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Abstract—Programmable switches empower stateful packet
processing, in which incoming packets continuously update states
in the data plane, while applications in the control plane read and
write states. However, as the data plane and control plane are
separated, a consistent view of states in both planes is required
for stateful packet processing. Existing approaches suffer from
either high latency or low accuracy. In this paper, we propose
ApproSync, a framework that offers approximate state synchro-
nization with low latency and high accuracy. To achieve low la-
tency, ApproSync directly transfers states between switch ASICs
and the control plane by bypassing switch operating systems. To
achieve high accuracy, ApproSync utilizes the resources in the
switch ASIC to realize rate control in state synchronization, such
that it avoids potential state loss. It also bounds the divergence
between the states in the data plane and that in the control
plane under limited link capacity. We prototype ApproSync on
Barefoot Tofino switches. The experimental results indicate that
compared to existing approaches, ApproSync achieves order-of-
magnitude latency reduction while maintaining high accuracy.

I. INTRODUCTION

Recent advances in programmable networks empower net-
work administrators to customize the packet processing behav-
iors of programmable switches. For example, with the P4 lan-
guage [1], administrators are able to implement new network
protocols and functionalities on programmable switches. Pro-
grammable switches expose a collection of stateful memory
(e.g., registers) to store the state of packet processing. State
is a set of historical processing values (e.g., packet counts)
that affect future processing decisions. By manipulating state
values, administrators can build stateful network management
applications such as real-time traffic monitoring [2, 3, 4].

However, the separation of the data plane and control plane
raises the problem of state synchronization. On the one hand,
data plane packets continuously update the state maintained by
each switch at line rate. On the other hand, the control plane
applications issue state read or write operations to manipulate
states. Thus, it is indispensable to keep a consistent view of
states in both planes. In particular, given the huge volume
and high speed of state updates, it requires to synchronize
states within ultra-low latency to meet the requirements raised
by latency-sensitive applications. For example, UDP flood
mitigation [5] needs to collect thousands of state values from
switches within a few microseconds so as to rapidly detect
attacks. Also, state synchronization should be as accurate as
possible so that applications can work on correct information.
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Unfortunately, it remains a void to efficiently and accurately
realize state synchronization in programmable networks. To-
day, state synchronization is achieved via an operating system
(OS) installed on every switch. The switch OS manipulates
state values in its underlying switch ASIC via PCIe channels,
and connects to the control plane via TCP-based protocols
[6, 7, 8, 9]. Both PCIe channels and TCP connections are
the bottlenecks to synchronize state updates incurred by high-
speed traffic [10, 11]. Our experiments in §II-B indicate that
the OS-based approach spends several seconds to transfer a
state with a normal size of 216 values, which is inefficient.
To achieve low latency, some traffic mirroring approaches
[11, 12, 13] bypass the switch OS and directly transfer state
updates from the switch ASICs to the control plane. However,
without reasonable rate control, these approaches suffer from
serious state loss when the traffic rate exceeds link capacity.

In this paper, we propose ApproSync, a low-latency and
accurate state synchronization framework. ApproSync by-
passes the switch OS to achieve low latency. However, it is
challenging to handle state loss in switch ASICs due to switch
restrictions. In response, ApproSync incorporates approximate
strategies to achieve high accuracy. The notion behind this is
that many applications tolerate a small divergence between the
state in the data plane and that in the control plane, i.e., state
divergence. Thus, ApproSync allows a small state divergence,
which sacrifices a portion of accuracy to alleviate the resource
requirements of realizing ApproSync in switch ASICs. Also,
ApproSync bounds the state divergence to limit the accuracy
drop incurred by the state divergence.

Specifically, ApproSync offers two types of state operations
for control plane applications: state read that collects state
values from switch ASICs to the control plane, and state
write that enforces state values from the control plane in
switch ASICs. ApproSync uses two approximate strategies to
realize the two types of operations, respectively. For state read,
ApproSync monitors the state divergence in the switch ASIC
and synchronizes state updates only when the divergence
exceeds a threshold. It adaptively tunes the threshold based
on incoming traffic rate. (1) When incoming traffic rate is
low, it pushes every state update to the control plane, making
synchronization error-free. (2) When incoming traffic rate is
high and massive state updates need to be synchronized in
a short time, it selectively pushes state updates to avoid link
overload. This makes the state in the control plane diverges
from that in the data plane. Nevertheless, the state divergence
is bounded by the threshold to keep high accuracy. For state978-1-7281-6992-7/20/$31.00 c©2020 IEEE



write, ApproSync acknowledges each state write operation.
If the ACK of an operation is not received after a timeout,
ApproSync retries the operation to avoid state loss. It also
ensures the atomicity of state write by preventing all the new
state updates in the data plane from updating the state during
the write. To do this, it recirculates the new state updates
and eventually performs them after the write. Although such
design makes some state updates out-of-order during a write
operation, their number is small since the write operation can
be completed within a short time by bypassing the switch OS.

We have implemented a prototype of ApproSync with Bare-
foot Tofino switches [14]. We evaluate ApproSync with 16
stateful P4 applications. Our results indicate that ApproSync
achieves order-of-magnitude latency reduction against existing
approaches while maintaining high accuracy.

