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Abstract—To meet the future needs of increasingly crowded
airspace, the International Civil Aviation Organization (ICAO
) proposed to use the Automatic Dependent Surveillance-
Broadcast (ADS-B ) to provide navigation and surveillance
technology to solve the problems of security and capacity in
the airspace. But ADS-B does not offer any authentication and
encryption. So it is vulnerable to attacks by various illegal
devices. A novel radiofrequency fingerprint (RFF ) recognition
method of aircraft identity verification based on deep learning
is proposed. The ADS-B signal captured by RTL-SDR is
used for confirmation. The experimental results show that the
fingerprint is called the Contour Stellar Images with a better
recognition effect under different networks and different SNR.

Index Terms—Radio Frequency Fingerprinting, ADS-B, Sig-
nal Detection, Deep Learning

I. INTRODUCTION

By 2030, the Air Traffic Control (ATC) technology cur-
rently in use will quickly reach its capacity limit [1]. To
replace traditional primary and secondary surveillance radar
methods, the International Civil Aviation Organization has
adopted a new protocol standard called Automatic De-
pendent Surveillance-Broadcast (ADS-B) [2]. ADS-B is to
collect navigation information by the airborne information
processing unit, and then broadcast it through the airborne
communication equipment. There is no need for both parties
to agree on other communication protocols [3]. Compared
with radar, ADS-B has a shorter construction period, a
smaller investment, and more accurate and real-time mon-
itoring information, which can fill the blind area of radar
free area and reduce the demand and dependence of existing
radar area on radar [4]. For the aircraft equipped with ADS-
B receiver, combining all the broadcast information and the
received monitoring information with its location informa-
tion, it can form a more intuitive and three-dimensional sur-
rounding traffic information for the pilot. ADS-B combines
navigation and monitoring information in the same sys-
tem. Any aircraft equipped with ADS-B system broadcasts
the location information through the public communication
channel, so that any aircraft equipped with ADS-B receiver
can get a complete monitoring image by combining the heard
broadcast, received monitoring information and its position,
which dramatically improves the monitoring efficiency. It
can be predicted that the ADS-B system, combined with a
wide-area multi-point positioning system and S-mode radar,

will gradually eliminate the current secondary surveillance
sensor, which is an integral part of the new navigation
system. Nevertheless, the ADS-B protocol was proposed
about 20 years ago, and the ADS-B protocol does not
provide any encryption and authentication methods. Due to
the advent of cheap and accessible software-defined radios,
today, anonymous devices can be attacked using widely
available SDRs [5].

Deep learning (DL) is a new research field in machine
learning, which benefits from the improvement of big data
and hardware [6]. DL has recently gained attention because
of the successful applications in computer vision (CV)
[7], natural language processing (NLP) [8]Researchers are
interested in trying to extend DL to other domains, including
Individual identification [9]. Compared to traditional Ma-
chine Learning (ML), DL can perform further performance
improvements, since DL have a flexible mechanism to
extract feature itself to optimize the parameter to get a better
end to end performance. Though DL has many merits [10],
its downsides should not be ignored. Due to the lack of
vital data support, the DL pattern is likely to overfit for its
deep and complex structure. Convolutional Neural Networks
(CNN) [11] is the main framework of DL in the CV. There
have been several works studying on the application of DL
in Automated Modulation Classification (AMC) [12], paper
state by using Spectral Correlation Function (SCF) pattern,
and Deep Belief Network (DBN) to develop AMC [13].
This paper solves the AMC problem in Cr by classifying
involved CNN. To fully exploit the potential of CNN, Yao
YuDong, and his students perform the famous CNN model
[14], AlexNet, and GoogleNet, and use three-channel images
for modulation recognition, it does get excellent efficiency.

