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Clients get the global model and 
train it with local data, then 
provide local model to the server

local model: x1
#training samples: p1

local model: x2
#training samples: p2

Aggregated global model: x0 
x0 = (x1 · p1 + x2 · p2)/(p1+p2)
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Abstract—In this demo, we demonstrate a novel blockchain 

based protocol for federated learning. We present the system 
architecture and describe the blockchain based protocol that 
seamlessly provides secure communication in federated learning 
with physically distributed data sets.  

I. INTRODUCTION  
Federated learning (FL) [1] is a distributed Machine Learning 
(ML) approach which enables ML models training on 
decentralized private data. In FL, multiple clients that usually 
own local private data collaborate to train a ML model, under the 
coordination of a central server. A training round in FL includes 
three steps, as shown in Fig. 1(a). The server provides a global 
ML model and sends it to a group of clients at Step 1. At Step 2, 
clients receive the global model and train local models with local 
data, and send local models to the server.  At Step 3, the server 
aggregates local models from clients to a new global model, 
which is sent to clients starting a new training round. FL can have 
hundreds of training rounds until converged. Fig. 1(b) shows the 
weighted averaging approach for server aggregation. The global 
model sent from the server to clients is . The local model 
trained at Client i is  and the number of training samples in 
Client i’s data set is . The server computes the new global 
model as: .   
 FL preserves data privacy by training ML models locally at 
clients, and also saves network bandwidth by avoiding the 
transfer of large amounts of training data to a central location. 
Instead, only ML models are transferred between a server and 
clients. FL can be applied in many applications. Google has 
applied FL to next word prediction for mobile keyboards to 
improve user experience. Another application is in healthcare, 
where data from hospitals cannot be shared due to regulations. 
Training ML models on the data distributed at hospitals, e.g., for 
predicting mortality and hospital stay time, becomes extremely 
important [2]. FL can also be applied in the telecom industry, 
where distributed network data are generated from networks 
belonging to different operators and domains (such as network 
edges and core). Usually, these network data cannot be shared. 
FL can be used to train robust ML models with distributed data 
for predicting network performance and faults.  

  

  (a) A single round of FL training (b) FL server aggregation 
Fig. 1: Federated learning description 

Here, we focus on cross-silo FL, where organizations act as 
FL server/clients and share a common incentive to train a model 
based on all of their data. Usually, FL server and clients are 
physically distributed at different organizations. One challenge 
in FL is the secure communication between server and clients.  

Hyperledger Fabric, a private blockchain platform, can 
provide immutable records on a distributed ledger (also called 
blockchain). The blockchain is replicated across many peer 
nodes in a blockchain network, where the replicas are kept 
synchronized by a consensus process among peer nodes. A 
secure data exchange system [3] is built based on Hyperledger 
Fabric, where the description of data (called metadata), not the 
actual data, is recorded on the blockchain. The metadata can be 
searched on the blockchain, and if found, the actual data can be 
securely transferred upon requests.   

In this demo, we demonstrate FL to train a neural network 
model on physically distributed data sets at FL clients, where the 
underlying communication between server and clients uses a 
novel blockchain based protocol on the secure data exchange 
system. We present the system architecture and the blockchain 
based protocol for FL, then describe the demo scenario.  

II. SYSTEM ARCHITECTURE AND PROTROCOL  

A. System Architecture 
Figure 2 shows a blockchain based data exchange system for FL, 
where each peer node in the blockchain network has a consistent 
copy of the blockchain. For a FL task, the server and clients can 
write the description of their ML models (i.e., metadata) to the 
blockchain using metadataPublish() function. The FL server and 
clients can also search the metadata on their blockchain copy by 
metadataGet(). If the metadata of a desired ML model is found, 
the desired ML model is then transferred directly between the 
server and clients by dataGet(). dataGet() configures a secure 
network connection to provide data transfer between server and 
clients. The above mentioned functions [3] are implemented as 
smart contracts on Hyperledger Fabric. Note that, only the 
metadata of ML models are recorded in the blockchain, the 
actual ML models are directly transferred between server and 
clients via a secure network connection in our system. 

 

Fig. 2: Blockchain based data exchange system and functions for FL 

 



 In addition, a new FL server and client can join FL by adding 
a corresponding peer node to the blockchain network using the 
authentication process provided on the blockchain platform.  

