
A Constrained Reinforcement Learning Based
Approach for Network Slicing

Yongshuai Liu∗, Jiaxin Ding†, Xin Liu∗
∗Computer Science Department, University of California, Davis

{yshliu, xinliu}@ucdavis.edu
†John Hopcroft Center for Computer Science, Shanghai Jiao Tong University

jiaxinding@sjtu.edu.cn

Abstract—With the proliferation of mobile networks, we face
strong diversification of services, demanding the current network
to embed more flexibility. To satisfy this daring need, network
slicing is embraced as a promising solution for resource uti-
lization, in 5G and future networks. In network slicing, dynamic
resource orchestration and network slice management are critical
for resource efficiency. However, it is highly complicated such that
the traditional approaches can not effectively perform resource
orchestration due to the lack of accurate models and hidden
problem structures. To address this challenge, we propose a
constrained reinforcement learning based approach for network
slicing. We formulate the resource allocation problem as a
Constrained Markov Decision Process (CMDP) and solve it using
constrained reinforcement learning algorithms. Specifically, we
use the adaptive interior-point policy optimization and policy
safety layer methods to deal with cumulative and instantaneous
constraints. Our evaluations show that our method is effective
in resource allocation with service demand guarantees and
significantly outperforms baselines.

Index Terms—Resource Allocation, Network Slicing, 5G, Deep
Reinforcement Learning

I. INTRODUCTION

With the proliferation of mobile networks, we face strong
diversification of services, such as autonomous driving, in-
dustry 4.0, virtual/augmented reality, Internet of Things (IoT),
etc. These services are characterized by heterogeneous perfor-
mance, functional, and operational requirements, and demand
the network to embed more flexibility. In 5G and future
networks, network slicing, enabled by network function vir-
tualization (NFV) and software defined networking (SDN),
is embraced as a promising solution for flexible resource
provisioning - it creates multiple virtual network instances,
named network slices, with service isolation and guarantees
on top of a common physical infrastructure. Network slicing
can be performed at different parts of the network, including
core cloud, edge cloud, radio resource management, RAN pro-
cessing, spectrum, and radio frontend to manage and allocate
different resources to satisfy the different service demands.

Network slicing is a generalized resource allocation problem
over heterogeneous resources to meet the service demands, in

Y. Liu and X. Liu would like to acknowledge supports from NSF CNS-
1718901, IIS-1838207, and CNS 1901218. J. Ding would like to acknowledge
supports from Shanghai Sailing Program 20YF1421300.

Jiaxin Ding is the corresponding author.

compliance with the complex network dynamics, in the long
run. Such dynamic orchestration of network slices is essential
for resource efficiency. However, the resource allocation in
network slicing is a highly complicated problem, which the
existing traditional approaches can not solve effectively and
efficiently. First, traditional optimization approaches require
accurate mathematical models with parameters known, which
is often difficult to achieve in practice, especially with the in-
creasing complexity, scale and service diversity of the 5G and
future networks. Constraints from the physical systems and
service demands are prevalent and complex, such as latency
requirement, service level agreement and safety demand [1]–
[3], which further adds to the difficulty, let alone obtaining
a closed-form expression. Second, traditional methods do not
adapt to epistemic uncertainty, exhibited as hidden structures
in networks, due to a lack of knowledge and subsequent ability
to explore and learn from the studied system.

Faced with these challenges, learning-based approaches are
beneficial because they explore and learn from the environ-
ment without assuming the knowledge of accurate models.
Recently, there have been growing learning-based network
research works showing significant performance improvement,
e.g., [4], [5], However, few previous works have analyzed
the resource allocation problem with the constraints imposed
by the service requirements, which is the crucial for network
slicing.

