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Abstract—LoRa has attracted much research attention due to
its long communication range and low power consumption on end
devices. In LoRa networks, the energy consumption on the end
devices can be unfair, because some end devices have to use large
spreading factors (leading to long transmission time) or large
transmission power to reach a far-away gateway, and their energy
consumption can be quite different. As a result, these end devices
will run out of their batteries much faster, which may significantly
reduce the network lifetime. The existing works have focused on
the static resource allocation in LoRa networks to achieve energy
fairness. However, due to the dynamic wireless environment, the
static allocation can be inefficient in practice. In this paper, we
develop AdapLoRa, a lifetime-aware dynamic network resource
allocation system, to maximize the network lifetime of LoRa
networks. AdapLoRa periodically adapts the resource allocation
according to the link quality of end devices. A fine-grained
network model is developed to capture the link quality variations
and network interference. Finally, by considering the adaptation
overhead (e.g., energy consumed by end devices to receive the
configuration commands), we propose to gradually improve the
network lifetime by periodically estimating network lifetime with
different resource allocations. We implement AdapLoRa on a
LoRa testbed, and the experimental results reveal that AdapLoRa
improves the network lifetime by 23.7% compared with the state-
of-the-art works.

Index Terms—The Internet of Things, wireless networking,
LoRa networks, energy fairness, resource allocation

I. INTRODUCTION

The emerging LoRa technology has received much attention

as Low-Power Wide-Area Networking (LPWAN) since its

open standard allows us to build autonomous IoT networks

without third-party infrastructure [1], [2].

Network lifetime is one of the most important design objects

in low-power wireless networks , and is determined not only

by the energy consumption on each end device, but also by the

energy fairness among them. Existing works [3]–[7] mainly

focused on reducing the energy consumption of end devices

through more efficient and reliable transmissions. For example,

unnecessary re-transmissions can be avoided in Charm [4] and

Ftrack [7] by concurrently decoding multiple colliding LoRa

signals. Unfortunately, the energy fairness problem of LoRa

networks has not received sufficient attention. Basically, the

network lifetime is defined as the time of the first end device

running out of its battery.

Energy unfairness in LoRa networks occurs mainly due to

the following two reasons. First, some far-away end devices

have to use large spreading factors (leading to low data rate)

to reach a gateway. Compared to those end devices using high

data rates, they spend longer time to send the same amount

of data and consume more energy. As a result, they will

drain their batteries earlier, shortening the network lifetime.

Since the ratio between the highest and the lowest data rate

can be as large as 221 [9], the problem of energy unfairness

is severe in LoRa networks. Besides, spreading factor in

LoRa performs multiplexing, i.e., two end devices can send

packets simultaneously using different spreading factors even

on the same frequency channel. Therefore, the selection of

spreading factor results in different collision probability, and

the retransmissions will take more energy from end devices,

leading to short network lifetime.

Most of the existing works focus on the fairness of collision

probability [10]–[12] (i.e., trying to balance the transmission

success probability among the end devices), not the fairness of

energy consumption. The energy unfairness problem in LoRa

networks is lately explicitly studied in EF-LoRa [13]. EF-LoRa

considers the impact of data rate and collisions to allocate

the resources (i.e., spreading factor, channel and transmission

power) in LoRa networks and improve energy fairness. How-

ever, EF-LoRa [13] statically allocates resources and only runs

once when the network is first deployed. While in practice,

LoRa wireless links are dynamic [14], i.e., the quality of a

LoRa link fluctuates among time. It makes energy-fair resource

allocation face the following challenges. First, static allocation

cannot exploit the benefits of error correction scheme. LoRa

uses Hamming code to achieve higher reliability, but its coding

rate is limited and cannot adapt to the variation of link qulaity.

Static allocation (e.g., [10], [13]) adopts a packet-level network

model to reveal the relationship between resource allocation

and network performance such as collision probability, which

cannot explore the bit-level error correction. As a result, a

fine-grained network model is required. Second, link dynamics

requires end devices to change resource allocation adaptively

(called resource adaptation in this paper), so gateways have to

1Since end devices sleep for most of the time, the energy consumption of
sleeping can be larger than that of transmitting [8]. The energy consumption
of the lowest data rate is about four times larger than that of the highest data
rate, but it is large enough to cause energy unfairness.978-1-7281-6992-7/20/$31.00 ©2020 IEEE



frequently send resource adaptation decisions to end devices,

inducing overhead on both latency and energy consumption

(the impact of overhead will be described in Section III in

detail). The additional downlink (i.e., transmissions from gate-

ways to end devices) overhead makes the resource adaptation

problem more complex than static resource allocation.
To tackle these challenges, we develop AdapLoRa, a dy-

namic network resource adaptation system for LoRa networks.

We formulate the resource adaptation as an optimization

problem to realize energy fairness and improve the network

lifetime, considering the energy consumption overhead of

resource adaptation. Keeping optimal resource allocation all

the time is difficult, so AdapLoRa periodically estimates

network lifetime at different resource allocations and decides

whether to adapt a new resource allocation. However, the

latency overhead of resource adaptation requires adaptations to

finish as soon as possible, otherwise, adaptations may be out-

of-date if it finishes after a long latency. AdapLoRa starts from

adapting resources of end devices with the lowest resource

adaptation latency, as long as an adaptation can improve

network lifetime by more than a threshold, this adaptation

will be performed in the network. Otherwise, AdapLoRa will

adapt resources of end devices with the next lowest adaptation

latency and will repeat the same procedure.
To get the improvement of resource adaptation, we have to

compare network lifetime with different resource allocations.

