
MoGAN: GAN based Next PoA Selection for
Proactive Mobility Management

Boyun Jang
Dept. of Artificial Intelligence

Sungkyunkwan University
Suwon, Republic of Korea

boyunj0226@skku.edu

Syed M. Raza
Dept. of Electrical and Computer Engineering

Sungkyunkwan University
Suwon, Republic of Korea

s.moh.raza@skku.edu

Moonseong Kim
Dept. of Liberal Arts

Seoul Theological University
Bucheon, Republic of Korea

moonseong@stu.ac.kr

Hyunseung Choo
Dept. of Electrical and Computer Engineering

Sungkyunkwan University
Suwon, Republic of Korea

choo@skku.edu

Abstract—Current reactive mobility management in cellular
networks becomes a bottleneck for ultra-low latency 5G services
and severely degrades the QoS. To satisfy the ultra-low latency
requirement of 5G services, proactive mobility management is
essential where next PoA of the user is predicted with minimal
error. Recent studies have used different deep learning algorithms
for this purpose, but their results are unacceptable in real net-
works due to low accuracy. This paper exploits the distributional
learning capability of Generative Adversarial Network (GAN)
to propose MoGAN for the prediction of user’s next PoA. The
generator in MoGAN uses Gated Recurrent Unit to learn the
distribution of time-series data and generates the next PoA.
Meanwhile, the discriminator evaluates the generated output
against the real data to determine its correctness. The model
is trained in adversary mode by using the output from the
discriminator. The dataset utilized in training and evaluation
is collected from one of the university campuses, and the results
show 96.33% of prediction accuracy, which is 5% higher than
the previous study. Furthermore, MoGAN is more robust under
limited data conditions, as it achieves above 90% accuracy with
only 50% of the dataset.

Index Terms—Generative Adversarial Network, Gated Recur-
rent Unit, Deep learning, Mobility management, Prediction

I. INTRODUCTION

5G mobile networks are envisioned to enable Ultra Reliable
Low Latency Communication (URLLC) for high performance
services like Virtual Reality, 8K video streaming, and au-
tonomous vehicles. It is achieved through ultra-dense deploy-
ment of network nodes to increase coverage, bandwidth, and
frequency reuse. Consequently, handovers between cells are
substantially increased, and at each handover there are multiple
surrounding Point-of-Attachments (PoAs) [1]. This makes the
correct selection of next PoA challenging, as in current user

This work was partly supported by Institute of Information & com-
munications Technology Planning & Evaluation(IITP) grant funded by the
Korea government(MSIT) (No.2019-0-00421, AI Graduate School Support
Program(Sungkyunkwan University)) and grant funded under the GITRC sup-
port program(IITP-2020-2015-0-00742), and also supported by the National
Research Foundation of Korea (NRF-2020R1A2C2008447).

assisted reactive mobility management system, the user selects
the next PoA based on the highest received signal strength
from the surrounding PoAs. Such selection criteria increase
the number of handovers which in turn severely effects the
network performance and user QoS, and consume additional
bandwidth for control signaling.

Proactive mobility management is an effective way to
manage handovers and attain URLLC in a cellular network
where PoA changes frequently [2]. High accuracy prediction
of next PoA of a mobile device is a mandatory requirement of
proactive mobility management, and it also enables network
system to manage resources more effectively. Former studies
have predicted next PoA by adapting various conventional
methods like Markov model [3]. A more recent study has
exploited the sequential and time-series characteristics of the
mobile device movement, and used Deep Learning (DL)
models such as Long Short-Term Memory (LSTM) to predict
the next PoA with 91% accuracy [4]. LSTM is based on
Recurrent Neural Network (RNN), and it captures the relation
between data points in long sequences by solving the vanishing
gradient problem of RNN. However, LSTM performance is
limited to the availability of large amount of data for learning,
which is not always the case in cellular networks.

