the overhead on the CPU and directly
transfers data from network packets to the GPU using the
GPU’s DMA engine. Finally, we use a lightweight CUDA
event API to know when the execution of certain application
have ended. Use of event API avoids the issue of stalling
GPU execution thus, prevents GPU from being idle.

There are two ways spatial sharing is used in NVIDIA GPUs.
First being "CUDA Streams’ a software abstraction that rep-
resents a sequence of commands (execution kernels (functions
running in GPU), data copies, and other commands), that can be
launched and executed in order within a process. Streams enable
spatial sharing and allow for coarse-grained parallelism. How-
ever, when GPU resources are insufficient, multiple streams
contend with each other for the same GPU resources, often re-
sulting in interference between the different kernel’s execution.

The state-of-the-art CUDA MPS (multi-process service) [2]
is another method to spatially share the GPU. MPS goes beyond
the constraints of Streams by allowing spatial multiplexing
of the GPU across multiple, different processes. However, in a
manner similar to Streams, MPS also can engender interference
between these applications, resulting in increased, unpredictable
latency. CUDA MPS does have the means to limit the amount
of GPU resources used by an application. This is achieved by
defining a GPU% while starting a GPU application. This limits
the application to using at most the amount of GPU resources
(Streaming Multiprocessors (SMs)) specified by the GPU%.
We take advantage of this scheme to provide controlled spatial
sharing of the GPU in a manner that not only increases the
GPU utilization, but also avoids the interference. Our approach
achieves good performance isolation through proper GPU
resource separation among the different GPU applications.

Unlike a standalone node, the edge I&ML platforms also
need to handle large amounts of streaming data. This requires
the data from the network (e.g., 40/100 Gbits/sec. Ethernet
links) to be transferred and assembled at the CPU and then
again that assembled data be transferred to the GPU to perform
inference and/or ML training operations. This approach incurs
significant amount of CPU cycles to process the streaming
data and additionally demands judicious co-ordination with
the GPU to perform the inference operation. We show that
NetML is very useful in scenarios where a huge quantity
of streaming data is being inferred upon in the edge server.
Using the CPU to copy and arrange the data will unnecessarily
increase latency and decrease the throughput of inference.

We propose an I&ML framework for an edge as seen in the
Fig. 1. The framework consists of applications running in the
OpenNetVM environment [3] which aids in low latency high
throughput packet processing. Each I&ML application in the
environment will have access to shared memory where packets
are forwarded by the NIC. We further present more efficient
ways of CPU-GPU interaction that efficiently utilize the CPU
resources by avoiding unnecessary wastage of the CPU for data
transfer, and idling of the CPU and GPU due to the blocking of

10000

g - CPU Latency
<~ 1000 ¢ GPU Latency &=z
© i _

£ 100 ¢

2 g

a) E

g 1

- 1

VGG-16

Fig. 2. Latency of inferring one image with CPU vs. a GPU

Densenet ResNeXt-50

the GPU execution during the callback notification operation.
The I&ML application environment consists of three main
modules: 1) A NetML module that helps transmits the data from
packet payload to GPU memory with help of GPU DMA engine.
2) The ML platform module hosts ML platform libraries such
as PyTorch, TensorRT and Tensorflow and is able to run the
DNN written for such platforms. 3) A Streams & Notification
module that helps infer the task in GPU as well as monitor the
GPU such that the application knows when a task has ended.
II. BACKGROUND AND RELATED WORK

A. Edge/Cloud GPU Inference Platforms

Edge Computing promises to provide more responsive
services requiring significant compute resources for functions
not convenient to be supported on hand-held devices (e.g.,
smart phones) because of computation, power or cost
limitations. Moreover, services often require fusing of multiple
sources of data (e.g., sensory inputs) that require more
computation, but also low latency [4]. Edge clouds are often
used to offload processing from end-devices [S]-[7]. With
central offices of traditional communication providers having
space, power, and climate-conditioning, they are becoming
prime candidates for housing edge cloud services. This is also
true for wireless environments, such as cellular, with more
distributed deployments of the packet core. While the edge
clouds have more processing capacity and storage than a single
system, they are still likely to be resource constrained relative
to the aggregated demand from edge devices e.g., smart
phones, IoT devices, vehicles, efc.). Hence, it is important to
judiciously manage edge cloud resources. Further, the edge
workload and traffic characteristics, akin to centralized clouds,
can vary drastically over time [8]. This makes it necessary
to adapt the I&ML support to better match current workload.