In this work, we propose a constrained reinforcement learn-
ing based approach for network slicing. Thanks to NFV, we
can focus our resource allocation decisions on the virtualized
resources. We first model the problem as a Constrained
Markov Decision Process (CMDP). We develop efficient re-
inforcement learning algorithms for network slicing under
both cumulative and instantaneous constraints. To the best
of our knowledge, we are the first one to apply constrained
RL for network slicing. Specifically, to deal with cumulative
constraints, we propose our adaptive constrained reinforcement
learning algorithm based on Interior-point Policy Optimization
(IPO) [6]. For instantaneous constraints, we project a resource
allocation decision generated by the reinforcement learning
algorithm to its nearest feasible decision at the end of policy
neural network [7], [8].978-1-7281-6992-7/20/$31.00 ©2020 IEEE

II. PROBLEM FORMULATION

In this section, we present the problem formulation for
resource allocation of network slicing as Constrained Markov
Decision Process.

A. Constrained Markov Decision Process

The Constrained Markov Decision Process (CMDP) is de-
fined with the tuple (S,A, P,R,C, µ, γ). S is the set of states,
including system information such as current network slice
allocation, network load (e.g., the number of users and traffic
demand), network status (e.g. cell conditions, neighboring cell
interference level), etc. A is the set of actions of the operator,
which, depending on what level our method runs, could in-
clude the admission control, spectrum/power allocation, com-
putation and storage allocation, priority assignment, network
routing decision, network configurations, etc. The action space
is constrained by the instantaneous constraints, e.g., resource
limits, fairness, isolation and other network constraints. The
instantaneous constraints can be further be catergorized into
two types, explicit and implicit instantaneous constraints. The
explicit instantaneous constraints can be accurately (and rela-
tively easily) evaluated for each action, for example, spectrum
band available, the number of antennas, and transmission time,
etc. The implicit instantaneous constraints are the outcome
of actions that we do not have an accurate closed-form
formulation. Examples include latency (e.g., average latency
or tail latency), job competition time, interference, etc. Such
constraints have to be modeled or learned using existing data
and/or during exploration. We define a is feasible, if a ∈ A
satisfies all the constraints including both explicit and implicit.
Let P : S × A × S 7→ [0, 1] be the transition probability
function, where P (s′|s, a) is the transition probability from
state s to state s′ taking action a, R : S × A × S 7→ R is
the reward, which can be a weighted sum of the objectives,
including the overhead of network slice reconfiguration as a
negative reward. There are m cost functions for constraints;
each function Ci : S × A × S 7→ R cumulatively is under
a constraint, such as service level agreement (SLA), outage
probability and average data rate, etc. µ : S 7→ [0, 1] is the
initial state distribution. γ is the discount factor, which can be
different for reward and constraints.

We write a policy π as πθ to emphasize its dependence on
the parameter θ (e.g., a neural network policy with parameter
θ). Our objective is to select a policy πθ, which maximizes the
discounted cumulative reward JπθR while satisfying discounted
cumulative constraints JπθCi and instantaneous constraints, de-
fined as

JπθR = Eτ∼πθ [
∞∑
t=0

γtR(st, at, st+1)], (1)

JπθCi = Eτ∼πθ [
∞∑
t=0

γtCi(st, at, st+1)], for each Ci, (2)

where τ = (s0, a0, s1, a1...) is a trajectory, and τ ∼ πθ.

Formally, the optimization problem is defined as

maximize
θ

max
θ
JπθR (3)

subject to each at is feasible, (4)
JπθCi ≤ ωi, for each Ci, (5)

B. Case Study: Radio Access Network Slicing

The formulation can be applied to general network slicing
problems, including radio access, edge, cloud, and core net-
works. In this work, we use a radio resource slicing scenario
derived from the work [9] as a case study.

Consider a scenario where there is one single Base station
(BS) providing three types of services (i.e., Video, VoLTE,
URLLC). Each type of user arrives following a Poisson
distribution. User requests are generated by the distribution
described in Table I based on their respective streaming model
same as the setting in [9], similar settings also seen in [4]. The
total bandwidth of the BS is fixed and given (100 Mbps). The
network slicing problem is for the system operator to allocate
bandwidth to each type of users (a slice). Users in the same
slice are assigned bandwidth equally.