II. MOTIVATION

A. Problem

This paper targets state synchronization for programmable
networks (e.g., data center networks [15, 3, 16]), where the
data plane and control plane are separated. In the data plane,
each programmable switch maintains a collection of values
referred as state and continuously updates its state during
packet processing. The control plane holds a copy of the state
of each switch. Applications make decisions based on states
and modify states to perform control actions. For instance,
stateful firewall [17] collects state values from switches to
detect attacks. It also updates the detection thresholds recorded
in switches with respect to traffic dynamics. Such distributed
processing motivates the state synchronization that keeps the
states in both planes consistent. In the bottom-up direction,
state updates incurred by data plane packets should be syn-
chronized to the control plane. In the top-down direction,
state modifications in the control plane should be reflected
in the data plane. In particular, applications require state
synchronization to achieve low latency and high accuracy.
• Low latency. We aim to reduce the latency of state

synchronization in both directions (i.e., from data plane
to control plane and vice versa). This is critical to keep
pace with high-speed traffic and meet the tight latency
requirements raised by applications. For example, network
anomaly detection requires to rapidly detect and react to
suspect events [18, 19, 20, 21].

• High accuracy. We aim to retain high accuracy for appli-
cations by bounding the state divergence between the two
planes. For example, the attack detector may raise a false
alarm if received states are highly noisy. Also, if a state
modification is not synchronized to the data plane, switch
behaviors may be wild (e.g., a firewall policy fails).

B. Limitations of Existing Approaches

Existing approaches synchronize states via either the switch
OS or traffic mirroring. However, none of these approaches
can achieve both low latency and high accuracy.
High latency in OS-based approach. The OS-based ap-
proach utilizes the switch OS to transfer the state between the
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Fig. 2: Impact on applications.

switch ASIC and the control plane. For the switch ASIC, the
OS manipulates the state via PCIe channels. For the control
plane, the OS establishes TCP connections [6, 7, 8, 9] to
transfer the state. However, the OS incurs high latency in two
aspects. First, due to limited bandwidth, PCIe channels could
be the performance bottleneck [11]. Second, TCP connections
incur high latency in TCP stacks and reliable transmission.
Figure 1(a) measures the two types of latency when syn-
chronizing up to 216 64-bit state values in a Barefoot Tofino
switch [14]. We observe that both PCIe transfer and TCP-
based transfer incur a latency of hundreds of milliseconds,
e.g., synchronizing 216 state values takes even several seconds.
State loss in traffic mirroring. To achieve low latency, the
approaches based on traffic mirroring directly mirror state
updates from the switch ASIC to the control plane via a few
mirroring ports [11, 22, 23, 12]. However, these approaches
suffer from serious state loss when the emitted rate of state
updates exceeds link capacity [11]. In Figure 1(b), we measure
the loss rate in a Tofino switch. We allocate one 40-Gbps
mirroring port and vary the number of traffic ports. We inject
traffic to each traffic port to reach 40 Gbps. We see that with
only one traffic port, there is almost no state loss. However, the
loss rate rapidly rises as the number of traffic ports increases.
It reaches 60% when using three traffic ports. With such
a high loss rate, most state values cannot be synchronized
so that the state divergence is extremely high. As a result,
applications work on inaccurate states and fail to perform
correct operations. Although allocating more mirroring ports
can alleviate state loss, doing so unavoidably sacrifices overall
switch throughput and affects normal processing.
Impact on applications. We study the impact of existing
approaches by testbed experiments. Our testbed uses a Tofino
switch [14] that directly connects to a control plane server
via a 40-Gbps link. We consider heavy hitter detection [24]
as the application. A heavy hitter is a two-tuple flow whose
number of packets exceeds 210. In the switch, we implement a
recently proposed hash table [13, 12] to record per-flow packet
count. We configure 216 entries in the hash table. Thus, the
state in this application has 216 values. We inject a trace from
CAIDA [25] into the Tofino switch. In the control plane, we
collect all the state values (i.e., per-flow packet count) from the
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Fig. 3: Impact of state divergence.

switch every second, and examine heavy hitters accordingly.
We also compute the true heavy hitters using the traces as the
baseline. By comparing the measured heavy hitters and true
heavy hitters, we calculate false negative rate (FNR).

We first study the impact of the OS-based approach, which
spends several seconds (Figure 1(a)) to collect state values.
Figure 2(a) shows that FNR significantly rises as the latency
consumed by the OS-based approach increases. Next, we
evaluate the impact of traffic mirroring, which suffers from
high loss rate. In Figure 2(b), false negative rate rapidly rises
as the loss rate increases. In summary, due to high latency
or state loss in existing approaches, the state received by the
control plane significantly diverges from the actual state in the
data plane (10%∼70% divergence according to Figure 1(b)),
leading to low application-level accuracy.