AdapLoRa first estimates network lifetime at next cycle that

keeps the current resource allocation, using a linear regression

method based on bit error rate measurement. This estimation is

used as the baseline to evaluate other possible allocations. The

network lifetime with a new resource allocation is estimated

by periodically updating the network model.
AdapLoRa extends the link performance model presented in

[15] to a fine-grained network model to relate resource allo-

cation to network lifetime. Compared with [15], the proposed

model takes into account the link interference in a network,

and considers that packets are broadcast and can be received by

multiple surrounding gateways. The model also analyzes the

link performance with a powerful error correction scheme, RS

code. By carefully adjusting RS coding rate, we can increase

or reduce the redundancy in a packet to control the trade-off

between error correction capability and energy consumption,

so that the network lifetime can be improved adaptively.
We implemented AdapLoRa on a LoRa testbed of 4 gate-

ways and 20 end devices on our campus. The gateways and end

devices were based on LoRa chips. We evaluated the network

lifetime on the testbed for AdapLoRa and EF-LoRa [13]. Our

experimental results reveal that AdapLoRa can improve the

network lifetime over EF-LoRa by 23.7%, respectively.
In summary, this paper makes the following contributions.

• We solve the complex resource adaptation problem by

gradually improving network lifetime, considering adap-

tation overhead of both latency and energy consumption.

• We estimate network lifetime with different resource allo-

cation with both measurement-based method and model-

based method, and periodically update network model.

• A fine-grained network model is developed to estimate

network lifetime. A powerful error correction scheme,

i.e., RS code, is employed for higher reliability.

II. RELATED WORK

In this section, we study the existing works on energy

fairness and resource allocation of LoRa networks and other

networks, respectively.

Energy fairness in LoRa networks. EF-LoRa [13] pro-

poses a network model that estimates the energy efficiency

based on network layout. It allocates network resources to

minimize the difference of the energy efficiency among end

devices for fairness. However, this static algorithm only runs

once before a network is deployed. EF-LoRa does not take

dynamic wireless links into account. Differently, AdapLoRa

adapts network resources with following novel designs. 1)

AdapLoRa adopts a fine-grained network model that enables

error correction to adapt to dynamic wireless links, while EF-

LoRa is based on packet-level model and cannot consider

the impact of error correction. 2) AdapLoRa considers the

overhead of disseminating adaptation decision packets which

can significantly affect the resource adaptation. 3) We build a

LoRa network testbed on the campus and conduct a series

of experiments to validate the performance of AdapLoRa,

whereas EF-LoRa is only evaluated with simulations of NS-3.

Energy fairness in wireless sensor networks. Wireless

sensor networks (WSNs) consist of energy-constrained sen-

sors to monitor environment. Prior studies have tailored for

prolonging the lifetime of WSNs. 1) Given that the commu-

nication range of sensors is very short, WSNs collect data

in a multi-hop manner, and existing works mainly focus on

energy-efficient routing or data rate control [16]–[23]. While

in LoRa networks, end devices broadcast packets to gateways

within a single hop, and we do not consider routing problem.

2) Since the network lifetime in WSNs is usually defined

as the time that first node fails, researches also prolong the

network lifetime by the max-min fairness optimization [24]–

[26]. However, spreading factor shows properties of both data

rate and multiplexing, making the energy fairness allocation

more complex as we should jointly consider the impact of both

of them (i.e., data rate determines the packet length thus energy

consumption per transmission, and multiplexing impacts the

transmission failure due to collisions, and these two properties

show contradictory impact on the network lifetime). Besides,

when adapting the resource allocation, the unique feature in

LoRa networks is the overhead of the communication between

end devices and gateways, which does not exist in traditional

WSNs. The above reasons make it challenging to dynamically

adapting the resources in LoRa networks.

Resource allocation in LoRa networks. In [10], [12], the

authors realize the fairness of collision probability of end

devices in a single gateway scenario. They do not consider

the energy consumption gap of different spreading factors.

LoRaWAN specification [9] provides Adaptive Data Rate to

adjust spreading factor and transmission power, but it tries

to use the smallest spreading factor and transmission power



Fig. 1. LoRa link dynamics. Fig. 2. Inefficiency of static allocation.

on individual end devices, which does not consider energy

fairness for LoRa networks.

Resource allocation in cellular networks. Resource alloca-

tion problem in cellular networks such as spectrum assignment

and power control has been widely studied [27], [28]. For

example, techniques like partial frequency reuse (PFR) [29] or

soft frequency reuse (SFR) [27] are used to mitigate inter-cell

interference. The inter-cell interference can also be mitigated

with efficient power control scheme [30]–[32]. Besides, to

improve the throughput, data rate is adjusted by different

modulation schemes and adapting to the dynamic wireless con-

dition [33]–[36]. However, energy fairness problem in LoRa

networks is different. 1) In LoRa networks, spreading factors

not only perform orthogonality but also indicate different data

rates. These two properties should be jointly considered in

resource allocation. 2) Power control in cellular networks

tries to reduce transmission power to limit communication

range and reduce the interference. However, end devices in

LoRa networks are not associated with a certain gateway, and

packets can be received by all the surrounding gateways. if a

LoRa end-device uses a small transmission power, although

the interference can be mitigated, the number of gateways it

can reach will also decrease, and reliability may be reduced.

III. MOTIVATION

We conducted initial experiments on a LoRa network

testbed deployed on our campus to show the dynamics of links

in LoRa networks, and to demonstrate that a simple dynamic

resource allocation can improve the performance over static

resource allocation. We also analyzed the overhead to adapt

network resource allocation in LoRa networks.

Dynamics of LoRa wireless links. We first measured link

condition in a LoRa network, and used bit error rate (BER)

to illustrate fine-grained link conditions.

