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Abstract—There is a growing demand for real-time analysis of
network data streams. In recent years, Model Driven Telemetry
(MDT) has been developed – in place of conventional methods
such as Simple Network Management Protocol (SNMP), Syslog
and CLI commands – to provide a fine-grain holistic view
of a network at the control, data and management planes.
High-frequency MDT data streams generated from network
devices enable new ways of designing Network Operation and
Management (OAM) solutions, laying the foundation for future
“self-driving” networks.

In this paper we study anomaly detection using MDT data
streams in a data center environment. In many commercial
data centers, BGP is re-purposed for (policy-driven, path-based)
intra-routing (as opposed to inter-domain routing that it was
originally designed for) to take advantage of rich path diversity.
Several vendors have developed MDT data models using YANG
that allow routers/switches to express and stream various BGP
features for (centralized) network OAM operations. We develop
a systematic MDT data processing and feature selection frame-
work that is portable to multiple MDT vendors. Furthermore,
we advance NetCorDenstream that builds and improves upon
OutlierDenStream proposed in [10] for real-time detection of
streamed anomalous MDT data. We show that NetCorDenstream
achieves a 59% reduction in alarms raised when compared
with OutlierDenStream, thereby reducing the (attention) burden
placed on network operators. In particular, it increases alarm
detection precision significantly while decreasing false alarms at
the expense of a slightly delayed response time.

Index Terms—OutlierDenStream, NetCorDenStream, MDT
Data.

I. INTRODUCTION

As networks become increasingly complex, Network Opera-
tion and Management (OAM) tasks such as capacity planning,
security, network health monitoring, troubleshooting are criti-
cal to ensure normal operations of business services. Tradition-
ally, network operators rely on mechanisms and tools such as
Simple Network Management Protocol (SNMP), Syslog, and
CLI which provide only slow (e.g., every 5 minutes), course-
grain, incomplete and often specific information that is hard to
operationalize. Their limitations restrict network automation.
To these drawbacks, Model-Driven Telemetry (MDT) [11] has
been developed in recent years and is widely adopted by
network vendors. MDT leverages the power of models to
implement a high frequency (in the order of seconds) push-
based data approach that is more granular and provides greater
scalability. For example, MDT enabled devices in a network
can generate more than 2.8 billion write requests per minute,
store 4.5 petabytes of time series data and receive 25,000 query

request per minute [12].
MDT data streams provide fine-grained visibility to network

devices and enable data processing in near real-time, making
it possible to achieve network automation at scale. However,
processing huge amounts of device-level MDT data streams
to obtain network-wide visibility and infer network conditions
for OAM decision making, e.g., anomaly detection, is still
very challenging. Take commercial (enterprise) data centers
as an example. Many of them employ BGP as the intra-
routing protocol [7] Instead of conventional OSPF and IS-IS
to take advantage of rich path diversity in data center topology.
Several vendors have developed BGP MDT data models using
YANG [8] over NETCONF, RESTCONF or Google Remote
Procedure Call (gRPC) protocols to express routers/switches
data features used for configuration, notification, and state
sharing. The YANG model is a data structure that defines
hierarchical (i.e., tree) data where each node has several sensor
groups (using, e.g., Cisco’s MDT workflow/features), with
each group possessing numerous counters. For example, Cisco
IOS-XR 6.2.2 YANG hierarchy comprises roughly 378,000
lines with over 45,000 sensor groups described with approx-
imately 6000 related to the BGP protocol alone. Each sensor
group contains an average of 100 counters. The average length
of stream is greater than 17000. Clearly, careful analysis of
these sensor groups is paramount given a specific network
task as network telemetry protocols and frameworks are stan-
dardized across several vendors. Availability of voluminous,
fine-grain MDT data streams with rich features calls for re-
thinking OAM operations, especially anomaly detection.

In this paper we study anomaly detection using BGP MDT
from a large data center as a case study. Our work improves
and builds on [10], [9] which employs a clustering approach
– OutlierDenStream [1]– for detecting anomalies and raising
alarms. In OutlierDenStream, each node in the network op-
erates individually. An alarm is raised upon reception of k
consecutive outlier samples at a node and for multiple nodes
during the same time slot. In this work, We first engineer a sys-
tematic MDT data processing and feature selection framework
that is portable to various vendors. By leveraging fine-grain
MDT data, we develop a novel unsupervised anomaly detector
engine that incorporate time as well as network proximity-
based heuristics. Our engine intelligently combines node level
alarms which decreases false positive alarms while increases
the true positive alarms. Therefore it reduces the attention
burden placed on network operators for verifying anomalies978-1-7281-6992-7/20/$31.00 c©2020 IEEE



and making decisions. The outline and major contributions of
our paper are summarized below.

