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Abstract—Recent developments in orchestration and machine
learning have made network automation more feasible, allowing
the transition from error-prone and time-consuming manual
manipulations to fast and refined automated responses in areas
such as security and management. This article investigates the
capabilities of a deep reinforcement learning agent to learn how
to automatically share prefix announcements of an Autonomous
System to its neighbors, in order to mitigate undesired network
behaviors and therefore increase network resiliency and security.
Our work focuses on network saturation, tackling the problem
of network responsiveness in today’s massive content delivery
context. Results not only prove feasibility of such an agent, but
also demonstrate its ability to minimize traffic loss as well as the
number of actions to be performed by the automation process.

Index Terms—deep reinforcement learning, network, automa-
tion, security, management, network resiliency, saturation.

I. INTRODUCTION

Automation and machine learning have already proven they
could improve detection and correction of security threats in
networks [1]-[3]. Recent developments also suggest they are
capable of optimizing security, management and performances
of networking infrastructures [4]-[6]. Taking advantage of
latest machine learning techniques, would especially allow au-
tomation, transitioning from error-prone and time-consuming
manual manipulations to faster and more refined automated
actions in responses to events. This could, for instance, alle-
viate the control problem that Carriers and Internet Service
Providers (ISPs) face in today’s massive content delivery
context and which can result in traffic congestion issues.
Indeed, Content Delivery Networks (CDNs), are not only
responsible for a large part of today’s traffic, but they also
totally control how content is delivered by their geographically
distributed cache servers. On the contrary, Carriers and ISPs
are unable to predict where content traffic will enter their
Autonomous System (AS). This lack of control increases their
vulnerability to traffic saturation over their inter-domain links
and can result in serious security issues (inter-domain sessions
termination, for instance) that put at risk the good, working
state of the network. They can however try to retain some
control by sharing the announcements of their prefixes to their
neighbors in order to try to influence the entry points of traffic
into their AS. But this is a very error-prone and complex task
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to achieve manually, as it requires to find and maintain the
correct sharing of prefixes over time.

To this end, this paper evaluates the capability of a deep
reinforcement learning (DRL) agent to improve the dynamic
prefix load sharing of an AS in order to efficiently mitigate
saturation, an issue in today’s massive content delivery context.
More precisely, we (i) propose a generic network automation
architecture that automatically handles events that put at risk
its proper operation, (ii) design a DRL agent which controls
the choice of actions to be executed in case of saturation, (iii)
evaluate its performance under three scenarios and with two
different reward functions.

This paper is organized as follows: Section II provides a
description of the delivery and saturation issue. Section III
introduces our solution. Section IV details how we evaluate
its performance and discuss the results from our experiments.
Section V positions our work with respect to related works.
Section VI concludes the paper.

II. DELIVERY AND SATURATION ISSUE DESCRIPTION

CDNs are built as overlay networks of geographically
distributed servers. They implement complex and dynamic
delivery strategies to select which server will deliver a given
content to a given end-user at a given time. Such strategies
range from choosing the closest servers to users, or the ones
with the highest capacity, through optimizing the load on
the CDN or even the CDN provider transit costs. A direct
consequence is Carriers and Internet Service Providers (ISP)
turning into “dumb pipes”, as they have neither control nor
insight on how traffic is delivered to their customers. There-
fore, even if content delivery is legitimate traffic and cannot
be considered an attack, the massive and unpredictable traffic
shifts they trigger can have serious security issues. Indeed, they
can lead to inter-domain links saturation, preventing users to
access some services. Worse, control traffic can be lost, such as
BGP keep-alive messages, resulting in external BGP (eBGP)
sessions termination.

Fig. 1 depicts the root cause of such a situation leveraging
a basic example. ISP AS owns three prefixes: 2.0.0.0/24,
2.0.1.0/24 and 2.0.2.0/24. The content is replicated into three
possible caches: ISP Cache physically placed in the ISP AS’s
network, but seen as another AS from a connection point of
view (state-of-the-art practise); Direct Cache located in the
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Fig. 1: Delivery and Saturation with Prefix Load Balancing.
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Fig. 2: Saturation avoidance through Prefix Load Sharing.