Generative Adversarial Network (GAN) is a framework
consists of two adversarial neural network structures, namely
Generator and Discriminator [5]. GAN exhibits several fea-
tures which are induced by its competitive structures. Each
neural structure in GAN gains strength by receiving increas-
ingly useful feedback from its growing adversaries. Original
purpose of GAN based models is to generate data, therefore
the feedback in GAN is based on the distribution of the
generated data, that is, GAN is trained to reflect the whole
distribution of the data. Moreover, due to various forms of
Deep Neural Network (DNN) like RNN and Convolutional
Neural Network (CNN), various kinds of data can be used
in GAN by changing the DNN structure in the generator
and discriminator. GAN based models have shown exceptional978-1-7281-6992-7/20/$31.00 ©2020 IEEE

performance in generating data like images and sounds, but it
can also be applied for other usages like Intrusion Detection
System (IDS) [6] and recommendation system [7].

This paper overcomes LSTM limitation by proposing GAN
based mobility prediction (MoGAN) model that utilizes the
adversarial and data distributional learning characteristics of
GAN to predict next PoA of a mobile device. Generator
in MoGAN is based on Gated Recurrent Unit (GRU) and
predicts the next item in the data sequence (i.e., PoA), whereas
discriminator consists of fully connected layers and classifies
between real and generated sequential data. In addition to
general adversarial training method in GAN, we propose an
additional feedback to the generator for steady convergence
of the generated data towards real data. MoGAN is trained
on a real wireless network dataset that is collected for little
over two months at the university campus, and in this paper
we term it as Campus Mobility Dataset (CMD). Testing results
show that for sequence length of 31, MoGAN achieves highest
accuracy of 96.33% with 7% and 5% increment over vanilla
GAN and LSTM model [4], respectively. Moreover, MoGAN
predicts next PoA with better accuracy than LSTM even when
only half of the data is used for training and testing.

II. DEEP LEARNING APPROACHES FOR PREDICTION

A. LSTM model

RNN is the neural network structure for supervised learning
that captures the features of continuous data for prediction.
Between the input and output layers, additional hidden layers
learns properties of sequential data recurrently to predict the
next step of sequence. However, it has a long-term dependency
problem where the past information exponentially decays as
the sequence length becomes long. LSTM solves this problem
by introducing cell state which saves more information of past
sequences [8]. Three gates (forget, input and output) control
the cell state and protect the past information. LSTM based
prediction models have shown good performance for long
sequential data and that is why it has been widely used in
different applications such as recommendation system [9].

Complex structure of LSTM cell makes it computationally
expensive. GRU simplifies the LSTM cell by combining cell
state and hidden state, and uses two gates instead of three [10].
Similar to LSTM, GRU also has additional gate to control the
memory of past sequences. However, GRU has fewer param-
eters to calculate comparing to LSTM and this makes GRU
simpler and computationally less expensive. Moreover, GRU
shows even better performance than LSTM for less complex
datasets. This enables GRU to be used for applications with
less complex data like sentiment analysis [11].

B. GAN as a Prediction Model

Initially suggested vanilla GAN has two competing struc-
tures, generator and discriminator, which are trained by min-
imax game method as shown in Fig. 1. Noise vector without
any information about real data is used as generator input. This
noise vector goes through some layers in generator to make
generated data. Discriminator tries to classify between real and

generated data. If real data comes as an input, discriminator
tries to make the output close to 1. Otherwise the output is
desired to be close to 0. Because the generator wants to create
fake data similar to the real one, it is trained to make the output
of discriminator close to 1 with generated data. When the
output of discriminator for every data becomes 0.5, it means
generator has succeeded to confuse discriminator by making
real-like data.

Fig. 1. GAN architecture.

To make the real-like data, generator is trained to learn
the distribution of real data. Therefore, GAN is often used
as a generating model, especially in case of applications
related to image enhancement and augmentation [12]. A main
characteristic of GAN is that it has two competing structures
giving useful feedback to each other, and each structure can
be used in various ways to achieve different objectives. For
example, discriminator can have good classification ability,
that is, discriminator can be used as a good classification
model. Along this line, GAN is used as a way to detect mali-
cious traffic data for Intrusion Detection System (IDS) in [6].
Similar to discriminator, the generator can also have different
neural network models such as RNN to make predictions based
on sequential data for applications such as recommendation
system [7] and stock market [13].