B. Blockchain based Protocol for FL 
Figure 3 shows the blockchain based protocol for FL. Steps listed 
at the server and clients are for a single FL training round. The 
metadata that describes a global/local ML model includes: 

task_id:  the id of a FL task (e.g., training a given ML model) 
round_id: the id of a training round  
node_id: the id of a server/client (e.g., the organization id) 
num_samples: # of training samples in a local data set 
training_accuracy: training accuracy of a global/local model 
test_accuracy: testing accuracy of a global/local model 
weights_file: the file name at a node storing global/local model 
min_clients: min # of clients required to join each round 

Metadata can also include other information, such as 
server/client learning rate, batch size and the number of epochs 
at clients, for customized ML algorithms. We can see that the 
metadata of ML models written to the blockchain can also 
provide immutable records of the FL training process.  
  In the beginning, the server defines an initial global model 
and writes its metadata to the blockchain (Step 1). The global 
model can be an arbitrary neural network (NN) model (i.e., NN, 
CNN, or RNN). The server and clients periodically search a 
desired model from the blockchain (Steps 2 and 7). If the desired 
model shows up on the blockchain (available), a client (server) 
proceeds to directly transfer models from the server (client) to 
the client (server) (Steps 4 and 9). Clients can determine to join 
a training round or not, and the server can also select clients to 
join a training round, based on the metadata. Local models that 
do not meet the requirement (e.g., num_samples is small) will 
not be requested to transfer to the server. After a client finishes 
local training or the server aggregates a new global model, the 
client/server publishes the metadata of the model prior to 
transferring the model (Steps 6 and 11). 

At the end of each training round, round_id is incremented 
by 1 at the server when writing the metadata of a new global 
model to the blockchain. Clients update their local training 
round_id based on round_id from the metadata. Training/testing 
accuracy and loss of an aggregated global model are also 
obtained by weighted averaging over selected local models. FL 
training stops when the number of training rounds or the model 
accuracy reaches a threshold.  

There are several advantages to use blockchain technologies 
for FL. First, the immutable records on the blockchain not only 
ensure that data usage is compliant, but also tracks FL training 
steps for auditing purposes. Second, the consensus made among 

   

Fig. 3. Blockchain based protocol for FL 

FL server and clients on blockchain can indicate the availability 
and the quality of ML models, enabling client selection at the 
server without transferring unnecessary local models to the 
server. Third, the security features provided on the blockchain 
platform can simplify the underlying network configurations for 
FL. For example, the authentication of FL server and clients can 
take advantage of the authentication process on the blockchain 
platform. Also, secure exchange [3] of models between FL server 
and clients includes hiding the actual location of models, as well 
as establishing HTTPS connections between server and clients, 
so that attackers cannot access the transferred models. Applying 
blockchain technologies to mitigate FL-specific attacks, e.g., 
honest-but-curious adversaries, will be published in the future. 

Our proposed protocol is unique in that the information of 
desired models can be searched on the blockchain, and then the 
actual models can be transferred upon requests, avoiding 
unnecessary transfer of local models as in [4].  

III. DEMO SCENARIO 
For demonstration purposes, we create one FL server and two 
clients for FL, each of which is running as a Docker container in 
a PC. Each client has a physically decentralized local data set. A 
blockchain network is constructed at a different HP server, in 
which a single channel with three node peers is created. The FL 
server and clients are connected to their corresponding node 
peers in the blockchain network. We train a NN model based on 
the public data set MNIST, where each client has an even 
partition of the data set. The initial global NN model and the 
number of training rounds can be defined at the server in the 
beginning. 
 We show the traces of the blockchain based protocol during 
FL training, in which the training/testing accuracy of models at 
each round are listed, as the shown in Fig. 4. We also show the 
blockchain containing immutable metadata records. With the 
even partition of data sets among clients, the accuracy of the 
resulting model trained by FL is very close to centralized 
training. Our demonstration shows that the proposed blockchain 
based protocol can seamlessly provide secure communication 
between server and clients in federated learning.  
Traces at the server (node_id = 2): 

Traces at a client (node_id = 0): 

Fig. 4. Partial traces at the server and at a client 
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At FL Clients: 
2. metadataGet()- read metadata from the blockchain
3. If the global model generated at the server is available:

4. dataGet() – get the global model from the server if available
5. Local training on the local data set
6. metadataPublish() – write metadata for the local model update

At the FL aggregation server:
1. metadataPublish() – write initial global model metadata to the blockchain
7. metadataGet() – read metadata from the blockchain
8. If the number of available local models from clients meets a threshold:

9. dataGet() – get local model updates from the selected clients
10. Aggregate local model updates to a new global model
11. metadataPublish() – write the global model metadata to the blockchain