CDN AS, directly connected to ISP AS; and finally, Remote
Cache located in some AS in the inter-domain'. The delivery
strategy of the CDN is unknown, it might balance delivery
from the three caches equally or prioritize delivery, serving
from ISP Cache first, then from Direct Cache and finally
from Remote Cache to offload traffic during peak hours, for
instance. Depending on its strategy and the cache involved in
the delivery, more or less serious saturation is likely to arise:

o In the case of ISP Cache (resp. Direct Cache), the cache
capacity (resp. link capacity between ISP AS and CDN
AS) is meant to fit the volume of traffic to be delivered.
Moreover, the ISP and CDN provider are eager to upgrade
it in case of saturation and no other traffic is likely to be
impacted.

o In the case of Remote Cache, CDN traffic will be deliv-
ered to ISP AS either via ASx, ASy or ASz, depending on
the BGP best path selection of the AS where the Remote
Cache 1is located. First, none of these links is dedicated
to content delivery traffic which will therefore be “in
competition” with other traffic for capacity. Saturation, if
it occurs, will as a consequence, not only impact content
delivery traffic but other traffic too. Second, these links
do not necessarily have the same capacity depending on

!For ease of understanding, we only consider one remote cache and three
neighbors ASx, ASy and ASz. A more realistic situation would involve many
more caches and neighbor ASes.

the interconnection agreement settled between ISP AS and
ASx (resp. ASy, ASz). Therefore, if the traffic is delivered
via a link with a low capacity, then saturation is not
only more likely to happen but also with more serious
consequences. Finally, upgrading link capacity might
prove hard to achieve, as agreements are renegotiated
few times a year and due to peering ratio in the case of
settlement-free peers, for instance?. This situation arises
on the example of Fig. 1 because the ISP announces all
its prefixes to ASx, ASy and ASz (prefix load balancing).
The Remote AS has three possible paths to reach ISP
AS (in Fig. 1, it prefers the path via ASx resulting
in traffic being sent on that path). On the contrary, if
the ISP shares its prefixes, announcing 2.0.0.0/24 (resp.
2.0.1.0/24, 2.0.2.0/24) to ASx (resp. ASy, ASz), then
content will be delivered as depicted in Fig. 2 preventing
saturation®.

As a conclusion, depending on the CDN delivery strategy
and its daily time evolution, saturation can arise especially
on peering links. As previously explained, not only this issue
is hard to prevent, but also to fix. Prefix load sharing is a
possible workaround, but is error-prone and complex to set
up, as finding and maintaining the appropriate load sharing is
cumbersome. Work presented in [7] has proven automation is
an efficient and scalable solution for prefix load sharing to bal-
ance traffic upon providers in a multi-homing situation. In this
paper, we also apply automation to prefix load sharing but to
mitigate saturation and further investigate how reinforcement
learning can be used to optimize its actual control.

III. PROPOSED SOLUTION

We now present our proposal of a generic automation
solution that executes actions in a network in order to maintain
its optimal level of service. We especially describe the agent
that controls the execution of actions, and learns through
reinforcement those that improve the achievement of the
expected operating condition.

A. Generic Architecture Overview

The generic architecture of our solution is depicted on
Fig. 3. A Monitoring block periodically performs measure-
ments on the network and stores them in a first-in, first-out
Events stack. A Reasoning block consumes the collected infor-
mation to create a representation of the state of the network,
and subsequently computes the probability of choosing each
one of the possible actions of the Actions list to optimize the
operating state of the network. Based on these probabilities,
it selects the action to be carried out by the Execution block,
via the Orchestration block. This architecture can therefore be

2 ASes are generally connected either through a customer-provider relation-
ship (the customer pays the provider for incoming and outgoing traffic), or as
settlement-free peers (the ASes only exchange traffic towards their customers
and for free). In the latter situation especially, a peering traffic ratio can be
implemented to reach a balanced traffic between peers.

3Please note that, to ensure full connectivity, a less specific prefix, covering
2.0.0.0/24, 2.0.1.0/24 and 2.0.2.0/24, should be announced to ASx, ASy and
ASz. For purposes of simplicity, it was not depicted in the examples.
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Fig. 3: Proposed Solution Generic Architecture.

seen as an evolution of the one presented in [7]. In particular, it
leverages the use of a Reasoning block to control the execution
of actions. While other works, like the one presented in [7],
highlight the feasibility and scalability of automating actions
in response to network events, our work focuses on the ability
of machine learning to control the automation process.