In the experiment, an end device sent a packet to a LoRa

gateway every 12 seconds. Basically, the size of a LoRa packet

should be smaller than 256 bytes. In the initial experiments, we

set the packet size to 100 bytes, including 7-byte header and

93-byte payload. Spreading factor 7 and transmission power 8

dBm were used. Figure 1 depicts BER of a link for a typical 20

minutes period. We observe that there are periods where BER

shows dynamic behavior (i.e., fourth minutes, tenth minutes

and fifteenth minutes in Figure 1). Although the dynamics of

BER in Figure 1 is small (i.e., less than 0.002), it will lead

to a high packet error rate for packet transmissions, with the

length of a LoRa packet (e.g., several hundred bits). Therefore,

LoRa link condition shows highly dynamic behavior and the

energy consumption on the end devices changes dynamically,

and the network lifetime also fluctuates. The experiments in

[14] also show the dynamics of signal-noise-ratio (SNR) of

LoRa links that verifies the above point. As a result, it is

inefficient to use static resource allocation to always achieve

long network lifetime. This dynamic can be dealt with by

adaptive allocation of network resources so that the energy

consumption on the end devices will not increase dramatically

and impact the network lifetime.

Inefficiency of static resource allocation. In the initial ex-

periment, we compared a simple dynamic resource allocation

with the static resource allocation in [13] over a LoRa network

with 2 gateways and 20 end devices. The static allocation

is obtained according to the algorithm in [13], which does

not change after we deploy the network. The simple dynamic

allocation is implemented by modifying the existing adaptive

data rate (ADR) in LoRa specification [9] (called AdapLoRa-

sim in this paper). AdapLoRa-sim periodically adapts the

resource allocation of end devices. It measures the average

signal-noise-ratio (SNR) of 10 latest received packets on end

devices and calculates the lifetime of the end devices based

on the network model in [13]. At every cycle, AdapLoRa-

sim determines whether to increase or decrease the SNR of

end devices so that the lifetime of the end devices can be

maximized (optimization problem as in [13]). The adjustment

of SNR works based on ADR in LoRa specification.

According to [37], the fairness in a network can be achieved

by optimize the performance of the worst node. In Figure

2, we use the remaining battery energy of the worst end

device (i.e., minimum remaining energy) in a network for a

20 minutes duration to represent the energy fairness. Three

spreading factors (8, 10, 12) and four frequency channels

were used, and transmission power ranged from 2 dBm to

14 dBm. A fully charged battery on an end device had 26.64

kJ power. From Figure 2, we observe that during the first

20 minutes, the energy consumption of the static resource

allocation is larger than that of the simple dynamic allocation

for 76% thus implies significant potential improvement of

network lifetime, which can be achieved by dynamic resource

adaptation. However, dynamic resource adaptation in LoRa

networks faces some challenges and we discuss them next.

Adaptation overhead. In LoRa networks, a server pro-

cesses the data collected from end devices and makes decision

periodically on whether to change the resource allocation.

If the server decides to change the resource allocation at

some moment, it needs to send resource adaptation commands

to configure each involved end device. Thus, this resource



adaptation will have overhead and will potentially affect the

energy fairness and network lifetime.

Energy consumption. After sending an uplink packet to

gateways, a LoRa end device opens two reception windows

and waits for a packet downlinks from the gateways. Casals

et al. [38] measured the energy consumption of different

actions in LoRa end devices such as transmitting, sleeping

and receiving. It is shown that receiving a packet in the

first reception window can consume about 46% energy as

transmitting a packet [38]. This is much larger than the energy

consumption of sleeping for the duration of the window. Even

worse, if no downlink packet is received during the first

window, the end device has to wait for reception in the second

reception window, consuming 74.7% energy as for transmit-

ting a packet. Therefore, the reception of adaptation decision

packets is likely to reduce the lifetime of these end devices,

potentially affecting the network lifetime. Besides, some end

devices do not need to receive adaptation decision packets

and spend battery power, which will cause energy unfairness

and affect network lifetime. As a result, a dynamic resource

adaptation should be designed carefully so that overhead does

not outweigh the improvement of network lifetime.

Transmission latency. LoRa networks usually consist of a

large number of end devices, and the resource adaptation

could finish after a long latency because the adaptation de-

cision packets are sent to end devices in a unicast man-

ner. For example, sending a 14-byte downlink packet with

spreading factor 12 takes 991.8 ms, if 1000 end devices

are required to change their resource allocations, it would

take 1000×991.8ms=991.8s to complete the decision packets

dissemination. In practice, the time is longer, because a

gateway has to wait for an uplink packet before it can send

packets to an end device. With such a considerable latency in

disseminating adaptation decisions, realizing energy fairness

in dynamic LoRa networks becomes challenging, because

adaptation decision packets may arrive at end devices after

a long latency when the link condition has already changed.

IV. DESIGN OF ADAPLORA

In this section, we present the design of AdapLoRa in detail.

The objective of AdapLoRa is to optimize LoRa network life-

time with dynamic resource adaptation. We first formulate the

problem of realizing the maximum network lifetime in Section

IV-A. Energy consumption overhead of end devices receiving

adaptation decision packets is considered in the formulation.

To adapt to LoRa links dynamics with error correction, we

propose a network model in Section IV-B to formulate network

lifetime with resource allocation. However, this formulation

can only get optimal network lifetime at a certain time,

while achieving optimal network lifetime all the time requires

resource adaptation whenever link condition changes. This

makes the problem very difficult, and AdapLoRa overcomes

this challenge by estimating network lifetime periodically and

performing resource adaptation if the new resource allocation

results in enough network lifetime improvement. The estima-

tion of network lifetime for different resource allocations is

TABLE I
NOTATIONS USED IN THIS PAPER

Symbols Notations
Spreading factor of end device i

Transmission power of end device i
Frequency channel of end device i

Coding rate of end device i
Set of all the end devices

Network lifetime
Packet error rate of end device i

Symbol error rate
Remaining battery energy of end device i

Energy consumption for transmitting
Energy consumption for sleeping

Energy consumption for receiving a downlink
Distance between end device i to the gateway

Pass loss exponent
Number of symbols in the packet
Transmission time of end device i

Data generation interval of end device i

described in Section IV-C. The notations used in this paper

are summarized in Table I.