• First, we begin by engineering a systematic MDT data
processing and feature selection framework, dubbed
Bravo portable to other MDT vendors (see Section II-B).
The source code, MDT data and all prerequisite scripts
of our results are available on github [5].

• Second, we formulate two unsupervised learning mecha-
nisms befitting MDT streaming data using Denstream [3].
The first mechanism ingeniously archives a 59% reduc-
tion in alarms raised juxtaposed with OutlierDenStream
[1], the comparative method (see Section III-B for an
overview), thus increasing precision at the expense of
delay. These two mechanisms are presented in Section IV.

• Third, the second benchmark bubbles heuristics within
fine-grain MDT data fostering early bird anomaly recon-
naissance diagnostic steps. The efficacy of our method is
demonstrated through experimental evaluations presented
in Section V and the paper is concluded with discussion
in Section VI.

II. DATASETS AND BRAVO

In this section, we first describe the datasets used and anno-
tated ground truth labels. Next, we present Bravo, a systematic
MDT data preprocessing and feature selection framework.

A. Datasets

To the best of our knowledge, the only publicly available
MDT data is the dataset by Rossi. et. al. [10]. We use this
dataset to evaluate the anomaly detection algorithms proposed
in this study. We also engineer a virtual lab and generate MDT
data with up to 1.2 Tbps cumulative network traffic. Table I
shows all datasets used.

Network topology: Rossi. et. al. [10] dataset was collected
on an engineered Cloud Service Provider (CSP) data center
network. The network contains 12 physical Cisco IOS-XR
6.2.2 routers connection in a tree-like topology with eight child
nodes and four parent nodes. The BGP protocol is the only
routing protocol configured on the network as per [7]. Each
child node is connected to the four parent nodes via 4X100GB
fibre cables with an average of 25 interfaces. The Cisco routers
are then connected to commodity servers to generate traffic
including 4K YouTube streaming, VoIP, Skype-1050P, TCP,
G.711a calls and AMR-WP.

In our virutal lab, the network architecture (not depicted
here because of lack of space) meets a realistic multi-tiered

TABLE I: Experimental MDT data used

Duration Stream length No. Anomalies Network traffic

1 h 200× 103 Pts 11 1 Tbps

0.55 h 250× 103 Pts 8 1 Tbps

0.72 h 150× 103 Pts 5 1 Tbps

2 h 1.3× 106 Pts 12 1 Tbps

24 h 1.5× 106 Pts None 1.2 Tbps
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Fig. 1: Sample MDT counters and annotated ground Truth

data center network topology as per [13]. It is equipped with
six Cisco IOS XR Release 6.2.1 virtual routers connected
in a tree-like architecture. All the nodes publish telemetry
data to a server collector as per pipeline [2]. Unlike the
Rossi. et. al. network architecture configured with only BGP
protocol MDT sensor groups, our virtual lab is richer with
more MDT sensor groups configured within each router1, thus
significantly increasing the length of streams.
MDT data collection and labeling: Every five seconds, all
the routers push the pre-configured telemetry features to a
centralized data collector. All features are described via YANG
[8]. At the collector, the MDT data is decoded, and stored in
compressed CSV files [4].

The traffic load on the network is varied from null, 0.5Tb
to 1 Tbps and controlled anomalies are injected and labeled.
Controlled anomalies of types BGP Clear, BGP port flapping,
and BGP leaks are manually triggered and the start and end
time, node on which the anomaly was triggered, and the type
of anomaly is logged. Every anomaly experiment conducted
on the network starts with a normal period lasting about four
minutes. Different anomalies are injected at randomized nodes
recording the ground truth labels.

To validate the ground truth labels, Fig. 1 shows the
vrf path-count and vrf paths-count values for the BGP clear
experiment of a parent node and its annotated ground truth.
The lime band indicates the ground truth start and end time. As
observed, the BGP clear command triggers a vrf path-count
and vrf paths-count re-configuration on the router. Thus, this
validates the correctness of the ground Truth labels logged.
It is important to mention that, we leverage the ground
truth labels solely to assess the performance of our models.
Precisely, the ground truth is use to validate the precision,
recall, false alarms and delay incurred during our experiments.