Equipment identification based on radio frequency finger-
print (RFF) [15] is a new physical layer (PHY) security
technology, which is used to distinguish the identification
of wireless devices. It can be used in many Internet of
things (IoT) purposes, such as vehicle communication [16],
electronic license plate authentication [17], and can be used
for aircraft classification and detection. There are subtle
differences between wireless elements due to fabrication
defects. These differences, known as RFF, are unique and
persistent and can be seen as the ”DNA” of the construction
[18]. RFF will be presented in the signal waveform. RFF
identification designs advanced signal processing protocol to978-1-7281-6992-7/20/$31.00 ©2020 IEEE



Fig. 1. Aircraft fingerprint recognition.

extract these unique and inherent physical features of each
device to establish user identity [19].

RFF recognition usually consists of training and classi-
fication, which is a classical drudge learning classification
problem. However, to get stable I / Q samples for training
and verification, it is necessary to have prior knowledge of
carrier frequency and time synchronization. Besides, due
to the complexity, the length of the I / Q sequence in
the existing sample-based CNN scheme is usually concise,
which leads to inadequate recognition accuracy [20]. Due
to the successful promotion of CNN in image recognition,
the complex classification task has been developed. In this
paper, we use CNN to classify Contour Stellar Images
obtained by different devices. Unlike most of the RFF
recognition schemes using sample-based CNN, this scheme
uses a pattern similar to fingerprint to classify different
targets, which is called image-based CNN directly. Fig. 1
shows the process of Aircraft fingerprint recognition.

The main contributions of this article are as follows:
1. We propose and design a novel RFF recognition scheme

based on the Contour Stellar Images and CNN. The gener-
ated equipotential planet map is similar to the ”fingerprint”
graphic, so it can be identified using image recognition CNN.

2. We proposed an ADS-B original signal detection acqui-
sition and real-time labeling method and verified this method
by using a 1090MHz baseband signal collected by RTL-
SDR, collecting signals from a total of 5 aircraft, 500 signals
were selected uniformly for each aircraft.

3. We compared the performance of Contour Stellar im-
ages and Constellation Diagram under the Alexnet network
and different signal-to-noise ratioSNR. Besides, we also
compared the performance of Contour Stellar images on
Alexnet and GoogleNet.

The rest of this paper is organized as follows. In Section
II, we introduce ADS-B signals and the datasets used in
the rest of the paper. In Section III, we present signal
preprocessing. In Section IV, we discuss the experimental
results, and finally, in Section V we summarize the paper.

An aircraft reclaims its position and velocity using an
onboard spy-in-the-sky receiver. This information is sent
twice per second by the transmitting subsystem ADS-B
Out. They are sustained by ground stations and by nearby
aircraft if equipped with ADS-B In, where they are con-
cocted further (e.g., by collision avoidance systems such
as TCAS). ADS-B offers many further fields such as ID,

intent, urgency code, and navigation accuracy/uncertainty
level. Two ADS-B data link standards are currently in
use, Universal Access Transceiver(UAT) and 1090 MHz
Extended Squitter(1090ES) [2].

1090 MHz Extended Squitter(1090ES) is a technology-
based on S-mode transponder, with a frequency of
1090MHz. The format of the ADS-B message data block
utilizes Pulse Position Modulation (PPM) coding. The first
half of each transmitted pulse is 1, and the second half is
0. A complete ADS-B signal is composed of 8us preamble
pulse and 112us data information bit pulse [3], as shown in
Fig. 2.

Fig. 2. ADS-B signal structure [21].

We use the relatively low-cost software radio RTL-SDR
as the signal source. The RTL-SDR communicates with the
PC through the USB interface, the RTL-SDR Architecture
and workflow are shown in Fig. 3.

Fig. 3. RTL-SDR Architecture and workflow.