B. Reasoning Block’s Algorithm

The Reasoning block’s algorithm is based on Q-learning,
a model-free reinforcement learning (RL) algorithm, where,
for each time step ¢, an agent observes its environment’s
state s, selects and executes an action ay, receives a reward
r; and transitions to a new environment’s state s;y1 [8]. Q-
learning is goal oriented, and aims to learn a policy (which
action to take under each state) that will lead the agent to
increase its cumulative reward. However, simple Q-learning
exhibits poor performance when state and action spaces are
continuous and large. Deep neural networks (DNN) solve this
problem by allowing the agent to learn more difficult policies
[9]. To cope with complex policies and the constantly changing
and sometimes chaotic nature of computer networks, we more
precisely choose deep Q-learning (DQL) as the RL method for
this work. The model generated by the DQL algorithm will
work for the scenario showed in Fig. 1. Changing the scenario
will require retraining the model. The target quality, @), of a
state-action combination is iteratively computed using (1),

Qir1(s¢,a) =1 + Y max Qi(S¢+1,0) (D

where a belongs to the set of actions, and + is the discount
factor and determines the importance of future rewards. We
set v to 0.99, in order to favor future rewards.

Finally, we initialize the DNN’s weights randomly. since
we are interested in analyzing the learning performance of the
algorithm. Using Fig. 1, we now define the states, actions and
rewards of our algorithm.

1) States: At each time step ¢, the network’s state is
represented by nine metrics:

o CASz,t: (TESP. CASy,t> CASz,¢), the maximum capacity of
the link between ISP AS and ASx (resp. ASy, ASz);

e PASz,t: (TESP. PASy.t» PASz,t), the number of prefixes
announced over the link between ISP AS and ASx (resp.
ASy, ASz);

o trasg s (T€Sp. trasyt, trasz,), the volume of traffic
through the link between ISP AS and ASx (resp. ASy,
ASz).

2) Actions: The agent can perform seven actions:

e MASz—ASy: (I€SP. MASL— AS-), Move prefixes from the
link between ISP AS and ASx to the link between ISP
AS and ASy (resp. ASz);

o MASy—ASz: (T€SP. MAsy— AS~), Move prefixes from the
link between ISP AS and ASy to the link between ISP
AS and ASx (resp. ASz);

e MAS-—ASz: (I€SP. M Ag,—s ASy), MoOve prefixes from the
link between ISP AS and ASz to the link between ISP
AS and ASx (resp. ASy);

e do nothing.

The number of prefixes to be moved is controlled by a pa-
rameter: the slope denoted sl. It is computed from successive
throughput measures:

Slt = t?”t — tTt—l (2)
where tr, is the total traffic entering the ISP AS at ¢:
try =trase; +trasy: +1ras. 3)

The slope, therefore, represents the trend (increasing, decreas-
ing, steady) of the total traffic entering the ISP AS.

3) Rewards: We opted for using reward functions that de-
pend on network parameters. In this way, the reward is directly
dependent on the state of the network, and we circumvent
potential biased behaviors of the algorithm, that might arise
when using predefined reward values. In this paper, we are
interested in evaluating two different reward functions:

o Balanced (4): considers every link equally to redistribute
prefixes.

Ty = —|CASzt — tTAS2 1

“4)

—|casy,t — trasyt| — [caszt — trass,l

o Priority Aware (5): prioritizes links over others (ASz over
ASy over ASx) in order to enforce some routing policy,
for instance, inter domain relationships (customers over
peers over providers).

—min(try, cagzt)|

—wi[tragys — min(|trass s

—w2|t7‘ASx,t - min(|t7‘Asz,t FErasyt

e = —woltrasz,
—tre|,casy.t)|
—tre], casa,t)]
&)
where wp, wi and w, are the weights used to enforce
priority.
IV. PERFORMANCE EVALUATION
A. Experiments setup

Our evaluation is based on a series of 1000 simulations
of the environment depicted in Fig. 1. This environment is a



connection scenario between a CDN and an ISP. Its simplicity
aims to characterize the behavior of the proposed solution. At
each simulation we generate one day of traffic, represented by
the total traffic in Fig. 6, using the model based on the traffic
from a European tier-2 ISP (characterized in [10]). Moreover,
we add random traffic variations to the model using a uniform
probability distribution function to obtain a certain degree of
uncertainty, like in real traffic.

CASz,t (TESP. CASy,t> CAS2,¢) 18 set to 20% (resp. 30%, 50%)
(20-30-50), of the maximum generated daily traffic volume.
We consider that ISP AS owns 100 prefixes and that all
prefixes have the same importance in terms of traffic, i.e. each
prefix is responsible for 1/100 of the total traffic delivered.
The ideal prefix load sharing to avoid saturation is therefore 20
(resp. 30, 50) prefixes announced over the link between ISP AS
and ASx (resp. ASy, ASz). The initial percentage of prefixes
per link is set randomly, but making sure saturation on exactly
one link arises*. Moreover, one prefix is only announced over
one link at a time (prefix load sharing).