The system is time slotted. At the beginning of each time
slot, the BS decides the bandwidth allocation bi (i is user type:
Video, VoLTE and URLLC) for the three network slices based
on the number of active users in each slice. Let ti be the actual
traffic demand, then the throughput for each type of user is
min(bi, ti).

For each type of users, there is a dissatisfaction ratio
representing their dissatisfaction with respect to the service
received. In simulation, we define it as 1 − min(bi,ti)

ti
. If

the bandwidth assigned to the users is greater or equal to
their demand then the dissatisfaction ratio is 0, otherwise,
it’s 1 − bi

ti
. The latency li for each type of user, which does

not yield to easy mathematical formulation, is decided based
on a queue maintained at the BS. We assume the first-come-
first-serve service principle. Traffic that cannot be serviced
in the current time slot is queued to the next time slot.
Each type of users arrive and depart the network following
a Poisson distribution with mean λi and µi. The arrival rate
λi adapts based on the satisfaction ratio of last time slot. In
the simulation, we assume the λi is updated in each time
slot with λi = 0.99 ∗ λi + 0.01 ∗ λi ∗ biti . Furthermore, users
may depart with the probability of the dissatisfaction ratio.
We assume these user behaviors are unknown to the slicing
algorithms. This is one of the reasons why learning-based
approaches, which incorporate exploration, perform better than
the traditional methods based only on observed states (i.e., the
number of active users in each type).

C. Mapping Network Slicing to CMDP

Next, we address how to map the radio access network
slicing problem to CMDP. The state is the number of users
in each type n = (nV ideo, nV oLTE , nURLLC), observed at
the beginning of each time slot. We do not know the exact
overall traffic demand generated in this time slot. The action

Distribution Initial number of users Inter-Arrival Time Packet Size

Video Poisson [Mean=50] Pareto [Exponential Para = 1.2, Truncated Pareto [Exponential Para = 1.2,
Mean= 6 ms, Max = 12.5 ms] Mean= 100 Byte, Max = 250Byte]

VoLTE Poisson [Mean=50] Uniform [Min = 0, Max =160ms] Constant (40 Byte)

URLLC Poisson [Mean=10] Truncated Exponential Truncated Lognormal [Mean = 2 MB,
[Mean = 180ms] Standard Deviation = 0.722 MB, Maximum =5 MB]

TABLE I: Parameter for different types of user

is b = (bV ideo, bV oLTE , bURLLC), bandwidth allocation for
each type of users. The reward function at a time slot R(n, b)
is defined as the total throughput min(bV ideo, tV ideo) +
min(bV oLTE , tV oLTE) + min(bURLLC , tURLLC). The objec-
tive is to maximize the long-term expected reward. The actions
need to satisfy both the explicit and implicit instantaneous
constraints. The explicit instantaneous constraint is the sum
of sliced bandwidth, is bounded by the total bandwidth (100
Mbps). The implicit instantaneous constraint is that of the
average latency of each type of users. Last, the cumulative
constraints of users is the expected cumulative dissatisfaction
ratio of users.

III. PRELIMINARIES

In this section, we briefly review the preliminaries from
previous works to solve our problem.

A. Definition

For a state-action trajectory starting from state s, the value
function of state s is

V πθR (s) = Eτ∼πθ [
∞∑
t=0

γtR(st, at, st+1)|s0 = s].

The action-value function of state s and action a is

QπθR (s, a) = Eτ∼πθ [
∞∑
t=0

γtR(st, at, st+1)|s0 = s, a0 = a],

and the advantage function is

AπθR (s, a) = QπθR (s, a)− V πθR (s). (6)

V πθCi (s), QπθCi(s, a), AπθCi(s, a), for each constraint cost func-
tion Ci, are defined by replacing reward function R above with
Ci. In the following sections, to simplify the notation, we omit
the subscripts of R and Ci if there is no ambiguity.