After receiving the RF signal containing ADS-B signal
from the antenna, the received signal shall first be amplified
by automatic gain control (AGC), and then throughRF Image
Rejectibn Filter filter. Image Rejectibn Filter is a band-pass
filter, which filters out unnecessary image signal, and then



mixes the signal. Set RF signal freqyenc as fc, intermediate
frequence as fif , and initial ADS-B signal as:

eadsb(t) = s(t) cos (2πfct+ ϕ0) (1)

In this formula

s(t) =
∑
m

amg (t−mTa) (2)

Where am is the baseband symbol, Ta is the chip duration,
g(t) is a rectangular pulse of a certain width, then the fre-
quency of the sine wave generated by VCO is flo = fc−fij ,
the RF signal and the sine wave generated by VCO are
mixed:

eadsbmix(t) =s(t) cos (2πfct+ ϕ0) cos (2πflot)

=
s(t)

2
cos [(2π (fc + flo) t+ ϕ0)

+ cos [(2π (fc − flo) t+ ϕ0)]

(3)

The high frequency component is attenuated by the IF
low-pass filter, and only the IF component is transmitted
forward to the next level:

eadsbif (t) =
s(t)

2
cos (2πfif t+ ϕ0) (4)

We sample eadsbif (t) in formula (4) with Ts = 1/fadc
and get the following data:

eadsbif (n) =
∑
m

amg (nTs −mTa) cos (ωcn+ ϕ0) (5)

In formula (5) , ωc = 2πfif/fadc , Obtain IQ signal
through NCO and low-pass filtered:

zBI(n) =
∑

m amg (nTs −mTa) cos (ϕ0)
zBQ(n) =

∑
m amg (nTs −mTa) sin (ϕ0)

(6)

Then the IQ signal is decoded by using the relevant
decoding algorithm , the total data collection and labeling
process is shown in Fig. 4.

Fig. 4. The total ADS-B signal collection and labeling process.

The reception, detection, annotation, training and classi-
fication of ADS-B signals are implemented on the system
shown in Fig. 5.

We collected data from a total of 5 aircraft at fixed
locations. Each aircraft randomly selected 500 original base-
band IQ signals, and each signal was annotated with an
ICAO code. And then, we divided the data into training and
validation data sets. We use 70% of the signal for training
and 30% for validation. Avoid class imbalance in ADS-B
data by ensuring a uniform distribution of labels (Aircraft
types). Fig. 6 show the label distributions to check if the
generated labels are uniformly distributed.

Fig. 5. Implemented on the system.

Fig. 6. Label distributions.

II. SIGNAL PREPROCESSING

In RFF classification, the data to be concocted is not an
image, but complex IQ data samples are shown in formula
(6). To manipulate the existing DL models, we transform
complex data samples into the Contour Stellar images for
DL. The first step in data processing is to plot the signal
into the form of a Constellation diagram. And then, we
color the Constellation diagram according to the normalized
dot density of each point in the Constellation picture [22].
Furthermore, the normalized point density of the p − th
symbol in each sample, ρ(p) is calculated as follows:

ρ(p) =

∑N
j=1 g[h(p)− h(j)| < r&&|v(p)− v(j)| < r]

N
(7)

Where h(p) function and v(p) function obtain the hori-
zontal axis and the vertical axis value of the p− th symbol,
N is the number of the symbols of this sample, r is half the
length of the selected rectangular region when determining
the normalized point density. The product of g(•) satisfies
the following formula:

f(x) =

{
1, x = True
0, x = False (8)

Then, every point in the Constellation diagram will be
colored according to the color bar shown in Fig. 7. and its
normalized point density. The overall calculation formula of
the contour stellar images is as follows:



Fig. 7. Constellation Diagram Converted To Contour Stellar Images.

ρ(p, j) =

∑x2

p=x1

∑y2

j=y1
dots(p, j)∑W1

x1=W0

∑H1

y1=H0

∑x2

p=x1

∑y2

j=y1
dotS(p, j)

(9)
Where W0 , H0 are the upper left corner coordinates of

the contour stellar images, W1 , H1 are lower right corner
coordinates the contour stellar images, x0 , y0 are the upper
left coordinate of the density window function, x1 , y1 are
the lower right corner of the density window function. Fig.
8 shows the contour stellar images of the 5 aircraft ADS-B
signals we captured;

Fig. 8. The Contour Stellar Images of 5 aircraft ADS-B signals.

