
 978-1-7281-6992-7/20/$31.00 ©2020 IEEE

3

The server gets local
models and aggregates
them to a global model

A FL server sends a
global ML model to a
group of clients

1

2

Clients get the global model and
train it with local data, then
provide local model to the server

local model: x1
#training samples: p1

local model: x2
#training samples: p2

Aggregated global model: x0
x0 = (x1 · p1 + x2 · p2)/(p1+p2)

FL
Client

FL Server

FL
Clientt

FL Client

metadataPublish()

metadataGet()
dataGet()

Hyperledger Fabric

FL Client

FL Server

Blockchain
recording metadata

Data Local
training

Local
model

Metadata
for local model

Demo: A Blockchain Based Protocol for Federated Learning
Qiong Zhang1, Paparao Palacharla1, Motoyoshi Sekiya2, Junichi Suga2, Toru Katagiri2

1 Fujitsu Network Communications, Richardson, Texas, USA
2 Fujitsu Laboratories Limited, Kawasaki, Japan

Abstract—In this demo, we demonstrate a novel blockchain

based protocol for federated learning. We present the system
architecture and describe the blockchain based protocol that
seamlessly provides secure communication in federated learning
with physically distributed data sets.

I. INTRODUCTION
Federated learning (FL) [1] is a distributed Machine Learning
(ML) approach which enables ML models training on
decentralized private data. In FL, multiple clients that usually
own local private data collaborate to train a ML model, under the
coordination of a central server. A training round in FL includes
three steps, as shown in Fig. 1(a). The server provides a global
ML model and sends it to a group of clients at Step 1. At Step 2,
clients receive the global model and train local models with local
data, and send local models to the server. At Step 3, the server
aggregates local models from clients to a new global model,
which is sent to clients starting a new training round. FL can have
hundreds of training rounds until converged. Fig. 1(b) shows the
weighted averaging approach for server aggregation. The global
model sent from the server to clients is . The local model
trained at Client i is and the number of training samples in
Client i’s data set is . The server computes the new global
model as: .
 FL preserves data privacy by training ML models locally at
clients, and also saves network bandwidth by avoiding the
transfer of large amounts of training data to a central location.
Instead, only ML models are transferred between a server and
clients. FL can be applied in many applications. Google has
applied FL to next word prediction for mobile keyboards to
improve user experience. Another application is in healthcare,
where data from hospitals cannot be shared due to regulations.
Training ML models on the data distributed at hospitals, e.g., for
predicting mortality and hospital stay time, becomes extremely
important [2]. FL can also be applied in the telecom industry,
where distributed network data are generated from networks
belonging to different operators and domains (such as network
edges and core). Usually, these network data cannot be shared.
FL can be used to train robust ML models with distributed data
for predicting network performance and faults.

 (a) A single round of FL training (b) FL server aggregation
Fig. 1: Federated learning description

Here, we focus on cross-silo FL, where organizations act as
FL server/clients and share a common incentive to train a model
based on all of their data. Usually, FL server and clients are
physically distributed at different organizations. One challenge
in FL is the secure communication between server and clients.

Hyperledger Fabric, a private blockchain platform, can
provide immutable records on a distributed ledger (also called
blockchain). The blockchain is replicated across many peer
nodes in a blockchain network, where the replicas are kept
synchronized by a consensus process among peer nodes. A
secure data exchange system [3] is built based on Hyperledger
Fabric, where the description of data (called metadata), not the
actual data, is recorded on the blockchain. The metadata can be
searched on the blockchain, and if found, the actual data can be
securely transferred upon requests.

In this demo, we demonstrate FL to train a neural network
model on physically distributed data sets at FL clients, where the
underlying communication between server and clients uses a
novel blockchain based protocol on the secure data exchange
system. We present the system architecture and the blockchain
based protocol for FL, then describe the demo scenario.

II. SYSTEM ARCHITECTURE AND PROTROCOL

A. System Architecture
Figure 2 shows a blockchain based data exchange system for FL,
where each peer node in the blockchain network has a consistent
copy of the blockchain. For a FL task, the server and clients can
write the description of their ML models (i.e., metadata) to the
blockchain using metadataPublish() function. The FL server and
clients can also search the metadata on their blockchain copy by
metadataGet(). If the metadata of a desired ML model is found,
the desired ML model is then transferred directly between the
server and clients by dataGet(). dataGet() configures a secure
network connection to provide data transfer between server and
clients. The above mentioned functions [3] are implemented as
smart contracts on Hyperledger Fabric. Note that, only the
metadata of ML models are recorded in the blockchain, the
actual ML models are directly transferred between server and
clients via a secure network connection in our system.

Fig. 2: Blockchain based data exchange system and functions for FL

 In addition, a new FL server and client can join FL by adding
a corresponding peer node to the blockchain network using the
authentication process provided on the blockchain platform.