Inference and training of DNN models are suitable candidates
for offloading to the edge. Offloading the computation to
servers with more compute power can drastically bring
down the inference time. However, even with additional
computational resources of an edge server, the inference would
be an order of magnitude slower if the platform only uses
CPUs compared to one with even a small GPU [9]. DNNS,
specially Convolutional Neural Network (CNNs) are often
composed of multiple matrix operations, which can benefit
from parallelization offered by the GPU. When compared to
CPUs, GPUs can accelerate DNN inference significantly (by 2-
3 orders of magnitude). We have computed the average latency
to infer one image with different models in Pytorch in one
CPU core and one NVIDIA V100 GPU. We present our results

TABLE 1
DIFFERENT INFERENCE PLATFORMS AND THEIR CHARACTERISTICS.

Startup Time (sec)

Progr

ML Platform model(s) CUDA Streams | Batching (ResNet-50 model)
CNTK [11] CUDA No Yes 22
Darknet [14] CUDA No No 57
MxNet [15] CUDA/OpenCL Yes Yes 5.53
PyTorch [10] CUDA/OpenCL Yes Yes 5.03
TensorFlow [13] | CUDA/OpenCL Yes Yes 9.2
TensorRT [12] CUDA Yes Yes 32

in Fig. 2. We can see that a GPU can help infer the image 10x
faster than using a CPU. Therefore, it is necessary to use GPUs
for I&ML workloads with real-time response requirements.
DNN and other ML applications are typically modeled,
trained and deployed using one of a number of platforms,
such as PyTorch [10], Microsoft CNTK [11], NVIDIA
TensorRT [12], Tensorflow [13] etc. Table I presents the key

characteristics of the some of the most popular ML platforms.

All of these platforms support CUDA programming to
interface with the GPU and are designed to support NVIDIA
GPUs. There are differences in terms of their characteristics
and support for different performance enhancing options,
e.g., CNTK and Darknet do not support CUDA streams;
Darknet does not support batching DNN requests, etc. Another
interesting aspect is that these frameworks have different model
loading times. Some frameworks, such as TensorRT load the
DNN model from disk to GPU directly and offer no CPU side
inference, while, PyTorch, TensorFlow, CNTK and MxNet load
the model in host memory first and only transfer the model
data to the GPU when the first inference/training instance
is executed. Similarly, the GPU memory requirement for
different frameworks also vary. TensorRT has a static memory
occupancy in GPU, while TensorFlow and PyTorch takes a
portion of GPU memory and uses a custom allocator to provide
GPU memory to the ML programs running in Tensorflow.
Actions taken by ML platforms while setting up for training
or inference such as memory reservation, GPU initialization
and DNN/ML application/data loading in the GPU contribute
to the high startup time for getting a model to be ready for
inference or training. We evaluated the time for a model to
load in different platforms in our testbed with NVIDIA V100
GPU. We chose ResNet-50 as a representative model to load as
it is popular and available for all the different platforms. It is
a relatively small model with ~104 megabytes of weights. We
present our results in Table I. We can see that loading time of a
model for the ResNet-50 model is in seconds. In the platforms
that load the model from disk onto CPU and then to the GPU,
such as Tensorflow, it is even higher. While the inference latency
of ResNet-50 is less than 10 ms for all these platform, a high
startup time is a concern when rapid change in demand for a
certain application requires additional instances of the DNN
model. To facilitate running a variety of I&ML applications,
it is necessary for an edge cloud platform to support resource
allocation and adjustment of ML platforms as well as gracefully
dealing with the long start-up delays while adjusting resources.
Many ML platforms now offer a inference/learning serving
interface that can be deployed in the cloud. Tensorflow
serving [16], Torchserve [17] can host models in the cloud for
inference and learning. However, these cloud based platform

do not support spatial multiplexing with fixed GPU% to ensure
resource isolation. Similarly, there is work for improving edge
based systems [18], [19]. However, most of these focus on
improving the DNN algorithm and in achieving a better balance
between accuracy and inference latency. Our work is comple-
mentary to these efforts. We seek to maximize CPU and GPU
utilization and lower latency, by improving the I&ML system.