III. APPROSYNC DESIGN

Challenges. There have been many solutions in the literature
that can be used to handle state loss during state synchroniza-
tion, e.g., timeout and retransmission mechanisms [26, 27].
Unfortunately, it is infeasible to realize these solutions in
switch ASICs due to switch restrictions. Specifically, existing
programmable switches typically employ specific architec-
tures (e.g., PISA [28]) to achieve high throughput and ultra-
low latency. Such architectures impose strict restrictions on
their resource models due to the concern of chip footprints
and heat consumptions. Here, we summarize three types of
restrictions [28, 29]: (1) each switch is equipped with few
memory (at most 10 MB [28, 30]); (2) a switch allows
limited memory access (e.g., a few read-write operations
for each packet); (3) a switch does not support complex
operations (e.g., loop and buffering). Given these restrictions,
it is challenging to handle state loss in switch ASICs.
Observation. Although high state divergence (e.g., >10%)
seriously degrades application accuracy as shown in §II-B,
we observe that it is acceptable for many applications when
the divergence is small (e.g., <1%). In fact, many applications
are already built on approximate algorithms such as sampling
[31, 32, 33, 34, 11, 35] and sketches [2, 36, 21, 37]. Thus, a
small divergence is tolerable for these applications in practice.

To justify our observation, we evaluate the impact of state
divergence on the accuracy of three applications: heavy hitter
detection [24], UDP flood mitigation [5], and super-spreader
detection [24]. A heavy hitter is a two-tuple flow whose packet
count exceeds 210. UDP flood mitigation identifies all UDP
flows with more than 105 packets within 5 seconds. In super-
spreader detection, a super spreader is a source IP address,

Fig. 4: Overview of ApproSync framework.

which number of distinct destination IP addresses exceeds 1%
of the total number of distinct IP addresses.

We employ the same method (i.e., the hardware-compatible
hash table) and testbed as in §II-B. We explicitly drop
packets between the switch and the control plane to vary the
state divergence from 0% to 20%. Figure 3 shows that the
application-level error as the state divergence. When the di-
vergence is 20%, the error reaches 20% since the applications
rely on accurate state values to detect anomalies. However,
when the divergence is small (<1%), the application-level
error is small (<2%), which validates our observation.

Key idea. According to our observation, we design Ap-
proSync with approximate state synchronization. Specifically,
ApproSync directly transfers states between switch ASICs
and the control plane to achieve low latency. Moreover,
ApproSync allows a small state divergence during state syn-
chronization. This relaxes the strict resource requirements in
switches. However, it utilizes switch resources to bound the
state divergence under link capacity. Doing so brings two-
fold benefits: (1) ApproSync only requires a small portion of
switch resources, which mitigates the aforementioned chal-
lenge; (2) It achieves the maximum possible accuracy for
applications under the constraint of link bandwidth.

Note that approximate techniques have been widely adopted
in distributed systems (see §VIII for details). Although Ap-
proSync follows similar ideas, we address the specific chal-
lenges of adopting approximation in state synchronization for
programmable networks.

Architecture. As shown in Figure 4, ApproSync synchronizes
states in two directions, which correspond to two types of
operations, state read and state write, respectively. It offers
two strategies, bottom-up synchronization for state read, and
top-down synchronization for state write. Each strategy is
realized by a handler in the switch ASIC and an engine in
the control plane, which collectively synchronize states.
• Bottom-up synchronization (§IV). This strategy makes

read operations keep pace with the state updates in the data
plane. The read handler aggregates state updates and pushes
them to the read engine, which extracts state values from
received updates in the control plane. Instead of pushing
all updates, it monitors the state divergence between two



Algorithm 1 Read handler.
Input: state update (l, v)
Variables: hash table H , threshold t

1: function PROCESS UPDATE(l, v)
2: Position p = hash(l)
3: if H[p] is empty then . Assume initial state value as zero
4: H[p].loc = l,H[p].val = v,H[p].old = 0 . Insert H[p]
5: else if H[p].loc == l then
6: Update H[p].val = v
7: Divergence D = |v −H[p].old|
8: if D ≥ t then
9: Push (H[p], t) to the control plane

10: Update H[p].old = v
11: end if
12: else . H[p].loc 6= l
13: Push (H[p], t) to the control plane
14: H[p].loc = l,H[p].val = v,H[p].old = 0
15: end if
16: end function

planes. Once the divergence exceeds a threshold, it emits
state updates to make the states in both planes consistent.
It adaptively tunes the threshold to keep the emitted rate
below the link capacity, which avoids state loss.

• Top-down synchronization (§V): This strategy writes the
state modifications raised by applications to switch ASICs.
The write engine exploits an acknowledgment mechanism
to eliminate state loss. Also, ApproSync enables atomicity
of state write. Specifically, the write handler suspends the
state updates incurred by data plane packets by recirculating
these updates. These updates are eventually performed after
state write. This makes some state updates out-of-order.
However, this strategy avoids data loss and huge resource
consumption of realizing complicated atomicity protocols.

IV. BOTTOM-UP SYNCHRONIZATION FOR STATE READ

In this section, we present the synchronization algorithm of
state read in §IV-A, and introduce the rate control in state read
in §IV-B. Then we discuss some practical issues in §IV-C.

A. Synchronization Algorithm

Hash table. The read handler employs a hash table H to
monitor the state divergence. H uses counter indexes in the
state as keys. Every entry H[p] has three fields: (1) H[p].loc
is the state location (i.e., hash key) associated with this entry,
(2) H[p].val is the current state value in location H[p].loc,
and (3) H[p].old records the last state value sent to the control
plane. We restrict the size of H since switch memory is scarce.
Here, a size of 216 entries is enough for most applications to
retain high accuracy. Moreover, when hash collisions happen,
H evicts old entries to the control plane and inserts new keys.