Let ρπθ (s) be the discounted visitation frequencies

ρπθ (s) =

∞∑
t=0

γtP (St = s),

where the actions are chosen according to πθ.
The Kullback-Leibler (KL) divergence of distribution Γ

from ∆ is defined as

DKL(Γ,∆) =
∑
x∈χ

Γ(x) log

(
Γ(x)

∆(x)

)
.

We denote Dmax
KL (π, π′) = maxsDKL(π(·|s), π′(·|s)).

B. Trusted Region Methods

Trust Region Policy Optimization (TRPO) [10] is proposed
to achieve monotonic improvement of the new policy based
on the results of the previous policy. The objective is approx-
imated with a surrogate function combined with the Kullback
Leibler (KL) divergence shown as follows. We denote a local
approximation Lπθ (πθ′) for Jπθ′ with πθ as

Lπθ (πθ′) = Jπθ +
∑
s

ρπθ (s)
∑
a

πθ′(a|s)Aπθ (s, a). (7)

The objective of TRPO is to maximize

LTRPO(θ) = Lπθo (πθ)−
4επθoγ

(1− γ)2
Dmax
KL (πθo , πθ), (8)

where πθo is the old policy to improve, επθo =
maxs,a |Aπθo (s, a)|.

Proximal Policy Optimization (PPO) [11] is a heuristic
algorithm with the same intuition as TRPO to formulate the
problem with a first-order surrogate optimization to reduce the
complexity, maximizing

LCLIP (θ)

= E
s∼ρπθo
a∼πθo

[min {r(θ), clip(r(θ), 1− ε, 1 + ε)}Aπθo (s, a)],

(9)
where r(θ) = πθ(a|s)

πθo (a|s)
, clip(·) is the clip function and rt(θ)

is clipped between [1− ε, 1 + ε].

IV. CONSTRAINED REINFORCEMENT LEARNING

A. Cumulative Constraints

To deal with the cumulative constraints in the CMDP, we
propose our method based on Interior-point Policy Optimiza-
tion (IPO) [6]. IPO augments the objective function of PPO
(Eq. (9)) with logarithmic barrier functions. However, IPO is
conducted with fixed hyperparameter for the logrithmic barrier
function, while we propose algorithms in an adaptive manner.

A logarithmic barrier function is a differentiable approxi-
mation of the indicator function, defined as

φ(ĴπθCi) =
log(−ĴπθCi)

t
,

where t is a hyperparameter, and ĴπθCi = JπθCi −ωi, to simplify
the notation. We get better approximation for the indicator
function with a higher t.

Now we take LCLIP (θ) in Eq. (9) as our objective with
cumulative constraints, that is,

max
θ

LCLIP (θ),

s.t. ĴπθCi ≤ 0.
(10)

We assume that the above optimization problem is strictly
feasible and reduce it to an unconstrained optimization by
augmenting the objective with the logarithmic barrier functions
for constraints. Our objective becomes

max
θ

LCLIP (θ) +

m∑
i=1

φ(ĴπθCi). (11)

B. Policy Performance Bound

Theorem 1: [6] The maximum gap between the optimal
value of Eq. (10) and the optimal of Eq. (11) is bounded
by m

t , where m is the number of constraints and t is the
hyperparameter of logarithmic barrier function.

The theorem shed lights upon the effects from the hyperpa-
rameter t, since a larger t provides a better approximation of
the original objective, which is also validated in the empirical
experiments in IPO [6]. In practice, a larger t can result a
large fluctuation near the boundary. Hence, there is a tradeoff
in choosing this hyperparameter t.

C. Practical Implementation

In this work, we improve IPO in an adaptive manner, to
change the hyperparameter t adaptively in the tradeoff of
approximation accuracy and algorithm performance, compared
with the fix t in original IPO. We present our adaptive IPO
in Algorithm 1. In phase I, the cost functions are recurrently
optimized to find a feasible policy. The algorithm is initialized
with the objective of maximizing

LC(θ) = −LCLIPC1
(θ),

to decrease the cumulative cost on C1 until the constraint is
satisfied. Thereafter, we update the objective LC(θ) for the
next cost function, by replacing −LCLIPCi

(θ) with φ(ĴπθCi) and
adding −LCLIPCi+1

(θ),

LC(θ) = −LCLIPCi+1
(θ) +

i∑
j=1

φ(ĴπθCj).