III. GPU MULTIPLEXING FOR ML APPLICATIONS
A. Evaluation Testbed

Our experimental testbed uses a Dell Poweredge R740xd
with Intel(R) Xeon(R) Gold 6148 CPU with 20 cores, 256
GB of system memory and one NVIDIA Tesla V100 GPU
and an Intel X710 10GbE quadport NIC. The V100 GPU has
80 streaming multiprocessors and 16 GB of memory.

We use PyTorch and TensorRT platform for our evaluations.
Our DNN workload consists of color images of resolution
224 x224. For the experiments using NetML and data transfer
we transmit each image through network as 588 UDP packets
where each packet has a payload of 1 kilobytes. We use
Moongen and TCPreplay as traffic generator for transmitting
images. With 10 GbE connection between traffic generator
and the receiving server, we can transmit 1920 images per
second. For all our experiments we only report the execution
time of inference or training and eliminate the additional
network-related latency contributed by network protocols,
including HTTP, TCP or UDP.

B. Different Modes of GPU Multiplexing

In order to improve GPU utilization and performance, several
approaches such as multiplexed processing on GPUs, multiple
streams, batched execution efc. have been proposed. We briefly
describe the key multiplexing approaches and our preliminary
evaluation and observations.

1) Temporal GPU Multiplexing: Like multi-programming
in Unix/Linux, both CUDA and OpenCL support GPU kernels
from different processes to time-share the GPU. However, it
does not let them use the GPU concurrently. This can leave
the GPUs underutilized, as a single process usually fails to
fully utilize all the GPU resources.

We run an experiment to show the effect on latency of
inferring different images by different models which are
temporally sharing the GPU. We run three different models,
DenseNet, ResNeXt-50 and VGG-16 concurrently using
PyTorch platform. We start the DNNs such that Densenet start
first and starts inferring images as the ResNeXt-50 and VGG-
19 models get loaded into the GPU to begin inference. The
DNN models finish their inferences in same order they came
up. We can see from Fig. 3a that the latency of Densenet is low,
~ 20 ms per inference, when it is the only model running in
the GPU. Once the ResNeXt model starts inferring, the latency
of Densenet increases more than 2x. Starting VGG-16 further
increases the latency of both the DenseNet and ResNeXt
models. Completing the execution of VGG-16 and ResNeXt
models lowers the per inference latency of DenseNet back
down to ~20 ms. Thus, increasing the number of concurrently

100 100 100
Densenet Densenet Densenet (25% GPU) ——
% 80r ResNeXt-50 —— - 80r ResNeXt-50 —— % 80 - ResNeXt-50 (15% GPU) ——
£ VGG-16 —— £ VGG-16 —— £ VGG-16 (60% GPU) ——
=~ 60 = 60 ~ 60r
2 e 2
ol RN RS A IR I Bl PO
© © ©
- 20 = 20¢p = 20 ;
0 1 1 1 1 1 1 1 O 1 1 1 1 0 I | | 1 1 | | | |
0O 2 4 6 8 10 12 14 0O 2 4 6 8 10 12 14 0O 2 4 6 8 10 12 14

Timeline (sec)

(a) Temporal Sharing

Timeline (sec)
(b) Spatial sharing with Default MPS

Timeline (sec)
(c) Spatial sharing of GPU with fixed GPU%.