One concern is that frequent hash collisions may exhaust
link bandwidth. However, in practice, most traffic is con-
tributed by a few flows due to the skewness of network traffic
[38]. Thus, most state updates are incurred by a few flows,
making the probability of hash collisions small. For instance,
when using 216 entries, the probability of hash collisions is
below 5% for a one-hour CAIDA trace. This leads to a peak
emitted rate of 0.92 Mpps, which is acceptable.

Fig. 5: Example of hash table in the read handler.

Algorithm. The read handler is invoked for every tuple (l, v),
which indicates that the value in location l has been updated
to v, as shown in Algorithm 1. It first hashes l to calculate
its position p in H (line 2). If H[p] is empty (line 3), it
directly inserts (l, v) (line 4). Otherwise, it compares l with
existing stored location H[p].loc (line 5). If the two positions
are the same, the read handler updates the state value (line 6).
Then it computes the divergence between current state value
v and that in the control plane recorded by H[p].old (line 7).
If the divergence exceeds a threshold t, both the entry H[p]
and t are emitted to the control plane (lines 8-9). t indicates
the maximum tolerable divergence between a state value
recorded in the switch ASIC and that in the control plane.
We detail how the read handler tunes t in §IV-B. Moreover,
H[p].old is changed to the last value sent to the control plane
(line 10). If the stored location differs from the new location
(line 12), indicating a hash collision, the read handler pushes
the existing entry and t to the control plane (line 13), and
then modifies the entry to store the new one (line 14).

Example. Suppose that the threshold t=4 and the hash table H
has two buckets, and there are six state updates (Figure 5(a)).
For p0 and p1, H directly inserts them and initials H[p].old to
zero (Figure 5(b)). For p2, H maps it to the first bucket, which
already stores a state update with the same location of p2. H
calculates the divergence D = 2 < t. Thus, H does not send
p2 to the control plane (Figure 5(c)). H processes p3 similarly
to p2. After processing p3, H[p].val of the first bucket is three
(Figure 5(d)). When p4 arrives, H calculates the divergence
D, which now reaches the threshold t (Figure 5(e)). Thus,
H sends p4 and t to the control plane and updates H[p].old
with H[p].val (Figure 5(f)). Finally, p5 comes in, H hashes it
to the second bucket. It finds that the location of p5 does not
match the location stored in the bucket. Thus, H sends the old
entry and t to the control plane and inserts p5 (Figure 5(g)).

B. Rate Control

Design decision. The threshold t controls the trade-off be-
tween accuracy and bandwidth consumption. Our intuition
is that we can employ a small threshold to bound the state



divergence as long as link capacity is not exhausted. With
that in mind, we design a rate controller in the switch OS
that adaptively tunes t instead of specifying a fixed one. In
particular, we observe that incoming traffic rate directly affects
the bandwidth consumption of state updates. When incoming
traffic rate increases, the state values will be more frequently
updated. In this case, more state updates are generated in a
short time, which increases the emitted rate of state updates.
Thus, we design the rate controller to tune t with respect to
incoming traffic rate. Moreover, we employ a global threshold
t instead of tuning the threshold for each entry in the hash
table due to two reasons. First, per-entry thresholds occupy a
large amount of memory. Second, simultaneously tuning mul-
tiple thresholds requires non-trivial computational resources,
which is infeasible in restrictive switch ASICs.

Algorithm. The rate controller performs three steps to tune
the threshold t as follows.

Step 1: the rate controller first estimates the state update
rate. Specifically, the rate controller reads the total change ∆
of all state values within a time window w. It employs a ded-
icated 64-bit counter in the switch ASIC to count the number
of state updates. It reads the value change of the counter as the
estimate of ∆. Such design is low-overhead, e.g., given a time
window w = 1ms, the rate controller consumes 6.4×10−2

Mbps to read ∆, which is small compared to the Gbps-level
switch bandwidth. Moreover, w is determined by applications.
For instance, the detection of low-rate TCP denial-of-service
attacks [39, 3] needs to detect microbursts that happen in a
few milliseconds, so a reasonable w is 1 ms. Given ∆ and w,
the emitted rate of state updates is then calculated as ∆

w . ∆
w

is a metric that reflects incoming traffic rate: when incoming
traffic rate is low, ∆ is small, making ∆

w small; otherwise,
incoming traffic rate is high.

Step 2: the rate controller then calculates the maximum
emitted rate supported by the link. Specifically, the maximum
emitted rate is M = c

s . Here, c is a user-configurable
parameter that indicates the maximum bandwidth allocated
for state synchronization, while s is the size of a state update.
c can be set to the link capacity so that the link is dedicated
to transfer state values. Also, it can be set to a value smaller
than link capacity to allow other traffic to use the same link.