B. Bravo

Bravo is a “plug & play” system for “on-the-fly” customiza-
tion of metrics of interest and for configuring various (readily

1Cisco-IOS-XR-cdp-oper:cdp nodes node neighbors summaries
Cisco-IOS-XR-infra-statsd-oper:infra-statistics interface latest generic
Cisco-IOS-XR-infra-syslog-oper:syslog messages message
Cisco-IOS-XR-ip-rib-ipv4-oper:rib rib-table-ids summary-protos
Cisco-IOS-XR-ipv4-arp-oper:arp nodes node traffic-interfaces
Cisco-IOS-XR-ipv4-bgp-oper:bgp instances-active default-vrf neighbors
Cisco-IOS-XR-ipv4-bgp-oper:bgp instances-active default-vrf process-info
Cisco-IOS-XR-ipv4-ospf-oper:ospf processes default-vrf ospf-summary
Cisco-IOS-XR-nto-misc-oper:memory-summary nodes node detail
Cisco-IOS-XR-pfi-im-cmd-oper:interfaces interface-summary
Cisco-IOS-XR-procmem-oper:processes-memory nodes process-ids
Cisco-IOS-XR-shellutil-oper:system-time uptime
Cisco-IOS-XR-wdsysmon-fd-oper:system-monitoring cpu-utilization



available) algorithms used in MDT data preprocessing to pro-
duce normalized ML-ready datasets. Bravo is also a systematic
counter selection framework that is specifically geared towards
network MDT data preprocessing via YANG. While designed
using Cisco BGP YANG data model, it is portable to other
MDT vendor workflows, and thus deployed on networks with
different vendor routers producing telemetry data. The pipeline
is modularized and each (optional) module contains a readily
available toolbox with a variety of techniques suitable for
different MDT ML tasks.

The counter selection pipeline begins with the
split by nodes module. This is because current MDT
framework deployments are designed with a central telemetry
collector [6]. This module aids in node-level ML tasks. The
next module is a data cleaning module – a threshold-based
filter – to remove faulty telemetry counter readings such
as NaN and negative readings. Since not all counters per
sensor group are relevant to a given specific network event of
interest, we introduce a counter correlation module. We apply
statistical methods such as Pearson, Spearman and Kendall
correlation tests and discard all counters with less than 0.1
correlation factors. We assume each counter value follows
a normal distribution and introduce a counter distribution
module that discards features with less than 1% (user-defined
threshold) standard deviation, i.e., unaffected counters given
a specific network event. The last module Normalization
characterizes and normalises the data to be ready for ML
tasks.

We validate Bravo by performing a domain expert counter
selection. The datasets obtained after Bravo preprocessing
have at least 60% counters overlap compared to the domain
expert ControlPlane and DataPlane counters selection. In Sec.
V-B, we compare the precision, recall, false alarms and delay
of our algorithm against both counter selection approaches.

III. DENSTREAM AND OUTLIERDENSTREAM

This section starts by presenting DenStream [3] and next
introduces OutlierDenStream [10] and its major drawbacks.

A. DenStream

DenStream is a streaming clustering algorithm for evolving
data streams. DenStream uses a Damped window model to
extend the density-based approach introduced in DBScan
making it suitable for online model. The algorithm assigns a
weight/importance to each data point and this weight decreases
exponentially with time via a fading function f(t) = 2−λt,
where λ > 0 is the decay factor and t is the time. The
algorithm modifies the core-objects of DBScan and introduces
the concept of core-micro cluster (c-micro-cluster) defined as
CMC(w, c, r), where w, c and r are the weight, center and
radius respectively. The weight of CMC must be greater than
or equal to µ (user-defined parameter) and the radius r ≤ ε
[3]. Formally, CMC(w, c, r) for close points pi1 , pi2 , . . . , pin
with time stamps Ti1 , Ti2 . . . , Tin is defined as:

w =
∑t=tc

t=0 f(t− Tij ),

c =
∑t=tc
t=0 f(t−Tij )pij

ω
,

r =
∑t=tc
t=0 f(t−Tij )dist(pij ,c)

ω

where w ≥ µ, dist(pij , c) denotes the Euclidean distance
between point pij and the center c, and r is the radius.