Fig. 3. Latency of DNN models running concurrently and sharing GPU temporally, with default MPS and spatially with fixed GPU%

running models by temporally sharing the GPU increases
latency for all the concurrently running GPU applications.

2) Spatial GPU Multiplexing: CUDA streams and MPS
leverage Hyper-Q [20] to provide concurrent multiplexing
of GPU kernel tasks within and across multiple processes
respectively. We first focus on MPS that allows spatially
sharing of the GPU among multiple processes. By default, an
MPS client has all of the available threads usable (i.e., 100%
of GPU resources). However, this results in GPU resource
contention among concurrent kernels from different processes,
resulting also in performance variation for the application at
different time periods, and unpredictable latency.

We performed a similar experiment as the one above, by
concurrently running three different DNN models while sharing
the GPU using default MPS. We can see from the Fig. 3b that
the latency of all three models are lower compared to temporally
sharing the GPU by the DNN models. This is due to the fact that
sharing GPU with CUDA MPS allows the applications to share
the GPU spatially and use the spare GPU resources, if another
concurrently running model is not fully utilizing the resources.
From Fig. 3b we can also see that when ResNeXt model comes
up the latency of Densenet does not increase as there are
enough GPU resources to allow both to concurrently execute.
However, when the VGG-16 model comes up, the latency
of Densenet increases significantly, while ResNeXt’s latency
only increased a small amount. We observe that the amount
of increase of latency, and which concurrently running model
suffer the additional latency is not predictable, and depends on
the sequence with which GPU resources are committed to the
models. While default MPS may improve GPU utilization, it
leads to unpredictable latency for concurrently running models.

3) MPS with resource usage limits : The recent CUDA
architecture (i.e., Volta) has a version of MPS which supports
resource provisioning limits, i.e., it allows us to limit individual
MPS clients to use particular portion of the available threads
(in units of # SMs). This enables us to reduce the GPU memory
footprint and to achieve performance isolation. We argue and
demonstrate that, while this feature is useful, it still requires
more careful consideration and resource management to truly
reap the benefits and full utilization of the GPU.

To demonstrate the resource isolation and essentially elim-
inating interference, we run three DNN models concurrently
in the GPU with fixed GPU% for each of the model. For this
experiment we provided Densenet with 25% GPU, ResNeXt-

—~ 1000 o 100
N atenc —
£ 800 | Batoh 1 —w— 3 180 2
*g- 600 | Batch 8 —e— ::i: 4 60 ;

% <)
S 400 5 1140 S
S 200 2 120 §
£ O ImEEE eFHED
= 0 0
#Streams 1 2 3 4 12 3 4

Batch 1 Batch 8

Fig. 4. Throughput & latency for different # of streams using ResNet-50

50 with 15% GPU and VGG-16 with 60% GPU. We can
see from Fig. 3c that the latency of the models remain about
same for the entire experiment. There is almost no interference
between concurrently running models. We further observe that
the latency of Densenet model is the same as when it is the
only model running in the GPU. We conclude that only 25%
GPU is necessary for Densenet to run and still achieve the
lowest latency across the different multiplexing options.

C. Use of CUDA Streams

Although, streams due to spatial sharing, enable to improve
GPU utilization and overall throughput, they have adverse
impact on latency. We experimented with different models for
different batch sizes to see the impact of using multiple streams.
We present the results for ResNet-50 model with TensortRT in
Fig. 4. We can observe that beyond 2 streams (in both batch size
of 1,8), there is barely any improvement in throughput, however
the latency keeps increasing. We observed the same with VGG-
19. Alexnet was an exception that showed improvement only
for the small batch size (1). Our analysis is that spatial sharing
is helpful only when there are sufficient resources that can take
advantage of multiplexing, otherwise the tasks contend for the
limited resources resulting in high execution overhead, reflected
in the form of latency. Hence, streams are beneficial only for
light weight models and lower batch sizes. However, we do
see drawbacks of employing single stream for processing. We
profiled for the single stream case, as shown in Fig. 5. We can
observe that GPU remain idle for fairly large amount of time
~700 micro-seconds between every execution. This interval cor-
responds to the time taken to notify the CPU of inference com-
pletion and processing on the CPU side to perform cleanup and
return the callback. Note that, until the callback is completed,
the CUDA driver does not launch the next inference execution,
even if it the tasks were queued before. Note: Due to profiling
the interval is extremely high; We observed that without the