III. MOGAN

A. Architecture

The proposed MoGAN model predicts next PoA of the
mobile device by learning from the data consisting of se-
quences of previous PoA connections. As the proposed model
is based on GAN, it consists of two neural network structures,
generator and discriminator. In a complete sequence of PoAs
X = {x1, x2, ..., xn−1, xn}, the model predicts xn by learning
from the sequence of previous PoAs Xp = {x1, x2, ..., xn−1}.
Generator predicts next PoA x′n which it thinks most likely
to come after Xp. Discriminator then classifies between X
and partially generated sequence X ′ = {x1, x2, ..., xn−1, x′n},
which is the combination of Xp and x′n. The overall structure
of the proposed MoGAN is shown in Fig. 2.

The generator generates x′n by learning the properties of
Xp. RNN based structures are the best suited neural network
structures to learn the properties of sequential or time-series
data. Between LSTM and GRU (i.e., two RNN based struc-
tures), MoGAN uses GRU in the generator because of its
equivalent performance to LSTM in case of small datasets
and lower computational overhead. Moreover, use of compu-
tationally expensive LSTM in already computation intensive

Fig. 2. MoGAN architecture and data flow.

GAN causes unstable learning. GRU in the generator consists
of single layer and has many-to-one structure, which takes Xp

as input, as shown in Fig. 3. Output from GRU is fed to a fully
connected layer with softmax function to get x′n. During the
training of MoGAN, x′n is concatenated with Xp to get X ′.

Fig. 3. Generator structure in MoGAN.

Discriminator classifies between real sequence X in the
data and partially generated sequence X ′. To classify between
real and generated sequences, neural network structure in the
discriminator must recognize all the properties of the se-
quences. To this end, fully connected neural network performs
better comparing to RNN based structures [14]. Thus, MoGAN
discriminator consists of fully connected layers as shown in
Fig. 4. The input layer takes sequences X or X ′ as input, and
after passing through single hidden layer the output layer gives
a value between 0 and 1. To summarize, MoGAN architecture
consists of a GRU based generator and a fully connected neural
network based discriminator.

B. Data Preprocessing

Each PoA in the sequences holds the same preference, that
is, all the PoAs must be treated equally. Transferring each PoA
into One-hot vector is useful in this aspect, where they have

Fig. 4. Discriminator structure in MoGAN.

their own N-dimensional vector when there are total N points
in the data. The index in the vector equivalent to the ID of
the PoA has the value one, and all other values are zero. This
allows the index of the highest value in the vector to identify
the PoA. For example, if there are five PoAs in the data,
the vector of PoA three can be represented as {0, 0, 1, 0, 0},
while vector of PoA five is {0, 0, 0, 0, 1}. After training, if
the generator generates next point as {0.0, 0.2, 0.1, 0.6, 0.1},
then it can be identified as PoA four, as the index of highest
number in the vector is four.

The movement history of a mobile device can be represented
as a sequence of PoAs, and the length of sequences are
different from each other representing the time each mobile
device has spent in the network. As the next PoA is predicted
based on learning the previous sequence of PoAs, a certain
length of sequence is required to properly learn and correctly
predict the next PoA. In particular, sequences must have
equal length for the training because of two reasons: to filter
out short sequences that are not fit to predict the next PoA
appropriately, and to determine the necessary sequence length
for high accuracy prediction. Suppose, sequences with length
five are selected to train the MoGAN, then actual length of
sequences is six, where former five PoAs represent Xp and
last 1 PoA is xn. Sequences with lengths less than six are
filtered out, and sequences longer than six are divided into
several sequences through one step right shift. For example,
three sequences can be derived from a sequence of length
eight: first sequence from 1st PoA to 6th PoA, second one
from 2nd PoA to 7th PoA, and third from 3rd PoA to 8th PoA.

C. Training

The training process of MoGAN is divided into two steps:
Minimax step (Step 1) and generator training step (Step 2).
Throughout the training, binary cross entropy is used as the
error function (1), where y is expected value, and y′ is
predicted value. In step 1, MoGAN is trained through minimax
game which is similar to the training in vanilla GAN. In
particular, role of discriminator is to maximize the result of
X and minimize it for X ′ (2). X ′ is a combination of Xp and

x′n = Gθ(Xp) and it is represented as Xp + Gθ(Xp) in (2),
(3), and (4). Contrary to discriminator, the role of generator is
to maximize the discriminator result for X ′ (3). A combined
function representing this Minimax game is shown in (4). Gθ
and Dφ are the weight values of generator and discriminator,
respectively.