A. Problem formulation

In LoRa networks, the end devices broadcast packets to

surrounding gateways, and the gateway relay the packets to

a central server for processing. If the server decides to send

packets to an end device (e.g., replying to an end device), it

chooses one gateway with the highest received signal power to

transmit the packets. We consider the scenario that all the end

devices send a packet every Tg time, guaranteeing the duty

cycle constraint in LoRaWANs.

We mainly consider four configurable LoRa network re-

sources which can affect the performance of LoRa transmis-

sions such as energy consumption and reliability.

1) Spreading factor, which impacts communication range

and data rate.

2) Transmission power, which impacts energy consumption

and communication range. It ranges from 2 dBm to

14dBm in steps of 2 dBm.

3) Frequency channel, which multiplexes the transmissions

to reduce interference. LoRa networks operate in the 470

MHz frequency band in China.

4) Coding rate, which represents the error correction ca-

pability. LoRa adopts Hamming Code as Forward Error

Correction (FEC), however, it can only correct at most

one single error bit, inducing unnecessary transmission

overhead and delays, and reducing the network lifetime

[39]. AdapLoRa tries to mitigate this inefficiency by

using RS code for error correction. It has been claimed

that RS code is a powerful error correction scheme and

can be implemented in LoRaWANs [40].



By choosing these parameters for end devices, different

transmission reliability and energy consumption can be real-

ized to achieve energy fairness and improve network lifetime.

We first define the resources in LoRa networks as: spreading

factor si, transmission power pi, frequency channel fi and

coding rate ci. The problem of seeking the longest network

lifetime can be formulated as an optimization problem in Eq.

(1). In practice, this problem has to be solved every time the

network experiences changes in the link dynamics.

max L(s, p, f, c),

s.t. ∀i ∈ N , si ∈ [7, 12]

∀i ∈ N , pi ∈ [2, 14]

∀i ∈ N , fi ∈ [1, 8]

∀i ∈ N , ci ∈ C

(1)

where L(s, p, f, c) denotes network lifetime that is determined

by the resource allocation on each end device, and N is the

set of the end devices. AdapLoRa uses RS code for error

correction, and we use ci to denote RS coding rate which

is defined by C = {5/6, 4/5, 3/4} in this paper, where x/y
means x data bits and (y − x) redundant bits. Since the

bottleneck of the network lifetime is those end devices with

short device lifetime, we consider the network lifetime as the

duration of the first end device running out of its battery:

L(s, p, f, c) = minLi(si, pi, fi, ci), (2)

where Li is the lifetime of end device i. Eq. (1) and Eq. (2)

maximize the network lifetime by realizing the energy fairness

in a LoRa network, which verifies the need of energy fairness

in Section I. Li is dependent on its energy consumption and

residual battery energy Ei as follows:

Li =
Ei

(
Ei

t

1−ri
+ Ei

s)
· Tg, (3)

where Et and Es denote the energy consumption for trans-

mitting a packet and sleeping, respectively, ri is the packet

error rate (PER) of end device i, and Tg represents the data

generation interval. The end device energy in a duty cycle is

consumed by sleep state that is dependent on sleep duration

and active state that is related to transmission power and

time-on-air. According to [8], the relationship between energy

consumption and transmission power (spreading factor) is

computed by regression, based on experimental measurements.

Eq. (3) calculates the end device lifetime by considering

how many transmissions the device battery can support. Since

transmissions may fail due to the interference and noise, the

energy consumption for transmitting one packet may involve

several retransmissions. AdapLoRa uses PER ri to measure

the reliability and the number of transmissions.

We define the set of end devices that requires changing

their resource allocations as U ⊆ N , an resource adaptation

decision is represented as a set V = {(i, si, pi, fi, ci)}, where

i ∈ U and (si, pi, fi, ci) is the new resource allocation of

end device i. An end device i will have a new ri with

a different resource allocation, and the energy consumption

on this end device will increase due to the reception of the

adaptation decision packet. Both ri and energy consumption

affects network lifetime, so the lifetime of an end device Li

after adaptation changes to:

L̂i =

⎧⎨
⎩
Li, if i /∈ U

Ei

(
Ei

t
1−ri

+Ei
r+Ei

s)/Tg

, if i ∈ U (4)

where Ei
r denotes the energy consumption for receiving a

packet. A packet reception will reduce sleeping time at an

end device, so the energy consumption of sleeping Ei
s should

be reduced in Eq. (4). However, this reduction is extremely

small (about 0.2%) [8], and is ignored in Eq. (4).

B. Network model

To solve Problem (1), estimation of ri in Eq. (3) is required.

First, we need to find out the relationship between ri and

resource allocation (e.g., redundant bits for error correction)

in a dynamic wireless environment. For example, if a link

is experiencing high packet error rate, we can use more

redundancy (i.e., more powerful error correction) to reduce

packet error rate. Otherwise, we can reduce redundancy to save

energy. Static resource allocation uses a packet-level network

model to map resource allocation to energy efficiency (i.e.,

the number of delivered bits per energy consumption). How-

ever, the packet-level model cannot capture the property of

error correction scheme in LoRa, because it requires bit-level

performance analysis. As a result, a finer-grained estimation is

required to model the error correction and capture the dynamic

link quality in LoRa networks.

1) Symbol-level network model: The information bits in

LoRa are carried in a chirp (symbol), and a packet consists

of multiple symbols, so we estimate the link condition with

symbol error rate (SER). SER is the probability that a symbol

m from end device i is not correctly decoded [15]. However,

the existing model does not consider the interference induced

by the signals from other end devices. Interference comes from

the other end devices that use the same channel and spreading

factor as the target end device. It is formulated as follows,

I =
∑
j∈N ,
si,fi,oi

pj · gj · a(dj) (A1)

=
∑
j∈N ,
si,fi

pj · gj · a(dj) · hj , (A2)
(5)

where si and fi mean the spreading factor and frequency

channel of end device i, oi indicates that the transmission

between end device i and j overlaps, gj is Rayleigh fading

channel and can be modeled as a complex Gaussian random

variable, a(dj) denotes path loss attenuation that follows from

the Friis transmission equation and can be defined as:

a(dj) = (
v

4πrdj
)β , (6)

where v is the velocity of electromagnetic wave, r is the carrier

frequency and β is the path loss exponent.