profiling, callback has latency of around 40us. Fig. 6 shows the
profiler details with two streams. We can still observe the simi-
lar gaps in each of the streams, but since two streams have over-
lapped execution, the GPU utilization is higher in this case and
is also able to mask the idle time issue that manifests with single
stream. Hence, we restrict to using just two streams per DNN.

Dis H20F s

Runtime APt M| Wil (I 1 —
Urrver A1
. N CUDA Runtime
+| Markers and Ranges l-l-ll " API Calls | |l
—| [0] Teslz V100-FOIE-16GE 13
= Context 1 [CUDA} DNN Inference K DNN Inference
=| Gtreams
Detault

| s [—

Stream 14

Fig. 5. Alexnet inference with single CUDA stream
Autime 2 RN | A 1] | OO RANALEN 1
0] Tesla V100-PCIE-L6GE
= Context 1 (CUDA)
—| Streams

Default

Stream 14

Stream 15

DNN Inference

Y1 Y ™ VY SR
1010 T T = 1 ™

Fig. 6. Alexnet inference with two CUDA streams
IV. A FIRST STEP TO IMPROVING MULTIPLEXING

A. Data Transfer To GPU

DPDK enables the Ethernet NIC to transfer packets to shared
hugepage buffers that can be accessed with zero-copy overhead.
Copying the payload from each packet separately to the GPU
(using CUDA API calls such as cudaMemcpy) is very expensive.
A better method is to first copy and aggregate data from packet
payloads into a contiguous buffer and then DMA that buffer to
the GPU. We name this method *CPU-Copy’. However, even
this method still requires the CPU to copy data from packet
payload to a contiguous buffer and use the CUDA API to move
the data to GPU. CPU-Copy taxes both CPU and memory to
copy and store data in a contiguous buffer.

We developed NetML [1], to avoid the extra copy by running
a GPU kernel that uses the GPU’s DMA engine to perform
scatter-gather from the host CPU memory. NetML utilizes
NVIDIA’s Unified Virtual Addressing (UVA) [21]. During
application initialization, NetML pins the DPDK’s packet
memory buffer pool (mbuf pool). This ensures that all network
packets reside in the pinned memory region. The time to pin
1GB memory is ~20ms. Once the OpenNetVM application
on the host side receives all the packets, a CUDA kernel is
launched to gather data from these packets into a GPU buffer.

4500
4000
3500 -
3000 -
2500
2000

1500 | | | |
1000 2000 3000 4000 5000 6000

Request Rate (images/sec)
Fig. 7. Inference throughput of Alexnet (TensorRT) with V100 GPU

|CPU-Copy —*—
NetML —eo—

Throughput (images/s)

TABLE 11
CPU USAGE IN DIFFERENT MODES FOR DATA TRANSFER TO GPU
Batch Size | Data Size (MB) | CPU-Copy (%) | NetML (%)
1 0.57 10.6 0.12
4 2.29 29.2 0.15
8 4.59 35.99 0.16
16 9.19 43.8 0.20
32 18.37 45.73 0.21