The above process is repeated until we find a feasible policy
for all the constraints.

In Phase II, the algorithm is initialized with a feasible
policy in Phase I. As we discussed in Section IV-B, a larger
t results in better accuracy of the policy estimation and
meanwhile greater fluctuation near the boundary of the feasible
region. In light of this, we start with a moderate small t and
adaptively increase it with a factor µ > 1. In each iteration,
we update policy parameters by maximizing the objective of
IPO LIPO(θ). The adaptive IPO acts as the main component
of the policy training in our method.

D. Instantaneous Constraints

We further extend the policy neural network obtained above
with new layers to deal with instantaneous constraints.

Algorithm 1 The procedure of adaptive IPO

Input: Initialize with a random policy πθ0 . Set the
hyperparameter ε for PPO, t = t0, µ > 1 for logarithmic
barrier function, and iteration number k = 0
Output: The policy parameter θ

Phase I:
1: Initialize LC(θ) = −LCLIPC1

(θ)
2: for i=1,2,. . . , m do
3: while ĴπθCi > 0 do
4: Sample N trajectories τ1, ..., τN including observa-

tions, actions and costs with the current policy πθk
5: Calculate advantages, constraint values, etc
6: Update θk+1 by maximizing LC(θ) with stochastic

gradient descent methods
7: Iteration k = k+1
8: end while
9: Update the objective as maximizing LC(θ) =

−LCLIPCi+1
(θ) +

∑i
j=1 φ(ĴπθCj)

10: end for
Phase II:

1: for iteration k do
2: Sample N trajectories τ1, ..., τN including observations,

actions, rewards and costs with the current policy πθk
3: Calculate advantages, constraint values, etc
4: Update θk+1 by maximizing LIPO(θ) with stochastic

gradient descent methods
5: if the policy converges then
6: t = µ ∗ t
7: end if
8: Iteration k = k+1
9: end for

10: return the policy parameter θ = θk+1

a) Explicit instantaneous constraints.: Our policy πθ
takes a state s ∈ S as input and outputs a action a = πθ(s) ∈
A. Assume that the action is a vector with k entries, denoted
as a = [a1, a2, ..., ak], and we deal with the specific explicit
instantaneous constraint that requires

∑
k ak = 1. Then a

softmax layer is added right after the output layer of policy
network πθ to project the arbitrary action a to a feasible action
a′ = [a′1, a

′
2, ..., a

′
k], such that

a′i =
eai∑k
j=1 e

aj
. (12)

b) Implicit instantaneous constraints.: To satisfy implicit
instantaneous constraints, one way is to project the action
generated by policy network πθ to the feasible space [7]. To
achieve this goal, one can introduce another additional last
layer to πθ, whose role is to solve

min
a

1

2
‖a− πθ(s)‖2

s.t. Ci(s, a) ≤ ωi
(13)

where Ci(s, a) is the implicit instantaneous constraint value
under action a given state s, and ωi is the constraint limit.
In other words, we project the action of the policy, πθ(s),
to the `2 nearest feasible action a that satisfies the implicit
instantaneous constraint. One challenge is that the function
Ci(·, ·) is unknown. To address the problem, we take advantage
of another neural network to learn the value of Ci(s, a)
simultaneously, as is in [7].

V. EXPERIMENTS

In the experiments, we demonstrate that our method out-
performs the baselines including traditional methods and RL-
based methods, with higher long term reward, as well as
satisfying all the constraints; at last, we discuss the reason
why our method works well through our observations.