H(y, y′) = − 1

N

N∑
i=1

(yilog(y
′
i) + (1− yi)log(1− y′i)) (1)

D : max
Dφ

[H(0, Dφ(X)) +H(1, Dφ(Xp +Gθ(Xp)))] (2)

G : min
Gθ

[H(1, Dφ(Xp +Gθ(Xp)))] (3)

min
Gθ

max
Dφ

= H(0, Dφ(X)) +H(1, Dφ(Xp +Gθ(Xp))) (4)

Unlike the vanilla GAN, the purpose of generator in Mo-
GAN is to predict the next PoA from the given sequence and
not to generate fake data resembling the real one. This means
that from Xp generator output G(Xp) should be same as xn.
In minimax training, the generator is oblivious of xn and only
works towards deceiving the discriminator. Additionally, the
inability of generator to generate appropriate next PoA x′n
affects the discriminator classification ability, and drifts the
whole training process towards inconsistency. To address this
issue, MoGAN generator is additionally trained (Step 2) with
xn information after the completion of Step 1. This allows
generator to train to minimize the difference between xn and
x′n, and stabilizes the overall training processes.

min
Gθ

[H(xn, Gθ(Xp))] (5)

Summary of overall training and data processing in MoGAN
is shown in Fig. 2, where real sequence of PoAs X is split
into Xp and xn 1 . Xp is fed into the generator as input 2
to generate the predicted next PoA x′n 3 . The combination
of Xp and x′n, X ′, is fed into the discriminator 4 for
classification. Based on the output 5 , the discriminator is
trained to minimize this output towards 0 while the generator
is trained to maximize it towards 1 6 . Next, X is fed into the
discriminator 7 which tries to maximize the output towards
1 8 9 . This completes the Minimax game based training
in Step 1, and in Step 2 the generator is trained with the
difference between xn and x′n 10 . The completion of Step 2
makes one epoch of the MoGAN training. Algorithm 1 further
details the complete training of MoGAN.

IV. EVALUATIONS

A. Setup

We have trained and tested MoGAN using CMD, which
is collected from the wireless network of Intelligent ICT
Convergence Research Center in Pangyo, Republic of Korea
[4]. The wireless network consists of 12 APs and it is used by

Algorithm 1: The training procedure of MoGAN
Initialize: Number of total epoch n, number of Step

2 per epoch α, randomly initialized
weights θ, φ for Gθ, Dφ

input : X = {x1, x2, ..., xn−1, xn}
Error function ← binary cross entropy H
for n do

Gθ(Xp) predicts next PoA x′n
X ′ ← Combine Xp with x′n
D loss real ← Get loss value from D for real

data H(0, Dφ(X))
D loss fake ← Get loss value from D for

generated data H(1, Dφ(X
′))

Update φ to maximize D loss real +
D loss fake

G loss Step1 ← Get loss value from G for
H(1, Dφ(Xp +Gθ(Xp)))

Update θ to minimize G loss Step1
for α do

G loss Step2 ← Get loss value from G for
H(xn, Gθ(Xp))

Update θ to minimize G loss Step2

289 users in the campus and each user is connected to only one
AP at a given time. The network controller saves a handover
log based on the user mobility in the campus. The acquired
log files consist of mobile device MAC addresses and the IDs
of the handover source and destination APs. Sequences of
mobile devices movement are created using log entries where
destination AP ID in one entry is same as the source AP ID
in other entry for the same MAC address.

For each experiment, MoGAN generator consists of one
GRU layer with 512 nodes and one dense layer with 12
nodes. The dense layer uses softmax as an activation function
to generate next PoA in One-hot vector format resembling
the real next PoA. The neural network in the discriminator
consists of three layers. The input layer and hidden layers
consists of 128 and 64 nodes, respectively, and uses tanh
activation function due to its superior performance in binary
classification between two classes [15]. The output layer
consists of a single node with sigmoid activation function
whose output is between 0 and 1.

MoGAN training uses Adam optimizer with 0.001 learning
rate, and binary cross entropy as the loss function. All the
pre-processed sequences in CMD are shuffled and randomly
separated into training and test data with the ratio 7:3. In
experiments, the number of epochs, sequence length, and the
training iterations of Step 1 and Step 2 per epoch are set as
4,000, 31, and 1, respectively, unless stated otherwise.