Step 3: the rate controller tunes t by examining whether
∆
w 6M . If so, which indicates that link capacity is sufficient
to support the emitted rate of state updates, the rate controller
sets t to zero to send every state update to the control plane.
Otherwise, the emitted rate will exceed link capacity so that
the rate controller needs to set a non-zero t for avoiding link
saturation. In this case, a state update is emitted when a state
value is changed by t. Thus, the emitted rate of state updates
can be estimated as ∆

wt . To avoid link saturation, the rate
controller tunes t to keep the emitted rate ∆

wt just less than M ,
implying t =

⌈
∆

wM

⌉
. In practice, the rate controller sets a t =⌈

β ∆
wM

⌉
for some β ≥ 1 to handle unexpected traffic bursts.

Our experience is that a small β closed to one is sufficient.
We summarize how the rate controller sets t as follows.

t =

{
0, if ∆

w 6M⌈
β ∆

wM

⌉
, otherwise.

Example. We assume that (1) ApproSync uses a 10-Gbps
link to transfer 16-byte state updates so that link capacity
c=1010bps and the size of a state value s=128 bits; (2) the
time interval w=1 ms; (3) no microbursts happen so a β=1 is
sufficient. Thus, M = c

s = 7.8125 × 107 pps. Suppose that
∆=104 in the first time interval. Since ∆

w = 107 6 M , the
read controller sets the threshold t to zero, such that every
state update is directly transferred to the control plane. In the
second time interval, ∆ is changed to 105, making ∆

w > M .
In this case, the rate controller sets t =

⌈
β ∆

wM

⌉
= 2. Thus,

the maximum emitted rate of state updates is ∆
wt ≈ 5×107pps

< M , which avoids link saturation and state loss.

Case study. The read handler sends the current t with each
state update to the control plane (Line 9 in Algorithm 1).
With t, Applications can quantify the accuracy of the state.
For example, we consider Count-Min (CM) [40] sketch, which
maintains a counter array to estimate flow sizes. In the data
plane, a packet selects some counters in the array based on its
flow ID, and then increments selected counters. Thus, every
counter serves as an estimate for the packet count of the
flow. When using ApproSync to collect counter values, the
divergence between the collected counter values and the latest
counter values recorded in the data plane unavoidably affects
the accuracy of CM sketch. However, ApproSync guarantees
that the state divergence will not exceed the threshold t. Thus,
we can fix the lower bound and upper bound of error of CM
sketch with the threshold t, as shown in Lemma 1.

Lemma 1. Consider a CM sketch with r rows and w counters
in each row. Let Tf and Ef denote the true value and
estimated value of a flow f , respectively. When deployed in
ApproSync, the CM sketch guarantees that: (1) Ef ≥ Tf − t,
and (2) Ef ≤ Tf + 2U

w − t with a probability at least 1− 1
2r ,

where U is the total value of all flows.
Proof. The original CM sketch guarantees that Tf ≤ Ef ≤
Tf + 2U

w with a probability larger than 1 − 1
2r (Theorem 1

in [40]). With ApproSync, the counter in the control plane is
smaller than that in the data plane by at most t because the
value has not been synchronized yet. Thus, the lower bound
and upper bound of Ef become Tf − t and Tf + 2U

w − t,
respectively. The results follow.

C. Discussion

Stale states. A problem is that some state updates may stay
in the hash table for a long time, but no packets trigger
the synchronization for them. To this end, we design the
hash table to timely detect such stale entries based on table
aging [41]. Specifically, when the time that an entry resides
in the hash table exceeds a timeout value that is set by
applications, the hash table raises a timeout signal to notify
the switch OS. The switch OS then demands the hash table
to immediately send the expired entry to the control plane.



Fig. 6: State write mechanism.

In this way, ApproSync alleviates the above concern. Note
that we involve the switch OS because the logic of receiving
timeout signals cannot be implemented in the switch ASIC
due to switch restrictions. However, unlike the OS-based
approach that brings high latency overhead, ApproSync adopts
the switch OS to only forward timeout signals rather than
transfer state values. Doing so neither incur high bandwidth
consumption nor affect the timeliness of state synchronization.

Robustness. Another concern is that the state updates sent to
the control plane may be lost, which degrades the consistency.
ApproSync alleviates this concern from two aspects. First, it
adaptively controls the emitted rate, making the probability
of the above condition small (close to zero as empirically
demonstrated in Exp#3 in §VII). Second, even if some updates
were lost, the subsequent state updates will be sent to the
control plane soon given the high updating rate of states.

V. TOP-DOWN SYNCHRONIZATION FOR STATE WRITE

Write acknowledgment. As shown in Figure 6(a), applica-
tions issue a write operation comprising a set of state updates
to the write engine. The write engine encapsulates these
updates in several control plane packets. For each packet, it
allocates a dedicated timer and waits to receive an ACK after
sending the packet to the destination switch ASIC. The write
handler in the switch ASIC conforms every packet sent by
the write engine. Specifically, it performs the state updates to
modify state values, and then sends an ACK back. If a timer
raises a timeout, which indicates the loss of a packet, the write
engine immediately retransmits the packet. After all the ACKs
of sent packets are received, it notifies applications with write
success and informs the write handler of termination.