A. Settings

As details described in Section II, we allocate the radio
bandwidth resource of a base station to three types of users:
Video, VoLTE and URLLC. The input states of our method is
the number of users of each type observed at the beginning
of each time slot; the action is the bandwidth allocation to the
three types. We compare the performance of our method to
four traditional benchmarks and an unconstrained RL-based
method for the three types of users , as is [9]. The traditional
baselines include:
• One-third equal allocation: the total bandwidth is equally

sliced into three.
• User-number-based allocation: the total bandwidth is

sliced weighted by the number of users of each type.
• Packet-number-based allocation: the total bandwidth is

sliced weighted by the number of packets of each type.
• Traffic-demand-based allocation: the total bandwidth is

sliced weighted by the real traffic demand.
We also choose the most commonly applied RL algorithm,
PPO [11] as a baseline. In the experiment, all policy neural
networks consist of two fully connected layers, with 64 and
32 nodes, respectively.

B. Evaluation Results

First, we demonstrate the evaluations of resource alloca-
tion among three network slices, with one single cumulative
constraint which is selected from cumulative dissatisfaction
ratio of Video, VoLTE and URLLC separately, in Fig. 1 (a-
h). Fig. 1a, 1b, 1d, 1e, 1g, 1h show the results of long term
reward (throughput) and cumulative constraints (dissatisfaction
ratio) with respect to the iterations of policy updates. Both
the rewards and constraints are cumulative values in 500 time
slots. For our method and PPO, the rewards and cumulative
cost values are updated during the training process, while
the traditional baselines does not adapt to the changes in the
environment. Even though PPO can get a little higher reward,
its cost significantly violates the constraints.

We collect the policy after training and demonstrate the
performance on the implicit instantaneous constraints (latency)
in 500 time slots, shown in Fig. 1c, 1f, where the figure for

Video VoLTE URLLC
Number of user 37.38 47.71 1.93

Number of packet 4436.37 580.57 10.70
Traffic Demand (kb) 5220.75 181.43 295171.64

TABLE II: Statistics of three types of users

(kb) Video VoLTE URLLC
One third 34133.33 34133.33 34133.33

User number 43989.44 56137.48 2273.07
Packet number 90357.18 11824.80 218.01
Traffic Demand 1778.61 61.81 100559.57

PPO 17459.34 6417.78 78522.87
Our method 23641.98 9453.28 69304.72

TABLE III: Average bandwidth allocation with our algorithm
and traditional baselines

the URLLC instantaneous constraint is omitted for the same
pattern. Our algorithm satisfies the latency requirements best.
Remark that in Fig. 1g and 1h, we have tested an extreme
case, where the traffic demand of URLLC is larger than the
total bandwidth. The traffic demand based allocation benefits
from knowing the extra information of the total traffic demand
volume, however, our algorithm still performs almost the same.
Moreover, our method can satisfy the latency constraint while
the traffic demand allocation can not. All above, the final
policy learned by our method outperforms all the baselines
in either reward or constraint cost, if not both.

C. Discussions

We show the statistics of three types of users to illustrate
the diversified characteristics of the three network slices, in
Table II, and the average resource allocation with all methods
in Table III. Traffic demands from URLLC users contribute
over 90% of the total traffic demands, while the numbers
of users and packets are far less. Given such heterogeneous
demands, the one third equal allocation method, user number
and packet number based method allocate much more than
enough bandwidth to Video and VoLTE users, resulting in
losing the high volume traffic URLLC users. As for the traffic
demand based method, it focuses on the demands of URLLC
network slices and works well in reward maximization with
the extra information of the real user demands. However, this
allocation results in the dissatisfaction and leaving of the users
of the other two network slices. In the extreme case as in
Fig. 1h, the resource is not enough to satisfy the URLLC
users, and therefore, the URLLC users are also unsatisfied and
leave. In this case, the allocation with traffic demand based
method loses all the users, while our our method can adapt to
this situation, and allocate more to the users from Video and
VoLTE network slices with low latency requirement, to keep a
high user participation level, achieving a better performance.
PPO works in an unconstrained manner, therefore, it can
achieve good rewards with constraints violated.