The first equation (A1) shows the cumulative interference

from other end devices. They use the same spreading factor

and channel as end device i, and their transmissions overlap

with end device i. The second equation (A2) simplifies Eq.

(A1) by considering the randomness of LoRaWANs MAC

protocol (unslotted Aloha). It extracts oi in (A1) and replaces

it with a probability Eq. (7):

hj = P{SO,PO}
= P{SO|PO} · P{PO}
=

ti + tsj
ti + tj

· ti + tj
Tg

=
ti + tsj
Tg

,

(7)

where SO and PO denote the events that there are symbol

overlapping and packet overlapping between end devices i
and j, ti and tj are transmission time of end devices i and

j, tsj represents the period of a symbol on end device j, and

Tg denotes the data generation interval. The calculation of

transmission time ti is mainly related to spreading factor, and

is given in LoRa specifications [41].
With In, the cumulative interference of symbol n, SER q

can be written as:

q = P{ max
n,n �=m

(|Nn|+ |In|) > |Em|+ |Nm|}, (8)

where Nn and Nm denote the noise envelopes, and Em is the

energy of symbol m. Symbol errors occur when the symbol is

corrupted by noise and interference. Given |Nm| as a Rayleigh

distributed random variable [15], SER is written as:

q = P{ max
n,n �=m

⎛
⎜⎜⎝
⎛
⎜⎜⎝1 +

∑
j∈N ,
si,fi

pj · a(dj) · hj

⎞
⎟⎟⎠ · φn

⎞
⎟⎟⎠

>
(
pi · a(di)/lis + 1

) · ψm},

(9)

where lis is the number of symbols in a packet on end device i,
and φn and ψm are both Rayleigh random variables following

Gaussian distribution. If we let φ̂ = maxn,n �=m(φn), the SER

can be approximated by Eq. (10) [15].

q ≈ Q

⎛
⎝ −Ciμφ̂√

(Ciσφ̂)
2 + σ2

⎞
⎠

≈ Q

⎛
⎜⎜⎝

−Ci

(
(HM )2 − π2

12

) 1
4

C2
i

(√
HM − (

(HM )2 − π2

12

) 1
4

)
+ 0.5

⎞
⎟⎟⎠ ,

(10)

where Ci = (1+
∑

j∈N ,
sj ,cj

pj ·a(dj) ·hj)/(pi ·a(di)/ls+1), and

HM =
∑M

i=1
1
i denotes the M th harmonic number with M =

2si − 1. Q(w) = 1√
2π

· ∫∞
w

exp(−u2

2 ) du is the Q-function,

μφ̂ and (σφ̂)
2 are the mean and variance of φ̂, and σ2 is the

variance of the Rayleigh distributed random variable. Now we

can get SER related to spreading factor si, transmission power

pi and frequency channel fi.

2) Enhanced error correction scheme: Due to the in-

efficiency of Hamming code that LoRa specification uses,

AdapLoRa improves the transmission reliability with RS code.

Since Hamming code is integrated in the hardware, we imple-

ment RS code on LoRa packets which already have Hamming

code implemented. we consider its impact on the network

model. With RS (u,w) (i.e., coding rate is w
u ), where u and

w denote the number of the total symbols and information

symbols, respectively, and there would be u − w redundant

symbols. A packet can be correctly decoded if the number of

error symbols in this packet is less than u−w
2 . In this case,

we can directly calculate the packet error rate r based on the

above symbol error rate q:

ṙ = 1−
(u−w)/2∑

j=0

(
u

u−w
2

)
qj(1− q)u−j , (11)

where we have RS coding rate ci = w
u in Eq. (11). With

a larger ci, more redundant data will be added in a packet,

so the transmission delay and energy consumption of a single

transmission will increase. On the other hand, RS code can

handle more errors, so the PER can be reduced, leading to less

energy consumption for retransmissions. AdapLoRa properly

allocates ci to end devices to consider this trade-off and

achieve long network lifetime.

3) Packet reception by multiple gateways: With the above

PER, we can further extend the model to multiple-gateway

scenarios which is more practical. Specifically, with D gate-

ways deployed, the final PER can be reduced as a packet is

possibly received by all the gateways [4]. As a result, PER

with D gateways can be expressed as follows:

r̂ = 1−
D∏

d=1

ṙd (12)

With the above model, we can estimate network lifetime

based on Eq. (3).

4) Model calibration: The above network model can be in-

accurate in practice due to the changed wireless environment,

and the adaptation decisions may be inefficient. Therefore, the

network model should also be adaptive.

To estimate network lifetime of resource adaptation ac-

curately, we calibrate the network model accordingly. An

important parameter that controls model accuracy is the path

loss exponent β in the received signal power model, rpi =
pi · gi · a(di). With a large β, the received signal would be

weak, and vice versa. In the static resource allocation, β is

empirically set to 2.7 in open space and 4 when there are

buildings or trees attenuating signals [42].

However, this coarse-grained β cannot reflect the real net-

work environment, so we adjust the path loss exponent β to

calibrate the network model and represent LoRa links more

accurately. When receiving a packet, the gateways can read its

received signal power (RSSI). By considering the theoretical

received signal power from the model, we can transform the

equation to: gi =
rpi

pi·a(di)
. Following the fact that gi ∼ exp(1),

the probability Pi that the received signal power equals to rpi
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Fig. 3. Illustrating example of AdapLoRa. Fig. 4. Accuracy of model-based SER estimation.

can be estimated based on the probability density function of

gi. If Pi is larger than 50%, it means the received RSSI follows

the theoretical model [43]: β for this link is acceptable and

will not be changed; otherwise, we will adjust the value of β
to guarantee the Pi is large enough.