III. EXPERIMENTS AND DISCUSSION

We use two well known trained CNNs,
GoogLeNet(Szegedy et al.2014) [12] and AlexNet
(Krizhevsky, Sutskever, and Hinton 2012) [23]. Both
networks have engaged in ImageNet Contest in different
years with excellent results. The networks differ in general
architecture. GoogLeNet has Inception Modules, which
perform different sizes of convolutions and concatenate
the filters for the next layer. AlexNet, on the other hand,
has layers input presented by one previous layer instead
of a filter connection. Both networks have been tested
independently and use the implementation provided by
Matlab Deep Learning Toolbox.

The first part of the Layers section of the network is
the image input layer. For a GoogLeNet network, this layer
needs input images of size 224-by-224-by-3 [24], where 3 is
the number of color channels, the AlexNet network requires
images of size 227-by-227-by-3 [12]. Nevertheless, the im-
ages ADS-B signal transformed have different sizes. We use
a marketed image datastore to resize the training pictures.
Define additional augmentation procedures to work on the
training images: randomly flip the training images along
the vertical axis and randomly turn them up to 30 pixels
and balance them up to 10 horizontally and vertically. Data

augmentation attends to prevent the network from overfitting
and to memorize the training images’ exact details.

The convolutional layers of the network extract image
feature that the last learnable and final classification layers
use to classify the input image. These two layers, ’loss3-
classifier’ and ’output’ in GoogLeNet, comprise how to
combine the features that the network extracts into class
probabilities, a loss value, and predicted labels. To retrain
a pre-trained network to classify new images, We succeed
in these two layers with new layers adjusted to the ADS-B
dataset.

In AlexNet and GoogLeNet networks, the last layer with
learnable weights is fully connected. Replace this fully
connected layer with a new fully-connected layer with the
number of outputs equal to the number of classes in the
ADS-B dataset. We classify the validation images using
the fine-tuned network and calculate the classification pre-
cision. The test precision of ADS-B data in AlexNet and
GoogLeNet networks is 98.66% and 97.87%, Fig. 9 and
Fig. 10 show the networks’ Confusion Matrix.

Fig. 9. AlexNet Confusion Matrix for Validation Data.

Fig. 10. GoogLeNet Confusion Matrix for Validation Data.

To cover the classification performance at different noise
levels, we added additive white Gaussian noise to the test
data for experiments. Fig. 10.show the classification perfor-
mance of Contour Stellar Images at different noise levels.
It should be noted that the signal-to-noise ratio(SNR) here
refers to the SNR after noise is enumerated when we regard
the original signal as a pure signal without noise(in fact,
the original signal itself also contains noise). Therefore, the



actual SNRs are more diminutive than those shown in the
figures. It can be seen that although these noisy samples
have not been trained, the Contour Stellar Images have the
excellent performance to classify these noisy samples. When
the SNR is greater than 28 dB, the classification accuracy
under both datasets is higher than 95%. Also, comparing
the classification accuracy of Alexnet and GoogLenet at
different SNRs, the Alexnet classification is more robust to
noise.

Fig. 11. Classification performance of Contour Stellar Images at different
noise levels.

Fig. 12. Classification performance of Contour Stellar Images and Con-
stellation Diagram at different noise levels.

IV. CONCLUSION

We propose and design a novel RFF recognition scheme
based on Contour Stellar Images and deep learning. We
designed an ADS-B original signal capture and labeling
method and verified this method by using a 1090MHz
baseband signal collected by RTL-SDR, collecting signals
from a total of 5 aircraft, 500 signals were selected uniformly

for each aircraft. Besides, the experimental conclusions
under different signal-to-noise ratios and different networks
show the effectiveness of the Contour Stellar Images, and
it shows that the excellent identification performance of the
RF fingerprint can lay a foundation for the physical layer
security of aircraft.
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