Atomicity mechanism. At times, applications need to simul-
taneously write multiple state values, which requires atomicity
to avoid unpredictable results. For instance, before starting
a new time interval, network measurement applications reset
the entire counter array in the switch ASIC to prevent legacy
statistics from disturbing on-going measurement [42, 43].
However, during state write, data plane packets also con-
tinuously update the state in the switch ASIC, which harms
atomicity. One strawman solution is to avoid conflicts between
state write and new state updates incurred by data plane
packets via concurrency control [44, 45, 46]. However, exist-
ing concurrency control methods cannot be implemented on
programmable switches because these methods require either
excessive memory (e.g., 2PL [47], timestamps ordering [47],

optimistic concurrency control [48], 2PC [49], 3PC [50]) or
complex queue scheduling (e.g., deterministic system [51]).

To this end, ApproSync offers a hardware-compatible atom-
icity mechanism. It guarantees that the state write driven by
the control plane will not be interrupted by data plane packets.
As depicted in Figure 6(b), the main idea is to lock the
entire data plane state and recirculate new state updates during
state write. Specifically, packets arriving during state write are
normally forwarded. However, the new state updates incurred
by these packets are recirculated for a second-pass processing,
which eventually performs state updates. The recirculation
continues until state write is completed and the lock is free.

Our rationale behind is two-fold. First, in most cases, the
priority of state write is higher than data plane updates. This
is because state write raised by applications usually changes
processing strategies (e.g., reset a data structure). Thus, by
prioritizing state write, ApproSync ensures that merely using
one lock is sufficient for resolving concurrency conflicts. It
also naturally avoids deadlocks since only state write can
obtain the lock. Second, the operations of ApproSync should
remain simple, such that it can be implemented in switches.

Robustness. If the control plane or links failed in the middle
of state write, the lock will never be freed and the switch
bandwidth will be saturated soon by recirculated updates. To
this end, we design the write handler in the switch ASIC to
wait for a time period after receiving a control plane packet.
If no new control plane packets arrive during the period, the
write handler will release the lock and perform the recirculated
updates. After the link or control plane is recovered, the
control plane can perform the same state write operation to
eventually write the demanded state.

Efficiency. The recirculation-based mechanism brings limited
degradations on throughput and accuracy. Recall that Ap-
proSync bypasses the switch OS, such that a write operation
can be completed in short time, e.g., less than 20 ms for writ-
ing 216 state values (Exp#2 in §VII). Within such a short time,
the number of recirculated updates is small (Exp#4 in §VII).
Thus, the throughput drop due to recirculation is also small
(<1%). Also, a small number of out-of-order updates cause
limited accuracy drop. In particular, many applications (e.g.,
measurement [2, 3] and load balancing [30]) are insensitive to
such reordering. Our experience is that the application-level
accuracy drop is below 0.1% in practice (Exp#5 in §VII).

VI. IMPLEMENTATION

We have implemented a prototype of ApproSync, which
targets P4-compatible switches. We maintain state values in
registers. Note that P4 also offers another two components,
i.e., counters and meters, to support stateful processing. Ap-
proSync only targets registers because registers can not only
realize the functions of counters and meters, but also support
customizable operations towards state values.

Data plane handlers. Figure 7 details the implementation of
ApproSync handlers. For the read handler, ApproSync records
every state update in metadata fields in the ingress pipeline.



Fig. 7: Workflow of the switch ASIC.

The updates are sent to the hash table resided in the egress
pipeline. We implement the hash table with match-action
tables (MATs) and registers. The egress pipeline reserves a
port that pushes state updates to the control plane based on the
processing results of hash table. Each state update comprises
a 16-bit location and a 64-bit state value. We place the state
update between the Ethernet and IP headers. For the write
handler, ApproSync employs an MAT at the beginning of the
ingress pipeline to identify the type of each received packet.
Normal packets are processed by the user program. Otherwise,
when the packet indicates a write operation, the write handler
is invoked to handle it. We implement both state lock signal
and ACK components with metadata fields and registers.
Control plane engines. We implement ApproSync engines in
C. Our prototype offers both southbound APIs and northbound
APIs. We implement southbound APIs on DPDK [52] to avoid
the overhead incurred by kernel stacks. We employ Redis
[53] as the state storage and use HiRedis [54] to manage the
storage. For northbound APIs, we design a suite of intuitive
interfaces for applications to manage states stored in Redis.
Compiler. We implement a compiler to integrate ApproSync
handlers into the user program written in P414 or P416. The
compiler first inserts the P4 codes that implement ApproSync
handlers to the user program. It then augments the user
program to connect it with ApproSync handlers: (1) For the
read handler, the compiler identifies each state update in the
program and records the update in metadata fields, which
are delivered to the read handler for further processing; (2)
For the write handler, the compiler adds an additional logic
that handles state updates via the write handler. Our compiler
enables administrators to select registers to be synchronized.
By default, it chooses to synchronize all registers.

VII. EVALUATION

In this section, we conduct experiments to evaluate our
ApproSync prototype. In each experiment, we present the
average after 100 runs. We highlight our results as follows.
• ApproSync uses less than 15% switch resources (Exp#1).
• Compared to the OS-based approach, ApproSync achieves

order-of-magnitude latency reduction in state read (Exp#2).
• Compared to *Flow [12], ApproSync avoids link saturation

and state loss via its rate control in state read (Exp#3).
• Even in a link with 80% loss rate, ApproSync writes 216

updates within 10 ms, whereas the OS-based approach
spends two orders of magnitude higher latency (Exp#4).