Accuracy of network modeling. The network model is crit-

ical to estimate network lifetime. We conducted experiments

to evaluate the accuracy of this model-based SER estimation.

Figure 4 depicts the error of estimated SER, involving 20

packets with different resource allocation. We can see that

more than half of the SER error is below 0.03. This is much

larger than the BER error in Figure 5. The reason is that a

symbol includes multiple bits, and as long as one bit error

happens inside a symbol, this symbol is considered incorrect.

C. AdapLoRa resource adaptation

In the optimization problem in Eq. (1), we have to consider

the adaptation of different number of end devices. For instance,

if we change the allocation of two out of n end devices, there

would be C2
n possible choices (C2

n = n(n−1)
2 ). Even worse, for

each choice, the problem of finding the best allocation (which

can be reduced to max-min fairness problem) is NP-hard [13].

So solving optimization problem in Eq. (1) is nearly impossi-

ble for large scale networks. Besides, to keep optimal network

lifetime all the time with resource adaptation, we need the

complete information on the condition of every link at every

time. However, it is impossible to get this information because

it would require frequent message exchanges, resulting in un-

acceptable overhead. To solve the above problem, AdapLoRa

performs resource adaptations periodically to improve network

lifetime with an acceptable overhead.

1) resource adaptation procedure: A typical adaptation

cycle is shown in Figure 3. An adaptation cycle consists of

two phase: in the first phase, gateways collect packets from all

the end devices from t0 to t1. In the second phase, adaptation

decisions are sent to end devices from t1 to t2; decisions are

sent to end devices sequentially, so if a large of number of

end devices receive decisions, the latency of this phase can be

very long.

In the information collection phase (i.e., t0 to t1), end

devices send packets to the server, carrying information such

as the resource allocation Alloc0 and bit error rate. From

the collected information, the server estimates the network

lifetime , say L1, for the case that the resource allocation

is not changed. This network lifetime L1 will be used as the

baseline to evaluate other possible resource allocations.

Now AdapLoRa estimates network lifetime for different

resource allocations for comparison. Instead of seeking a

Algorithm 1: AdapLoRa resource adaptation

1 Initial(); #Initial allocation
2 while Receive() do
3 Told = measure(BER); #Measuring network lifetime
4 S = P(N )); #All the subsets of end devices
5 Sort(S); #Sorting subsets by downlink latency
6 L0 = Cal(); #Lifetime without adaptation
7 for n ∈ [1, |S|] do
8 for A ∈ S and |A| ≤ 5 do
9 (V, L) = maxL(A);#Adaptation and lifetime

10 if L− L0 ≥ τ then
11 Output(V);
12 Break;
13 Function maxL(A){
14 L− L0 = 99; #Initial network lifetime
15 while L− L0 > 0.05 do
16 for i ∈ A do
17 for si, pi, fi, ci ∈ (S,T,F,C) do
18 L = max(Li);# Allocation with max lifetime
19 Update(V (si, pi, fi, ci));
20 L0 = L;
21 Return (V, L) }

resource adaptation with maximum network lifetime, which

is likely to induce high latency for decision packets dissem-

ination (i.e., t1 to t2), AdapLoRa improves network lifetime

by changing the resource allocation with short dissemination

latency which is enough to improve the network lifetime by

a threshold τ . AdapLoRa first sort the end devices accord-

ing to their decision packet dissemination latency, which is

dependent on their spreading factors. Starting from an end

device with the shortest decision packet dissemination latency,

AdapLoRa estimates network lifetime Li
1 for different resource

allocations Alloci on this end device. If an Li
1 is larger than L1

by a threshold τ , in the decision dissemination phase in Figure

3, the server will send a decision packet to this end device to

change its resource allocation. Otherwise, AdapLoRa picks

a subset of end devices with the next lowest dissemination

latency and checks if a new resource allocation can improve

network lifetime by at least τ . If not, AdapLoRa repeats the

above procedure with another subset of end devices with the

next lowest decision dissemination latency.

Since large scale networks involve a large number of possi-

ble subsets (2n subsets with n end devices), in the worst case,

we have to search for all these subsets. To reduce the searching

space, AdapLoRa limits the maximum size of a subset based

on the computation capability of the server (in the experiment,

it is set to ten because we use a laptop as the server to run the

algorithm). The above procedure is concluded in Algorithm 1.

The improvement of network lifetime is obtained by com-
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paring the network lifetime estimation that: 1) keeps the

same resource allocation as last cycle (i.e., without resource

adaptation) and 2) uses different resource allocations (i.e.,

with resource adaptation). The improvement is the difference

between these two estimations. We describe the network

lifetime estimation in Section IV-C2. The value of τ will be

described in Section IV-C3.

2) Network lifetime without resource adaptation: Different

from packet-level measurement, AdapLoRa does not wait for

many received packets to estimate ri. Instead, it is based on the

bit error rate measurement from a few packets (the number of

packets can be adjusted according to packet length), and even

those collided packets which do not pass the CRC check are

also considered to make the estimation more accurate.

In every adaptation cycle, network lifetime is updated based

on the BER. If the current resource allocation does not change,

the BER at next adaptation cycle is estimated based on the

linear regression. BERs of multiple packets are utilized with

different weights. Generally, a more recent packet should have

a larger weight because it can reflect a more latest channel

condition. The estimated BER can be written as:

b̃ =

J∑
j=1

αj · b−j , where

J∑
j=1

αj = 1, (13)

where b−j denotes BER of the jth latest received packet, αj

denotes weighting factors. In this paper, we use the last three

packets to estimate BER without adaptation (J = 3), and their

weights α1 to α3 are 70%, 20% and 10%, respectively.