This approach provides two key benefits: i) it is efficient and
timely; ii) more importantly, it saves host CPU cycles. Here,
we modified the original NetML design to facilitate batching.
Originally, NetML was designed for inference of a single image.
To infer a batch of images, all the data in the batch has to be
present in contiguous memory buffer in the GPU. As NetML
starts building the batch in the GPU starting from the first
received data packet, any interim packet loss would stall the
progress and subsequently require us to restart the creation of
the batch due to the lack of end-end (with the GPU memory
being the destination) reliable, in-sequence delivery. To avoid
this, we use a lightweight verification mechanism to ensure
data for an entire image is present in the CPU from the payload
of the received packets, before transferring data to the GPU.
We continue transferring newly arrived, complete, images to
the GPU until the desired batch size is reached. The CPU
application then individually launches the DNN kernels to run
on the GPU for inferring on the entire batch of images. We
measured the CPU utilization of CPU-Copy and NetML by
measuring percentage of CPU cycles spent in transferring data
to GPU out of all the CPU cycles used in one inference task. We
present the utilization of CPU in Table. II. We vary the batch
size, i.e., number of images transferred to GPU and inferred at
once. We observe that, while inferring only one image, more
than 10% of CPU cycles used for inference is used in data
transfer with the CPU-Copy method. The proportion of CPU
cycles expended for data transfer increases as the batch size
increases. This is because the operations other than data copying
i.e., calling GPU kernels for inference, CUDA API calls, etc. are
amortized across a batch of images. But the data copy overhead
itself sees no such amortization. Thus, it contributes a higher
percentage of the total work for larger batch sizes. With a batch
size of 32, nearly half of the CPU cycles are used just to move
the data from network to GPU. But with NetML, we barely use
any CPU cycles for data transfer. The maximum CPU cycles
used is 0.21% to transfer batch of 32 images. Thus, NetML
effectively offloads the data transfer to the GPU’s DMA engine.

We evaluate NetML using NVIDIA V100 GPU. We use a
fixed batch size of 8. In Fig. 7 we show the throughput achieved
by Alexnet in a V100 GPU with increasing requests. Inference
with NetML provides higher throughput than CPU-Copy as the
request rate exceeds 2000 images per second. We also see the
inference with NetML peaks at about 4000 images per second.
This is when the GPU utilization is maximized and becomes
the bottleneck. Inference with CPU-Copy remains lower, as the
CPU becomes the bottleneck due to the data transfer overhead.
B. Notification from the GPU

GPU operations can be executed asynchronously with respect
to CPU. This helps to free up the CPU after submitting the job

to GPU and also allows a single CPU thread to submit multiple
tasks to GPU without waiting for the tasks to be completed.
However, there is no simple way for the CPU task to know
when a submitted task has completed on the GPU.

The CUDA API offers a ’callback’ function cudaStrea-
mAddCallback() to notify the end of processing in the GPU
by running a callback function on the CPU. Although the
callback helps notify the end of a particular task, the current
implementation of the callback poses challenges for GPU
multiplexing. First, the callback blocks all the subsequent
execution on the GPU until the completion of the execution
of the callback routine on the CPU resulting in the idling of
the GPU. Second, callback functions generated by the GPU
forbid the CPU thread to run any of the CUDA API functions.
This limitation requires additional CPU context and signalling
scheme to perform any GPU related operations.

To overcome these limitations, we devise a lightweight
method to check the GPU task completion status. We leverage
CUDA’s event based API to record an ’event’ (can be per
GPU stream) where the DNN is being executed. The CUDA
event acts as a flag, which, when executed by the GPU
records the time of the execution. The CUDA API function
cudaEventRecord() allows us to put an event marker at the end
of the DNN’s execution. We can then use another API function
cudaEventQuery() to check if the event that we placed has
been executed or not. This allows us to not only avoid the
idling of the GPU, but also provide the flexibility to perform
different GPU tasks within the same CPU thread context. The
event checking is lightweight, taking about 5 useconds in
our system. As the DNNs usually take a few milliseconds to
perform an inference, we check the event with a coarse interval
of 1 milli-second to find out when the DNN computation has
ended, thus providing the flexibility for the CPU thread to
check event completion status at a desired frequency.