We measure traffic every 5 minutes, resulting in 288 discrete
time steps per day. Considering that making measurements
every 30 minutes can highlight daily patterns in traffic [11] and
knowing, from performance tests, that our solution can make
measurements every second, a S-minute monitoring frequency
is a conservative approach that decreases the blackout period
between measurements, compared to other works.

Under the conditions described above, for each simulation
we compare the performance of the following algorithms:

e No-function (NOF) algorithm: At each time step, it does
nothing. It represents today’s situation when saturation
arises.

o Naive function (NAIF) algorithm: At each time step, it
evaluates the state of saturation of any two links, and if
a link saturates it moves one prefix from that link to a
non-saturated one. It is therefore a basic straightforward
automation of today’s manual prefix load sharing.

e Balanced DRL (BDRL) algorithm: At each time step, it
aims to maximize the total reward given by (4). BDRL
considers every link equally to redistribute prefixes.

e Priority Aware DRL (PADRL) algorithm: At each time
step, it aims to maximize the total reward given by (5).
PADRL prioritizes some links over others.

At each simulation, the performance of the four algorithms
are evaluated using the following metrics:

e Traffic loss: cumulative loss of traffic due to saturation.

o Number of actions: cumulative number of actions taken.
It is in our interest to avoid traffic loss, but also to reduce
as much as possible the number of actions. Indeed, using a
large number of actions can harm the processing capacity,
and therefore, the performance of the orchestration block.
Thus, an algorithm that performs less actions will improve
the scalability of the solution. It must also be noted that NOF
(resp. NAIF) are actually used as baselines to estimate the

4To ensure comparability between the algorithms, since NAIF can only
treat one saturated link at a time.
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Fig. 5: Number of actions per algorithm.

traffic loss (resp. number of actions to be taken) in the worst
case and better understand how our proposed DRL controllers
perform as compared to these worst cases.

Before running the simulations, we train the BDRL and
PADRL models with 20000 episodes. At the beginning of
each episode, the prefix distribution for the links is randomly
selected, making sure only one link is saturated. Additionally,
a random traffic curve is generated for each episode. Trained
models and statistics of their performance are collected and
saved every five episodes. When training is finished, models
with the highest validation accuracy, lowest validation loss
and highest average reward are chosen and used for the sim-
ulations. Simulations are implemented in Python, relying on
TensorFlow and Keras libraries for DRL algorithms. For traffic
related matters, we create a custom package that generates
traffic and traffic peaks and computes the slope.

B. Performance Analysis

Boxplots on Fig. 4 (resp. 5) graphically depict distributions
of traffic loss (resp. number of actions) over one thousand
simulations for the four algorithms evaluated. As expected, in
terms of traffic loss, NAIF, PADRL and BDRL outperform
NOF which does nothing and is used as a baseline for traffic
loss. NAIF (resp. PADRL, BDRL) reduces traffic loss by
a factor of 3.7 (resp. 6.4, 11,3) when compared to NOF
(using medians values displayed next to each boxplot). This
gain however has a cost in terms of number of actions the
automation process has to perform. The number of actions
shows an increase, going from O to 15 (resp. 49, 251) for
BDRL (resp. NAIF, PADRL) as compared to NOF. As a
consequence, DRL based algorithms prove able to significantly
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Fig. 6: Prefix and traffic distribution of NOF, NAIF, BDRL, and PADRL, Capacity change and Traffic peak of BDRL.

reduce the loss of traffic due to saturation. BDRL, especially is
the best performing algorithm with the lowest traffic loss and
number of actions. The latter is indeed reduced by a factor of
3.3 when compared to NAIF, our baseline for the number of
actions. PADRL, on the contrary requires a lot more actions
to be taken (5.1 times more than NAIF) as a consequence of
its more complex reward function.

Fig. 6a (resp. b, c, d) details the prefix and traffic distribution
of NOF (resp. NAIF, BDRL, PADRL) over one simulation,
providing a deeper look into each algorithm behavior. As
expected, NOF, our baseline for traffic loss, does not move
any prefix and never reaches the appropriate (20-30-50) prefix
distribution for ASx, ASy, and ASz’s link resulting in a high
traffic loss. NAIF, BDRL and PADRL on the contrary do redis-
tribute prefixes over time and reach the expected distribution.
NAIF, our baseline for the number of actions to be taken
by an automation process, starts redistributing prefixes once
saturation arises and progressively converges until reaching the
ideal (20-30-50) distribution. This causes a rather important
traffic loss and number of actions. BDRL on the contrary
rapidly converges at the beginning of the simulation before
any saturation arises (due to its training) which results in a
low traffic loss and number of actions taken. The convergence
however is not smooth, Fig. 6¢ exhibiting oscillations. This
phenomenon, which we intend to investigate as part of our
future work, might be improved by fine tuning the number
of prefixes to move using for instance an extra parameter
that would complement the use of the slope. Finally, Fig. 6d
shows how PADRL successfully maintains a dynamic prefix
distribution that both reduces traffic loss while prioritizing
links over others. Implementing complex reward functions that
mimic real-life cases where ISPs want to enforce priority to