• The state write of ApproSync preserves high accuracy for
applications (Exp#5).

TABLE I: Stateful P4 applications used in §VII (“size”
indicates the size (in bytes) of a state update).

Name P4 LoC # of counters Size

Packet counter (PC) [56] 265 216 6
Flowlet switching (FL) [56] 251 214 10
Malicious DNS domain detection (MD) [57] 358 3×216 4
Snort flowbits (FB) [57] 296 3×216 4
Affine LB (AL) [57] 345 217 4
DNS TTL change tracking (TC) [58] 357 3×216 6
DNS tunnel detection (TD) [58] 530 3×216 4
Stateful firewall (FW) [24] 349 217 4
FTP monitoring (FM) [24] 303 216 4
Heavy hitter detection (HH) [24] 310 217 6
Super-spreader detection (SS) [24] 313 217 4
Sampling based on flow size (FS) [24] 560 5×216 4
SYN flood detection (SF) [5] 313 217 4
DNS amplification mitigation (AM) [5] 360 216 4
UDP flood mitigation (UF) [5] 309 217 4
Elephant flows detection (EF) [5] 553 5×216 4

TABLE II: (Exp#1) Switch resource usage of ApproSync.
Type SRAM TCAM mALU sALU VLIW Stage

Only Read 6.77% 0% 14.58% 0% 4.69% 91.6%
Only Write 2.40% 0% 0% 3.65% 3.82% 100%
Overall 9.17% 0% 14.58% 3.65% 5.21% 100%

• ApproSync does not affect throughput. It increases the
latency of packet forwarding by less than 5% (Exp#6).

• ApproSync achieves ultra-low (at most 23 ms) state read
and write latency for 16 real-world applications (Exp#7).

• ApproSync enables low-latency and accurate sketch collec-
tion (Exp#8).

A. Setup

Platforms. We build a testbed comprising two 32×100 Gbps
Barefoot Tofino switches [14] and six servers. Each server
has 36-core Intel(R) Xeon(R) Gold 6240C CPU (2.60 GHz),
128GB RAM and a two-port 40-Gbps NIC. We run the control
plane on a server based on DPDK [52]. In the data plane,
we connect the two switches to compose a linear topologic,
while using the remaining five servers as traffic testers. The
control plane and traffic testers are directly connected to the
two switches via 40-Gbps ports.

Workloads. We select a one-hour CAIDA trace [25] with 38M
packets, and use PktGen [55] to replay the trace. We select
16 stateful P4 applications that vary in size and complexity
to evaluate the performance of state read and write operations
(Exp#7). Each application employs a counter array for packet
processing, which configurations are shown in Table I.

Parameters. By default, the hash table H has 216 entries.
We fix the time window w to 1 ms and use a β = 1. For
each application, we obtain the size s of a state update and
calculate the maximum emitted rate M as c

s , where c equals
the capacity of a 40 Gbps link. Unless specified otherwise,
ApproSync will adaptively tune t via its rate control.

B. Experimental Results

(Exp#1) Switch resource usage. This experiment measures
the total usage of switch resources, including memory re-
sources, computational resources, and match-action stages.
Here, memory includes both SRAM and TCAM, while com-
putational resources include meter ALUs (mALUs), stateful
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Fig. 8: (Exp#2) Performance of state read.

ALUs (sALUs), and very long instruction words (VLIWs).
Note that ApproSync (AS) provides one primitive for state
read, and one primitive for state write. We measure their re-
source consumption individually and the overall consumption
of both primitives. Table II shows that ApproSync uses less
than 15% resources even when using both the primitives in
one switch. Moreover, ApproSync uses all the stages since
interdependent MATs must be placed in different stages due
to switch restrictions. Nevertheless, it uses limited resources
and remains sufficient resources in each stage for other logics.

(Exp#2) Performance of state read. We measure the latency
of state read. We vary the number of state values from 28

to 216. We employ two types of state: 16-bit state and 64-bit
state, where 16-bit is widely used by applications and 64-
bit is the largest size supported by our switches. The OS-
based approach is built on the interfaces exposed by our
switches [14] and ZeroMQ [9]. We measure three types of
latency in the OS-based approach: the latency of reading state
values from the switch ASIC to the switch OS via PCIe
channels (OS-PCIe), the latency of transferring state values
via TCP connections (OS-Net), and the overall latency of state
write (OS-Sum). Figure 8 shows that the latency of OS-based
approach (OS-Sum) exceeds 1s when a state has 216 values.
When using 64-bit state, even reading state via PCIe channels
takes tens of milliseconds. In contrast, ApproSync spends less
than 10 ms to collect 216 values, which outperforms the OS-
based approach with order-of-magnitude latency reduction.

(Exp#3) Accuracy of state read. We evaluate the accuracy
of state read. First, we validate that ApproSync can avoid
link saturation. We replay our trace at 40 Gbps and vary
t from 16 to 128. Since the emitted rate of state updates
depends on how an application updates state, we select five
applications, in which every packet triggers an update, from
Table I. We compare ApproSync with *Flow [12], a traffic
mirroring system that uses an LRU cache for rate control. We
configure the LRU cache in the same way as the hash table
of ApproSync. Figure 9(a) shows that *Flow brings limited
benefits because its LRU cache is frequently evicted given
that the number of flows far exceeds the cache size. Instead,
ApproSync achieves low bandwidth consumption (e.g., 35
Kpps for Snort flowbits [57] with t=128) via its rate control.