VI. RELATED WORK

Reinforcement Learning is employed to allocate resources
in network slicing. In [9], the authors study the setting of

(a) Reward under Video cu-
mulative constraint

(b) Video cumulative con-
straint

(c) Instantaneous under Video
cumulative constraint

(d) Reward under VoLTE cu-
mulative constraint

(e) VoLTE cumulative con-
straint

(f) Instantaneous under
VoLTE cumulative constraints

(g) Reward under URLLC cu-
mulative constraint

(h) URLLC cumulative con-
straint

Fig. 1: Average performance under different single cumulative constraints: Fig. 1a, 1b and 1c are under Video cumulative
constraint; Fig. 1d, 1e and 1f are under VoLTE cumulative constraint; Fig. 1g, 1h and are under URLLC cumulative constraint

demand-aware network slicing. Network bandwidth is allo-
cated to three types of slices: Video, VoLTE, and URLLC;
the state is the traffic load in each slice; the action is the
bandwidth allocation; the reward is the weighted sum of
spectrum efficiency and QoE of the slices. Bega et al. [12]
study admission control of two types of network slice requests
with different price and service requirements. The state is the
number of current network slice users in the system; the action
is the admission decision of the provider; and the reward
is the revenue of the service provider. In [13], the system
allocates the RAN and mobile-edge computing (MEC) slices
to provide computation offloading services to mobile users;
the state consists of task queue, energy queue, and channel
qualities; the action is the decision to execute the offloading
computation; the reward is the total utility value of all users.
To the best of our knowledge, there is no effort on constrained
RL to solve network slicing problems with constraints.

VII. CONCLUSION

This work focuses on a constrained reinforcement learning
based approach for network slicing. We formulate the network
slicing problem as a Constrained Markov Decision Process
(CMDP) and solve it with constrained reinforcement learning.
Our evaluation results show that our method can solve network
slicing problems effectively. Much future work exists, includ-
ing stronger theoretical bounds, improved sample efficiency
and testbed, as well as real world evaluations.

REFERENCES

[1] L. Zanzi and V. Sciancalepore, “On guaranteeing end-to-end network
slice latency constraints in 5g networks,” in 2018 15th International
Symposium on Wireless Communication Systems. IEEE, 2018, pp. 1–6.

[2] Y. Liu, J. Chen, and H. Chen, “Less is more: Culling the training
set to improve robustness of deep neural networks,” in International
Conference on Decision and Game Theory for Security, 2018.

[3] L. Lu and Y. Liu, “Safeguard: User reauthentication on smartphones
via behavioral biometrics,” IEEE Transactions on Computational Social
Systems, vol. 2, no. 3, pp. 53–64, 2015.

[4] Z. Zhang, L. Ma, K. Poularakis, K. K. Leung, J. Tucker, and A. Swami,
“Macs: Deep reinforcement learning based sdn controller synchroniza-
tion policy design,” in 2019 IEEE 27th International Conference on
Network Protocols (ICNP). IEEE, 2019, pp. 1–11.

[5] J. Chuai, Z. Chen, G. Liu, X. Guo, X. Wang, X. Liu, C. Zhu, and F. Shen,
“A collaborative learning based approach for parameter configuration
of cellular networks,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 1396–1404.

[6] Y. Liu, J. Ding, and X. Liu, “IPO: Interior-point policy optimization
under constraints,” The Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

[7] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” arXiv preprint
arXiv:1801.08757, 2018.

[8] A. Bhatia, P. Varakantham, and A. Kumar, “Resource constrained deep
reinforcement learning,” in the International Conference on Automated
Planning and Scheduling, vol. 29, no. 1, 2019, pp. 610–620.

[9] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.

[10] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889–1897.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[12] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and
X. Costa-Perez, “Optimising 5G infrastructure markets: The business
of network slicing,” in IEEE INFOCOM 2017-IEEE Conference on
Computer Communications. IEEE, 2017, pp. 1–9.

[13] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal, 2018.