certain providers due to service quality or financial reasons
therefore seems achievable. However this complexity has a
heavy cost in terms of number of actions to be taken and
affects the stability of the distribution process. Future work
will explore the entanglement between the complexity of
the reward function and the stability and scalability of the
automated distribution process. Focusing on BDRL as it has
exhibited the best behavior in terms of traffic loss reduction
and number of actions taken, we finally are interested in
evaluating the resiliency of such DRL controller to sudden (i)
links’ capacities change (Fig. 6e) and (ii) traffic peaks (Fig. 6f).
First, BDRL is trained inducing random changes of 10%,
20%, 30%, 40%, and 50% of the maximum traffic capacity
of the links. This implies an increase of the exploration
space, making necessary a readjustment of the neural network
characteristics to avoid potential underfitting. Fig. 6e details
BDRL behavior over a simulation with capacity changes
occurring at times 90 and 120. It appears BDRL rapidly and
smoothly redistributes prefixes when these changes happen.
Second, BDRL is trained inducing random traffic peaks in
terms of occurrence time and duration, making traffic volume
go beyond maximum capacity for all the links. Fig. 6f details
BDRL behavior over a simulation. Redistributing prefixes is
of no help in such a situation. Interestingly BDRL learns
doing nothing and maintains the previously ideal (20-30-50)
distribution, instead of trying to move prefixes which would
lead to useless actions. Experiments therefore suggest that a
DRL based controller is able to handle sudden stress without
deteriorating overall performance of the solution. However, a
wider range of actions has to be considered to get a deeper
insight into DRL based controller ability to face critical and
potentially contradictory decisions, such as dropping prefixes



to avoid saturation during peaks or not dropping them to keep
service up for users.

V. RELATED WORK

Reinforcement learning is nowadays commonly used for
threats detection. Dionisio et al. have for instance recently
proposed a processing pipeline that uses deep neural networks
to retrieve IT infrastructure security-related information com-
ing from Twitter and raise security alerts [3]. But, over the
past few years the ability of reinforcement learning to control
or optimize the control of networking infrastructures has also
become an active area of research.

Some works have for instance proved the efficiency of DRL
to optimize routing in (i) software defined networks [12], [13]
in order to reduce delays, (ii) wireless networks [14] to reduce
congestion, (iii) data centers [15] to load balance traffic.

Others have been investigating the ability of RL to control
and optimize the quality delivered to end-users. Jay et al.
have proposed for instance a congestion control protocol
that leverages DRL to dynamically modulate traffic sources’
data-transmission and efficiently utilize network resources [6].
While Sciancalepore et al. have been using a multi-agent RL
to meet the required Quality of Experience (QoE) level of an
application by dynamically selecting Classes of Services [16].

Finally, some works have been investigating how to leverage
RL to control and optimize security responses to events.
For instance, Liu et al. [17] have proposed a DRL based
framework to defend against a wide range of Distributed
Denial-of-Service (DDoS) flooding attacks by intelligently
learning patterns of attack traffic, throttling this traffic and
letting pass normal user traffic.

In the same vein of these works but different from them,
we investigate the capability of a DRL agent to control the
dynamic prefix load sharing of an AS in order to efficiently
mitigate saturation.

VI. CONCLUSION

Automating actions to mitigate critical events such as satu-
ration therefore appears feasible and do benefit from Machine
Learning to optimize its control. We have evaluated the
capability of a DRL agent to optimize the dynamic prefix load
sharing of an AS to efficiently mitigate saturation, an issue in
today’s massive content delivery context. More precisely, we
(i) have proposed a generic network automation architecture
that automatically handles events that put at risk its proper
operation, (ii) have defined a DRL agent which controls the
choice of actions to be executed in case of saturation, (iii)
have evaluated its performance under three scenarios and two
different reward functions. Results have (i) proven feasibility
of such an agent, (ii) demonstrated its ability to minimize
traffic loss as well as the number of actions to be performed
by the automation process, (iii) pointed out that distributing
prefixes to every link equally was the most efficient strategy.
Despite promising results, further aspects must however be
explored, such as the relation between the complexity of the
reward function and the stability of the distribution process, or
the ability of our agent to adapt to network real time changes.
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