Due to the dynamic nature of streaming environments,
DenStream introduces the concept of potential core-micro
cluster, (p-micro-cluster) for incremental computation. The p-
micro-cluster weights are defined in term of the weight linear
sum (CF 1) and the weight squared sum(CF 2) of the points,
with:

CF 1 =
∑t=tc

t=c f(t− Tij )pij ,

CF 2 =
∑t=tc

t=c f(t− Tij )p
2
ij

The center and radius are:
c = CF1

w
,

r =

√
CF1

w
−
(

CF1

w

)2

.

While the p-micro-cluster allows the model to be maintained
dynamically with time, in an event of an outlier, it will
generally not capture the illustrative of the data stream as more
data points are streamed. Thus, DenStream also introduces the
concept of an outlier buffer to temporally store outlier-micro
cluster (o-micro-cluster) giving them the opportunity to be
promoted to a p-micro-cluster as more points are streamed.
The main difference between a (p-micro-cluster) and an (o-
micro-cluster) are the constraints on the weight, w ≥ βµ
and w < βµ respectively. 0 < β ≤ 1 is the parameter that
determines the threshold of o-micro-cluster relative to the p-
micro-cluster.

Therefore, when a new sample p arrives, DenStream merges
p into its nearest p-micro-cluster, provided the new radius after
p, is less than or equal to ε. If the merge attempt fails, the
system then tries to merge p into its nearest existing o-micro-
cluster. If the radius is less than ε, it merges p. If the new
weight of the o-micro-cluster is large enough to be promoted
to a p-micro-cluster, the system removes it from the outlier
buffer and adds it to the system as a p-micro-cluster. If p
cannot be merged to any existing micro-cluster, a new o-micro-
cluster is created in the outlier buffer.

In our context, when a new telemetry sample p is merged to
a p-micro-cluster, the sample is classified as normal; abnormal
otherwise. Notice that λ and β are the only two free decision
variables with physical meaning. λ dictates the importance of
historical data to the current stream cluster decision while β
is the outlier-threshold which controls when o-micro-clusters
gets promoted to p-micro-clusters and vice-versa.

B. OutlierDenStream

OutlierDenStream [1] is an anomaly detection engine based
on DenStream [3]. It is governed by two criteria: 1) Temporal
order, kt: Each node on the network operates individually and
an alarm is raised upon reception of k consecutive outlier
samples at a node and 2) Spatial order, ks for multiple nodes
during the same time slot. Major drawbacks of OutlierDen-
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Fig. 2: TPk,δ alarms counted twice

Stream which hinders applicability and deployment include:
1) The total number of alarms raised is very high, which may
overwhelm data center network operators. 2) The number of
false alarms is also high resulting in a waste of resources.

IV. ANOMALY DETECTION MECHANISMS

To detect anomalous MDT data and raise alarms, we treat
each MDT data stream pushed by routers as points to be clus-
tered. We devise two simple unsupervised network correlation
anomaly detection mechanisms for anomaly detection.

It is important to mention that we acknowledge the need for
a sensitivity analysis of λ and β given different MDT datasets.
However, Rossi. et. al. [10] have conducted a thorough sen-
sitivity analysis on the publicly available MDT datasets and
have concluded that λ = 0.05 and β = 0.15 are suitable
values for these datasets. Thus we adopt these values for all
our experiments.

A. Time Proximity Network Correlation

To reduce the total number of alarms raised, we adapt a
holistic approach and intelligently correlate alarms raised by
different nodes on the network. Therefore, we introduce Time
proximity NetCorDenStream, TPk,δ .

DEFINITION 1 (TimeProximity NetCorDenStream, TPk,δ).
An alarm is raised only if node ni detects an anomaly at
time t, and at least k-neighbors of node ni flags a sample as
anomalous at time t+ δ.

Particularly, a false positive alarm occurs when node ni and
at least k neighbors of node ni flags a sample as anomalous
but the ground truth labels the system as being in normal
condition. Increasing δ reduces the number of alarms raised
as TPk,δ alarms for less than δ go un-noticed. Similarly,
increasing k reduces alarms raised as TPk,δ alarms less than
k go un-flagged by the system. Intuitively, increasing δ trade
offs the precision for increased in delay.

Challenge: The performance of Time proximity NetCorDen-
Stream unsupervised learning criteria is heavily affected by the
alarms flagged by each nodes on the network. TPk,δ alarms
raised as per Def. 1 are double counted. We demonstrate this
challenge in Fig. 2. Consider a network with two nodes, n1
and n2 with n1 and n2 neighbors. Now assuming k = 1 and
δ = 4, i.e., TP1,4 raises an alarm if at time t4, node n2 raises
an alarm and node n1 previously flagged an alarm at time t1
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Fig. 3: Execution time vs. length of stream

or vice versa. The anomaly flagged by node n1 at time t1 and
node n2 at time t2 are TP1,4 correlated (red dotted circle).
And at time t4, the alarm raised by n2 is TP1,4 correlated to
the anomaly flagged by n1 at time t8 (green dotted circle).
Thus TP1,4 alarms raised at time t4 are double counted.