V. SUMMARY AND FUTURE WORK

With the growing need for Machine Learning capabilities
for latency-sensitive applications, having them performed at
an edge cloud is very attractive. Because of the more limited
amount of computational capacity at an edge cloud (compared
to centralized clouds), there is a need to better utilize CPU
and GPU resources. We proposed adding controlled spatial
multiplexing of the GPU, in comparison to only pure temporal
sharing or just uncontrolled spatial sharing (like what is pro-
vided with CUDA MPS) of the GPU. We showed that controlled
spatial multiplexing gave much lower, predictable, inference
latency and higher inference throughput than the alternatives,
by improving GPU utilization. We also proposed that timely
notification of GPU task completions to the CPU improves
latency and GPU utilization. Finally, we showed that using a
small kernel thread in the GPU to fully take advantage of the
GPU-resident DMA (as in NetML) can substantially improve
movement of streaming data to the GPU, relieve CPU load and
improve inference throughput substantially. Our current work is
to develop a framework to implement all these capabilities on a

CPU/GPU system that can support a variety of ML frameworks
with limited or no modifications to their existing algorithms.

VI. ACKNOWLEDGEMENT

We thank all the anonymous reviewers for their valuable
feedback and the US NSF for their generous support of this
work through grant CNS-1763929.

REFERENCES

[1] A. Dhakal and K. K. Ramakrishnan, “Netml: An nfv platform with
efficient support for machine learning applications,” in 2019 IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2019, pp.
396-404.

[2] NVIDIA, Tesla, “Multi-process service,” NVIDIA. May, p. 108, 2019.

[3] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. K. Ramakrishnan, and T. Wood, “OpenNetVM: A Platform for High
Performance Network Service Chains,” in Proceedings of the 2016
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization. ACM, Aug. 2016.

[4] M. Satyanarayanan, “Edge computing for situational awareness,” in Local

and Metropolitan Area Networks (LANMAN), 2017 IEEE International

Symposium on. 1EEE, 2017, pp. 1-6.

J. Chen and X. Ran, “Deep learning with edge computing: A review,”

Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674, 2019.

[6] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object
detection for mobile augmented reality,” in The 25th Annual International
Conference on Mobile Computing and Networking, 2019, pp. 1-16.

[7]1 X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile

deep learning framework for edge video analytics,” in IEEE INFOCOM

2018-IEEE Conference on Computer Communications. 1EEE, 2018, pp.

1421-1429.

H. Chang, A. Hari, S. Mukherjee, and T. Lakshman, “Bringing the cloud

to the edge,” in 2014 IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS). 1EEE, 2014, pp. 346-351.

[9] X. Zhang, Y. Wang, and W. Shi, “pcamp: Performance comparison of

machine learning packages on the edges,” in {USENIX} Workshop on

Hot Topics in Edge Computing (HotEdge 18), 2018.

R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like

environment for machine learning,” in BigLearn, NIPS Workshop, 2011.

F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning

toolkit,” in Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 2016,

pp. 2135-2135.

NVIDIA, “Tensorrt developer guide,” https://docs.nvidia.com/

deeplearning/sdk/tensorrt-developer- guide/index.html, 2019, [ONLINE].

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-

scale machine learning,” in 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16), 2016, pp. 265-283.

J. Redmon, “Darknet: Open source neural networks in c,” http://

pjreddie.com/darknet/, 2013-2016.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,

C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine

learning library for heterogeneous distributed systems,” arXiv preprint

arXiv:1512.01274, 2015.

“Tensorflow serving,” https://www.tensorflow.org/tfx/guide/serving.

“Torchserve,” https://pytorch.org/serve, 2020.

C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,

K. Hazelwood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning

at facebook: Understanding inference at the edge,” in 2019 IEEE

International Symposium on High Performance Computer Architecture

(HPCA). 1EEE, 2019, pp. 331-344.

S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and

T. Mitra, “High-throughput cnn inference on embedded arm big. little

multi-core processors,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 2019.

“Nvidia hyper-q,” http://developer.download.nvidia.com/compute/

DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/HyperQ.pdf, 2020,

[ONLINE].

“Nvidia universal virtual addressing,” https:/

developer.download.nvidia.com/CUDA/training/cuda_webinars_

GPUDirect_uva.pdf, 2011, [ONLINE].

[5

=

[8

—_

(10]

[11]

[12]

[13]

[14]

[15]

[16
[17]
(18]

[19]

[20]

[21]