With the estimated BER, PER can be calculated as follows

and we can get the network lifetime based on Eq. (3).

r = 1− (1− b̃)N , (14)

where N is the length of a packet in bits.

Accuracy of BER estimation. We conducted experiments

to illustrate the accuracy of BER estimation. A LoRa end

device sends a 100-byte packet to a gateway every 10 minutes

using spreading factor 10 for four hours, and we compare the

estimated BER with measured BER in Figure 5. Since esti-

mation requires at least three previous packets, the first three

packets do not show estimated BER. To make the estimation

accuracy clear, the right figure shows the distribution of error

of the estimated BER. It can be observed that more than 50%

of the errors lie within 0.001, showing the accuracy of BER

estimation for calculating network lifetime. Besides, we have

carefully set the location of the end device and the gateway to

make BERs a little high. Otherwise, the estimation accuracy

cannot be clearly shown if most BERs are close to zero.

3) Network lifetime with resource adaptation: Intuitively,

the network lifetime with different resource allocations can be

obtained with the proposed symbol-level network model and

the model calibration in Section IV-B.

Since the estimation of network lifetime with and without

resource adaptation may be both inaccurate, an resource adap-

tation is possible to result in a shorter network lifetime if

the threshold is too small. To avoid performance degradation,

the network lifetime improvement threshold τ is empirically

set based on the estimation inaccuracy. In this paper, τ is

set to a proportion of the measured network lifetime without

adaptation, so that the network lifetime improvement can

adapt to the different network lifetime. In the evaluation, we

conducted experiments on the selection of τ of 5%, 10% and

20%, and found that the threshold 10% shows the best network

performance regarding to the network lifetime among them.

V. EVALUATION

In this section, we validate the performance of AdapLoRa

on a LoRa network testbed deployed on our campus, and

compare the performance with the state-of-the-art work, EF-

LoRa [13].

A. Experimental setting

Testbed setup. We deployed a LoRa testbed including 4

gateways and 20 end devices that covers our campus with

around 1.5 square kilometers. Four gateways are deployed on

the roof of different buildings, and we change the number of

gateways by turning different gateways off. The end devices

are deployed statically and have no mobility. We set up LoRa

end devices by combining Arduino Uno boards with RFM95W

modules (LoRa signal transceivers) operating at 470MHz

frequency band. RAK2245 Pi HAT Board (equipped with

SX1301) is used for LoRa gateways. Since LoRa end devices

communicate with gateways within one hop, the packets from

end devices can be received by all the surrounding gateways,

so we do not need to design the network topology and

determine the pairing of the end devices and gateways.

Since LoRa networks can involve hundreds of end devices

with six available spreading factors and eight available chan-

nels, with a limited number of end devices (i.e, 20), we

deploy our LoRa network and reduce the number of used

channels and spreading factors to emulate a larger network

with similar interference environment. Specifically, we use

four channels and three spreading factors (i.e., 8, 10, 12) with

10% maximum duty cycle to emulate a network with around

20× 2× 2× 10 = 800 end devices, using eight channels, six

spreading factors and 1% duty cycle.

With the maximum duty cycle constraint, we let the end

devices send a packet every 12 seconds ( the time-on-air

of a typical LoRa packet is less than one second) with

randomly scattered starting time. Since the end devices may

have different tasks of collecting sensing data from the en-

vironment and generate different amount of data, we make

the end devices send packets with different payload size.

Specifically, the payload size is randomly set from 60 bytes
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to 200 bytes, following the constraint of LoRa specification

[9], and this size does not change during the experiments.

Bandwidth and hamming coding rate are identical and set to

125kHz and 4/5. Transmission power ranges from 2 dBm to

14 dBm following the LoRaWANs specification [9]. Packets

sent from end devices can be received by multiple gateways,

and gateways will relay them to the server. When the server

decides to adapt the resource allocation of the network, it sends

adaptation decision packets to the corresponding end devices.

The server will choose the gateway with the highest received

RSSI to send the adaptation decision packet to an end device.

We implement RS code on LoRa end devices and gateways.

Specifically, the encoder on the end devices is designed such

that original packets are encoded based on RS coding rate.

The encoded packets are passed to the InAir9B transceiver

module for transmission. Similarly, a RS decoder on gate-

ways will recover the received packets. In the experiments,

we use three available RS coding rates: 5/6, 4/5 and 3/4.

The testbed results will be attached for public access on:

https://github.com/mobinets/AdapLoRa.

Metrics. We evaluated the performance using the following

metrics: 1) Network lifetime: it is defined as the time that

10% end devices in a network have run out of their batteries.

2) Residual network energy: it is the average percentage of

remaining battery power on end devices when a network ends,

and it can reflect energy fairness of a network.

Benchmarks. We compared AdapLoRa with EF-LoRa [13]

and implement them, the static resource allocation for energy

fairness in LoRa networks. EF-LoRa allocates the resources

by solving a max-min optimization problem with a greedy

algorithm. The experiments with different network deployment

are repeated for five times, and the average of the performance

metrics such as network lifetime is used.

B. Network performance

Network lifetime. We first compared network lifetime of

AdapLoRa with EF-LoRa on the testbed. AdapLoRa collected

packets and made adaptation decisions every minute, while

EF-LoRa employed a static resource allocation all the time.

We changed the number of gateways from one to four, and

networks with both methods ran for 20 minutes. We estimated

their network lifetime by assuming that energy consumption

drained on an end device repeats as this 20-minute period [8].

Experimental results in Figure 6 show that network lifetime

can be improved with more gateways for both AdapLoRa

and EF-LoRa, due to the reduced packet error rate. Besides,

Fig. 8. Lifetime threshold τ . Fig. 9. Adaptation latency.

AdapLoRa performs better than EF-LoRa for every deploy-

ment, and the network lifetime difference between AdapLoRa

and EF-LoRa increases with more gateways deployed (e.g.,

AdapLoRa outperforms EF-LoRa by about 17.4% with one

gateway and this benefit rises to 23.7% with four gateways).