To address this challenge, we designate a baseNode de-
pending on the data center network architecture. Ideally, this
baseNode is the most centrally located, with more neighbors
(the e-gress/in-gress) node on the network. In a multi-tiered
or fat tree network, the baseNode would be at the core level.
In a hybrid topology, the baseNode will be at level 1 [13].
In our case, the MDT dateset was collected on a multi-tiered
network, thus our baseNode is one of the four parent nodes
in the case of the open sourced datasets. In our virtual lab, it
can be any node at level 1.

B. Signature Proximity Network Correlation

To bubble anomaly heuristics that aid during early trou-
bleshooting steps, we introduce Signature proximity NetCor-
DenStream, SPk,δ .

DEFINITION 2 (SignProximity NetCorDenStream, SPk,δ).
Counters involved in TPk,δ alarms at time t + δ with values
beyond one standard deviation from the mean of past observed
normal samples i.e., p-micro-cluster samples are sign proxim-
ity network correlated.

Specifically, SPk,δ goes beyond TPk,δ alarms raised. As
more TPk,δ alarms are raised by decreasing both k and/or
δ, more counter metric involved in the alarm are flagged
and bubbled. Intuitively, SPk,δ precision, recall, and false
alarms tradeoffs the delay for affected counters to be surfaced.
Moreover, SPk,δ KPIs are transitively affected by k and δ via
TPk,δ alarms.

V. EXPERIMENTAL EVALUATION

In this section, we present a thorough experimental eval-
uations of our proposed algorithms. We implement Outlier-
DenStream [1], the comparative method and our benchmarks.
All experiments were conducted on a 2.6 GHz Intel Core i5
MacBook Pro with 16GB memory, running macOS Mojave.

A. Bravo Evaluation

The efficiency of our proposed systematic MDT data pro-
cessing is measure by the execution time. In Fig. 3, we
show the execution time vs. length of stream of both the
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virtual lab MDT data collected (bottom plot) and the open
sourced available MDT dataset (top plot). We can see that,
the execution time is directly proportional to the length of
the stream. Additionally, observe that our proposed MDT
data processing pipeline takes less than 3 seconds to process
100,000 point and about 33 seconds to process 1.5 million
data points. Therefore, it can comfortably handle high speed
data streams. In the next section, we further demonstrate the
benefit of our counter selection approach while showing that
it achieves better precision compared with the domain expert
counter selection.

B. Time Proximity Network Correlation Evaluation

First, we demonstrate how varying k and δ significantly
affect TPk,δ alarms raised. In Fig. 4, when delta is altered from
5 seconds to 60 seconds, TPk,δ alarms generally decreases.
Reason being, TPk,δ alarms less than delta go unnoticed.
Additionally, tuning k from 1 (k = 1) to 5 (k = 5) neigh-
bors, decreases TPk,δ alarms raised. i.e., Monitoring more
neighbors reduce the likelihood for TPk,δ alarms, provided
the underline traffic is not routed via all k nodes2.
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Fig. 5: Alarms vs. k neighbors.

Second, we compare the number of alarms raised by Out-
lierDenStream and our proposed detection criteria, NetCor-
DenStream, TPk,δ . As shown in Fig. 5, NetCorDenStream
with δ = 5 intelligently correlates different alarms raised
across several neighbor nodes, decreasing the overall number
of alarms. Thus, we increase the precision at the expense of
delay3. Intuitively, a higher δ increases the precision even
further4.