B. Experiments

We have evaluated MoGAN performance in terms of next
PoA prediction accuracy for different sequence lengths, num-
ber of epochs, Step 1 and 2 training iterations, and amount

of data used for training. Also, MoGAN is compared against
vanilla GAN and stacked LSTM [4] to outline the gain in
accuracy achieved by MoGAN in reference to time and data
consumed in training. Each result presented in this paper is an
average of ten experiments which are conducted on a system
with Intel Core i7-9700K CPU, two NVIDIA GeForce RTX
2060 SUPER graphic cards, and 32GB RAM.

Sequence length defines the movement pattern of the mobile
device, and intuitively it is easier to determine the pattern with
longer sequence length. Knowing the mobile device movement
history allows the generator to determine the movement pattern
and predict the next PoA with higher accuracy. The results in
Fig. 5 show the next PoA prediction accuracy of MoGAN and
vanilla GAN (i.e., MoGAN without Step 2 in training) for
different sequence lengths, where highest accuracy achieved
by MoGAN and vanilla GAN is 96.33% and 88.17% for
sequence lengths of 31 PoAs and 27 PoAs, respectively. This
quantifies and highlights the prediction accuracy gain achieved
by proposed Step 2 in the training of MoGAN. It is note
worthy that sequence length for highest prediction accuracy
is relative to the characteristics of dataset, but it is absolute
that performance of MoGAN is better than of vanilla GAN
due to its superior training methodology.

Fig. 5. Next PoA prediction accuracy comparison between MoGAN and
vanilla GAN for different sequence lengths.

As we have demonstrated the significance of Step 2 in
MoGAN training, it is valuable to analyze the effects of
increased number of Step 2 training (α) in each epoch (i.e.,
after every Step 1 of training). The results in Fig. 6 illustrate
the prediction accuracy achieved by different values of (α) in
MoGAN for different sequence lengths. The accuracy achieved
by different α values is roughly consistent with each other and
no significance gain is attained. This indicates that additional
training of generator with one iteration of Step 2 (i.e., α=1) is
sufficient, and repeating Step 2 two or three times (i.e., α=2
and α=3) has insignificant effect.

We have compared MoGAN against state-of-the-art stacked
LSTM model [4] over same dataset. For a sequence length
of 31, MoGAN reaches the prediction accuracy of 96.33%
in 4,000 epochs while consuming 190seconds in training

Fig. 6. Analysis of MoGAN with different iterations of Step 2 training (α)
with increasing sequence length.

and testing. The results remain consistent when number of
epochs increases, as shown in Fig. 7. Comparatively, LSTM
attains prediction accuracy of 95.95% in 9,000 epochs. While
analyzing only prediction accuracy between MoGAN and
LSTM the difference is subtle, however, after factoring in
the time taken by both models to achieve their respective
maximum accuracy, it is evident that stacked LSTM takes
more than double training time than MoGAN. It is a general
assumption that supervised learning is done offline prior
to system initiation, and the training time is not relevant.
However, after certain time interval it is desirable to retrain the
learning model, with newly accumulated date to incorporate
new data features. Training time is highly important in this
scenario as it defines the downtime of the prediction system,
and MoGAN reduces this downtime by half in comparison to
LSTM. Once the system is online, MoGAN and LSTM takes
5.85ms and 9.15ms, respectively, to predict next PoAs for 708
devices that aptly represent mobility prediction requirement of
real cellular network at a given time. This 40% less prediction
time by MoGAN shows its deployment feasibility in cellular
networks and significance in maintaining service quality for
ultra low latency applications.

One of the major limitations of supervised deep learning
models is the dependency on data, which is not always readily
available. Thus, it is desirable to compare and evaluate the per-
formance of both the prediction models with limited amount
of data. For the sequence length of 31, there are total 2,362
sequences in CMD, and while maintaining the training and test
data ratio, we conducted the experiment by varying the number
of sequences used from 20% to 100%. This means if 20% of
sequences in the dataset are used, then only 472 sequences are
used, where 330 sequences are for training and 142 sequences
are for testing. Results in Fig. 8 depicts that with only 20%
of data MoGAN achieves 86.52% prediction accuracy and it
goes above 90% when 50% of data is used. In comparison, the
performance of LSTM is much more affected with decrease
in the training data. This result not only establishes MoGAN

Fig. 7. Performance comparison between MoGAN and stacked LSTM in
terms of next PoA prediction accuracy and time cost.

precedence over LSTM but also highlights the influence of
adversarial learning and novel Step 2 in the training to achieve
reasonably good results with limited amount of data and less
computation. Additionally, it can be deduced that MoGAN will
show even better performance with large and diverse datasets
from cellular networks.