This is because with more gateways, AdapLoRa can adjust the

PER of the end devices adaptively, so there is more space for

AdapLoRa to improve network lifetime, while EF-LoRa can

only rely on the PER improvement by more gateways.

Residual network energy. Higher residual network energy

means that when the first end device in the network dies, the

other end devices still have much battery power and can work

for a long time, indicating less energy fairness. We evaluated

energy fairness through residual network energy, presented

in Figure 7. Experimental results show that AdapLoRa has

higher energy fairness than EF-LoRa, and this is because

AdapLoRa periodically changes the allocation to improve the

energy fairness thus network lifetime. Besides, by deploying

more gateways, residual network energy of both methods is

improved, thanks to the improved PER.

Network lifetime improvement threshold. The threshold

of network lifetime improvement τ affects the frequency

of resource adaptation. Compared with a small threshold,

resource adaptation with a larger threshold will happen less

frequently, because it is harder to find an adaptation to achieve

large improvement in an adaptation cycle. Figure 8 illustrates

network lifetime with different thresholds. Network lifetime

can be calculated according to current battery power and PER.

AdapLoRa performs better with larger thresholds (i.e., 20%)

when the network lifetime is long (i.e., 3.6 years), but it

performs worse when network lifetime is less than three years.

The reason is that sometimes AdapLoRa with a large threshold

cannot achieve a large improvement thus adaptation is not

performed, and network lifetime is not improved.

Resource adaptation latency. The improvement threshold

τ also has a significant impact on the latency of adaptation

decision packets dissemination. This latency is expected to

be short so that the estimated network lifetime can be accu-

rate enough to make adaptation decisions. Figure 9 depicts

the downlink latency to disseminate decision packets with

different thresholds. Decision packets only carry adaptation

results, so a decision packet is short as 14 bytes. Figure 9

shows that the dissemination latency is less than two seconds,

because AdapLoRa tries to use the shortest latency to finish

the decision packets dissemination, as described in Section

IV-C1.
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C. Performance decomposition

To further analyze the performance gain of AdapLoRa, We

first evaluate the gain of the proposed fine-grained network

model and adaptation overhead consideration. We extended

ADR provided by LoRa specification [9] to achieve energy

fairness (AdapLoRa-sim), as described in Section III. Figure

10 depicts the estimated network lifetime at different time

according to current PER, the calculation can be referred to

Eq. (3). Results show that although the estimated lifetime

fluctuates due to varying link quality, AdapLoRa outperforms

AdapLoRa-sim most of the times. Finally, we obtain the real

network lifetime based on the energy consumption during

the 20 minutes (the right sub-figure), and we observe that

AdapLoRa-sim that uses packet-level adaptation has shorter

network lifetime than AdapLoRa, emphasizing the necessity

of fine-grained network model and overhead consideration.

We decomposed AdapLoRa and evaluate AdapLoRa with-

out the adaptation of transmission power. Figure 11 shows

the network lifetime of AdapLoRa and EF-LoRa that keeps

using the maximum transmission power (i.e., 14 dBm) with

2 gateways and 20 end devices. It can be observed that

the network lifetime with maximum transmission power is

always lower than that with configurable transmission power.

The reason is that with the maximum transmission power,

all the end devices have a long communication range. As

a consequence, the interference increases significantly, and it

is harder to achieve energy fairness than with the schemes

that allocate different transmission power to end devices.

Furthermore, even with the maximum transmission power,

AdapLoRa can still outperform EF-LoRa by 7.5% with power

allocation and 6.7% without power allocation, which indicates

the benefits of dynamic energy fairness.

D. Algorithm execution time

Since downlinks latency not only includes the latency of

adaptation decision packets dissemination but also includes the

time for running the algorithm. We evaluated the execution

time of the proposed algorithm with different number of

gateways. Figure 12 shows that the algorithm execution time

is longer with more gateways, because the topology (e.g.,

different distances from an end device to the gateways) makes

it more complex as we have to calculate a PER of an end

device on each gateway. Besides, 80% of the instances the

execution time with 4 gateways is less than 1 minute, and for

scenarios with one to three gateways, most of the execution

times are less than 4 seconds (with one gateway) and 20

seconds (with two and three gateways), which is acceptable

for low duty cycle LoRa networks. The small proportion

of long execution time comes from the fact that sometimes

AdapLoRa cannot find an adaptation that has enough lifetime

improvement, so it has to seek through many possibilities.

VI. LIMITATION AND FUTURE WORKS

Although AdapLoRa can adapt the resources against the

dynamic wireless environment, it is based on static network

topology where the gateways are pre-deployed and the end

devices do not move. As a result, 1) The network lifetime will

be greatly affected by the deployment of the LoRa networks.

Specifically, different distances between the gateways and

the end devices lead to different received signal power, so

the network lifetime can be further improved through proper

network deployment. 2) The mobility of end devices will

introduce much more dynamics in LoRa networks. We may

analyze the pattern of the mobility of end devices and predict

the transmission performance such as packet reception ratio to

prolong the network lifetime under mobile LoRa networks.

VII. CONCLUSION

In this paper, we proposed AdapLoRa that maximizes

network lifetime by dynamic resource adaptation in LoRa

networks. Considering the dynamic wireless links and the

overhead of resource adaptation, AdapLoRa periodically esti-

mates the network lifetime with different resource allocations.

A fine-grained network model is proposed to capture the

dynamics of LoRa links and network interference, considering

the impact of error correction scheme. As long as a new

allocation can improve network lifetime by more than a

threshold, this allocation will be performed in the networks.

Extensive experiments on a testbed of 4 gateways and 20 end

devices showed that AdapLoRa can achieve a longer network

lifetime and better energy fairness, compared to other existing

methods.
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