Next, we seek to demonstrate the reliability of our proposed
algorithm by contrasting the domain expert counter selection

2 In this experiment, the dataset used is bgpclear apptraffic 2hourRun. Bottom plot shows Domain Expert Data plane
counter selection approach. Top plot shows the Control plane counter selection approach
3As expected, NetCorDenStream, incurs more delay as delta increases. This is because an alarm is delayed to be flagged

only after delta seconds. Hence, generally, the delay of each alarm will be at least delta seconds
4As delta increases to 60 seconds, TPk,δ decreases the number of alarms raised by about 83% compared with

OutlierDenStream.
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Fig. 6: SPk,δ Results for k = 1 and δ = 10.

with our systematic counter selection, Bravo. While it is
possible for single node alarms to go un-flagged, we assume
zero false negatives in this case. In Table II, we keep k constant
(k = 2) and vary delta (δ = 5, 30, and 55 seconds) showing
the precision, recall, false alarms and delay. Notice that, all
performance metrics exhibit the same behavior per dataset
regardless of the counter selection approach. However, our
systematic counter selection yields a higher precision, reducing
the number of false alarms raised at the expense of delay.
On the contrary, Table III shows the KPIs obtain for fixing
δ (δ = 15) and changing k (1, 3, and 5 neighbors). Again
observe that, our counter selection approach achieves higher
precision and lower false alarms which tradeoffs the delay.

C. Signature Proximity Network Correlation Evaluation

In Fig. 6, we show the system state at time t + δ for two
neighbor nodes. The lime colored band shows one standard
deviation from the mean of the MDT data counters, and the
blue line represents MDT data streamed at time t+ δ. Notice
that similar counters metrics are involved in anomaly for both
nodes, i.e., counters 4, 5, 7 and 11 are both involved in the
TPk,δ alarm raised, thus a SPk,δ alarm. By identifying the
counters involved in an alarm (i.e., SPk,δ), an operator can
have a first insight into what might have cause the alarm.
Domain knowledge can be used to quickly attend to the alarm.

VI. DISCUSSION AND CONCLUSION

In this work, we have proposed Bravo, a systematic
MDT data processing and feature selection framework that
is portable to other MDT vendors. We have also developed
NetCorDenStream, a novel unsupervised anomaly detector
engine equipped with two anomaly mechanisms: (i) TimeProx-
imity NetCorDenStream, TPk,δ , Which intelligently combines
node level alarms raised increasing true positive alarms and
precision at the expense of delay. (ii) SigProximity Net-
CorDenStream, SPk,δ , which incorporates counter heuristics
from within TPk,δ to aid network operators in early-bird
troubleshooting steps. Evaluation demonstrates that our sys-
tem outperforms OutlierDenStream: it reduces the number of
alarms raised by 59% while increasing precision; the decrease
in false alarms rate is achieved with a slight delay in alarms.

We conclude with several takeaways: 1) k and δ are tuneable
parameters set by network operators. On one hand, operators
who seek to increase precision at the expense of delay can
set a higher k (k = 5) and delta low (δ = 20 seconds).



TABLE II: TPk,δ Results for k = 2 delta changing.

Dataset Features Precision Recall False Alarms Delay [in seconds] Delta [in seconds]
0.800 1 36 12 5

Control Plane 0.763 1 36 34 30
0.700 1 36 59 55
0.771 1 77 12 5

bgpclear second Date Plane 0.729 1 75 37 30
0.670 1 72 62 55
0.835 1 16 54 5

Bravo 0.801 1 15 68 30
0.764 1 14 95 55
0.619 1 48 19 5

Control Plane 0.566 1 48 75 15
0.558 1 47 64 40
1.000 1 3 82 5

portflap first Date Plane 0.690 1 3 99 15
0.591 1 0 115 40
0.806 1 13 80 5

Bravo 0.783 1 13 90 15
0.707 1 0 115 40

TABLE III: TPk,δ Results for δ = 15 and k changing.

Dataset Features Precision Recall False Alarms Delay [in seconds] K neighbors
0.799 1 42 35 1

Control Plane 0.818 1 32 40 3
0.828 1 27 44 5
0.675 1 128 38 1

bgpclear first Date Plane 0.750 1 88 38 3
0.785 1 56 39 5
0.957 1 3 93 1

Bravo 1.000 1 0 112 3
1.000 1 0 107 5
0.733 1 56 41 1

Control Plane 0.742 1 42 44 3
0.773 1 22 49 5
0.563 1 154 49 1

bgpclear apptraffic Date Plane 0.663 1 93 50 3
0.802 1 23 58 5
0.940 1 5 76 1

Bravo 0.967 1 1 82 3
1.000 1 0 84 5

On the other hand, operators can set k small (k = 1) and
delta high (δ = 55 seconds) to reduce false alarms. 2) SPk,δ
benchmark quickly brings forth specific counters which trigger
alarms, allowing network operators to quickly handle alarms.
Thus, NetCorDenStream is very practical and applicable across
several vendor networks.
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