B. Blockchain based Protocol for FL
Figure 3 shows the blockchain based protocol for FL. Steps listed
at the server and clients are for a single FL training round. The
metadata that describes a global/local ML model includes:

task_id: the id of a FL task (e.g., training a given ML model)
round_id: the id of a training round
node_id: the id of a server/client (e.g., the organization id)
num_samples: # of training samples in a local data set
training_accuracy: training accuracy of a global/local model
test_accuracy: testing accuracy of a global/local model
weights_file: the file name at a node storing global/local model
min_clients: min # of clients required to join each round

Metadata can also include other information, such as
server/client learning rate, batch size and the number of epochs
at clients, for customized ML algorithms. We can see that the
metadata of ML models written to the blockchain can also
provide immutable records of the FL training process.
 In the beginning, the server defines an initial global model
and writes its metadata to the blockchain (Step 1). The global
model can be an arbitrary neural network (NN) model (i.e., NN,
CNN, or RNN). The server and clients periodically search a
desired model from the blockchain (Steps 2 and 7). If the desired
model shows up on the blockchain (available), a client (server)
proceeds to directly transfer models from the server (client) to
the client (server) (Steps 4 and 9). Clients can determine to join
a training round or not, and the server can also select clients to
join a training round, based on the metadata. Local models that
do not meet the requirement (e.g., num_samples is small) will
not be requested to transfer to the server. After a client finishes
local training or the server aggregates a new global model, the
client/server publishes the metadata of the model prior to
transferring the model (Steps 6 and 11).

At the end of each training round, round_id is incremented
by 1 at the server when writing the metadata of a new global
model to the blockchain. Clients update their local training
round_id based on round_id from the metadata. Training/testing
accuracy and loss of an aggregated global model are also
obtained by weighted averaging over selected local models. FL
training stops when the number of training rounds or the model
accuracy reaches a threshold.

There are several advantages to use blockchain technologies
for FL. First, the immutable records on the blockchain not only
ensure that data usage is compliant, but also tracks FL training
steps for auditing purposes. Second, the consensus made among

Fig. 3. Blockchain based protocol for FL

FL server and clients on blockchain can indicate the availability
and the quality of ML models, enabling client selection at the
server without transferring unnecessary local models to the
server. Third, the security features provided on the blockchain
platform can simplify the underlying network configurations for
FL. For example, the authentication of FL server and clients can
take advantage of the authentication process on the blockchain
platform. Also, secure exchange [3] of models between FL server
and clients includes hiding the actual location of models, as well
as establishing HTTPS connections between server and clients,
so that attackers cannot access the transferred models. Applying
blockchain technologies to mitigate FL-specific attacks, e.g.,
honest-but-curious adversaries, will be published in the future.

Our proposed protocol is unique in that the information of
desired models can be searched on the blockchain, and then the
actual models can be transferred upon requests, avoiding
unnecessary transfer of local models as in [4].

III. DEMO SCENARIO
For demonstration purposes, we create one FL server and two
clients for FL, each of which is running as a Docker container in
a PC. Each client has a physically decentralized local data set. A
blockchain network is constructed at a different HP server, in
which a single channel with three node peers is created. The FL
server and clients are connected to their corresponding node
peers in the blockchain network. We train a NN model based on
the public data set MNIST, where each client has an even
partition of the data set. The initial global NN model and the
number of training rounds can be defined at the server in the
beginning.
 We show the traces of the blockchain based protocol during
FL training, in which the training/testing accuracy of models at
each round are listed, as the shown in Fig. 4. We also show the
blockchain containing immutable metadata records. With the
even partition of data sets among clients, the accuracy of the
resulting model trained by FL is very close to centralized
training. Our demonstration shows that the proposed blockchain
based protocol can seamlessly provide secure communication
between server and clients in federated learning.
Traces at the server (node_id = 2):

Traces at a client (node_id = 0):

Fig. 4. Partial traces at the server and at a client

[1] P. Kairouz, et. al., “Advances and Open Problems in Federated Learning,”
https://arxiv.org/abs/1912.04977

[2] L. Huang, et. al., “Patient Clustering Improves Efficiency of Federated
Machine Learning to Predict Mortality and Hospital Stay Time using
Distributed Electronic Medical Records,” Journal of Biomedical Informatics,
vol. 99, Nov. 2019.

[3] J. Suga and Q. Zhang, “Cross-Organizational Secure Data Exchange with
Access Control using Blockchain,” presented at Hyperledger Global Forum,
March 2020.

[4] J. Passerat-Palmbach, et. al., “A Blockchain-Orchestrated Federated Learning
Architecture for Healthcare Consortia,” https://arxiv.org/abs/1910.12603

FL
Client

FL Server

FL
Client

At FL Clients:
2. metadataGet()- read metadata from the blockchain
3. If the global model generated at the server is available:

4. dataGet() – get the global model from the server if available
5. Local training on the local data set
6. metadataPublish() – write metadata for the local model update

At the FL aggregation server:
1. metadataPublish() – write initial global model metadata to the blockchain
7. metadataGet() – read metadata from the blockchain
8. If the number of available local models from clients meets a threshold:

9. dataGet() – get local model updates from the selected clients
10. Aggregate local model updates to a new global model
11. metadataPublish() – write the global model metadata to the blockchain