Fig. 8. MoGAN and LSTM performance comparison with limited data.

V. CONCLUSION

This paper proposes MoGAN, a GAN based next PoA pre-
diction model for proactive mobility management in cellular
and wireless networks. The generator in MoGAN uses GRU
for predicting next PoA of mobile device, while discriminator
tries to determine the difference between predicted next PoA
and the real PoA through classification model. We also propose
an additional training step (Step 2) in MoGAN, and results
exhibit that it allows MoGAN to gain approximately 7%
accuracy improvement over vanilla GAN. They also reveal
that increasing number of Step 2 per epoch do not improve
performance and a single Step 2 per epoch is sufficient.
Comparison against state-of-the-art LSTM prediction model

shows that prediction accuracy of MoGAN is slightly higher
and it is attained in less than half the time. Moreover, with
limited amount of data for training and testing, MoGAN
outperforms LSTM and delivers relatively high accuracy with
significantly reduced data. Overall, the proposed MoGAN
model defines an improved method for data based prediction
which can be used in other domains as well. We are currently
working towards the improvement of MoGAN through other
attention mechanisms than one-hot vector and test it with more
diverse mobility datasets from cellular networks. Additionally,
we look to extend MoGAN from single step to multiple step
prediction for strategic placement of network resources.

ACKNOWLEDGMENT

Authors three and four are the co-corresponding authors.

REFERENCES

[1] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey
on low latency towards 5g: Ran, core network and caching solutions,”
IEEE Communications Surveys Tutorials, vol. 20, no. 4, pp. 3098–3130,
2018.

[2] M. Ozturk, M. Gogate, O. Onireti, A. Adeel, A. Hussain, and M. A.
Imran, “A novel deep learning driven, low-cost mobility prediction ap-
proach for 5g cellular networks: The case of the control/data separation
architecture (cdsa),” Neurocomputing, vol. 358, pp. 479 – 489, 2019.

[3] Q. Lv, Y. Qiao, N. Ansari, J. Liu, and J. Yang, “Big data driven hidden
markov model based individual mobility prediction at points of interest,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 6, pp. 5204–
5216, 2017.

[4] H. Yang, S. M. Raza, M. Kim, D. Le, V. Van Vo, and H. Choo, “Next
point-of-attachment selection based on long short term memory model
in wireless networks,” in 14th International Conference on Ubiquitous
Information Management and Communication (IMCOM), 2020, pp. 1–4.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems 27. Curran
Associates, Inc., 2014, pp. 2672–2680.

[6] Z. Lin, Y. Shi, and Z. Xue, “Idsgan: Generative adversarial net-
works for attack generation against intrusion detection,” arXiv preprint
arXiv:1809.02077, 2018.

[7] H. Bharadhwaj, H. Park, and B. Y. Lim, “Recgan: Recurrent genera-
tive adversarial networks for recommendation systems,” in 12th ACM
Conference on Recommender Systems, 2018.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, “Recurrent
recommender networks,” in 10th ACM International Conference on Web
Search and Data Mining, 2017, p. 495–503.

[10] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[11] L. Zhang, Y. Zhou, X. Duan, and R. Chen, “A hierarchical multi-input
and output bi-GRU model for sentiment analysis on customer reviews,”
Conference Series: Materials Science and Engineering, vol. 322, 2018.

[12] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic
single image super-resolution using a generative adversarial network,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[13] K. Zhang, G. Zhong, J. Dong, S. Wang, and Y. Wang, “Stock market
prediction based on generative adversarial network,” Procedia Computer
Science, vol. 147, pp. 400 – 406, 2019.

[14] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining
and Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[15] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation
functions: Comparison of trends in practice and research for deep
learning,” arXiv preprint arXiv:1811.03378, 2018.