Second, we validate that ApproSync can offer accurate state
read. We deploy packet counter (PC) that generates a state
update for every packet. We inject traffic at 200 Gbps so that
the emitted rate of state updates far exceeds link capacity.
We vary t from 2 to 10. Figure 9(b) shows that ApproSync
gradually reduces emitted rate as t increases, and avoids state
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Fig. 9: (Exp#3) Accuracy of state read.

loss when t ≥ 6. Then we repeat the experiment without
any manual settings. Figure 9(c) shows that ApproSync (AS-
Dyn) offers loss-free state read since it dynamically tunes t
to adapt to incoming traffic rate. In contrast, ApproSync with
fixed t (t < 5) and *Flow cannot guarantee no state loss,
which emphasizes the importance of rate control.

Third, we study the impact of hash table size on accuracy.
We vary the size from 214 to 218 entries. We conduct the same
experiment as above. Figure 9(d)-(e) show that ApproSync
loses a few state updates (3.22%) when using 214 entries.
This is because hash collisions happen frequently given the
high traffic rate and relatively small table size. However,
ApproSync alleviates this problem via its rate control: when
using 215 entries, ApproSync ensures loss-free state read,
while *Flow suffers from high state loss.
(Exp#4) Performance of state write. We measure the per-
formance of state write. ApproSync splits a write operation
into several partial operations, each of which is completed by
a single packet. Thus, the performance of state write depends
on the number N of state updates encapsulated in a packet.
We set N to 1, 5, and 10, and vary the number of state
updates from 28 to 216. Figure 10(a) shows that ApproSync
reduces the latency by orders of magnitude even when N=1
by eliminating the overhead of switch OS.

We next study the robustness of state write in a congested
link. In this case, ApproSync needs to retransmit dropped state
updates, which increases the latency. Here, we use ApproSync
to write 216 state updates and measure its latency when the
state lose rate ranges from 0% to 80%. Figure 10(b) presents
that even with 80% loss rate, ApproSync completes state write
in a few milliseconds. In addition, we measure the bandwidth
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Fig. 11: (Exp#5) Accuracy of state write.

consumed by state write. Figure 10(c)-(d) present the number
of packets for a write operation and that for retransmission
under different loss rates. Even in the worst case, the number
of generated packets is at most 65K, which is far below link
capacity (e.g., 14.88 Mpps of a 10 Gbps link).

(Exp#5) Accuracy of state write. We measure the accuracy
of ApproSync in state write. We first count the number of
out-of-order updates during state write. We deploy HashPipe
[29], a heavy hitter detection algorithm, with 5K counters on
a switch. The accuracy of HashPipe is associated with every
state update so that it can accurately reflect the impact of
state write. As shown in Figure 11(a), ApproSync affects at
most 4.5K updates. Even in the worst case, it only consumes
300 Kpps bandwidth, which is far below Mpps-level switch
bandwidth. This is because its state write is low-latency, so
the number of affected updates and bandwidth consumption
is small. Next, we examine the impact on HashPipe accuracy.
Figure 11(b)-(d) show that: (1) the out-of-order updates only
increase false negative rate (FNR) and relative error (RE) by
at most 0.2% and 0.03%, which is small; (2) compared to the
OS-based approach, ApproSync offers highly accurate state
write with atomicity guarantees.

(Exp#6) Impact on packet forwarding. Table III examines

TABLE III: (Exp#6) Impact on packet forwarding.
Name Thpt. Latency Thpt. cost Latency cost

NoApproSync 40 Gbps 1073 ns - -
Only Read 40 Gbps 1123 ns -0.0% +4.6%
Only Write 40 Gbps 1101 ns -0.0% +2.6%
Overall 40 Gbps 1141 ns -0.0% +6.3%
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Fig. 12: (Exp#7) Application-perceived latency.

how ApproSync affects throughput and per-packet latency.
We consider four cases. (1) “NoApproSync” disables Ap-
proSync and presents the original performance. (2) “Only
read” presents the results when only the read handler is
activated. (3) “Only write” shows the results of state write.
(4) “Overall” enables full functionalities. We observe that
ApproSync incurs zero throughput drop while adding the per-
packet processing latency by at most 6.3%.

(Exp#7) Latency for stateful P4 applications. We measure
the application-perceived latency of state read and write of
ApproSync. We implement the 16 applications in Table I,
and measure the latency of reading states from the counters
used by applications and resetting counters. We compare
ApproSync with the OS-based approach in Figure 12. We
observe that ApproSync completes state read within 12 ms,
while the OS-based approach takes at least 285 ms. Also,
ApproSync requires at most 23 ms for state write, while the
OS-based approach requires several seconds.

(Exp#8) Fast and accurate sketch collector. Sketch is a
widely-used family of algorithms in network measurement
[2, 3, 21, 36, 37, 59, 60, 61, 62]. A sketch algorithm maintains
a compact counter array in the switch ASIC to measure
flow statistics. At the end of a time interval, applications
collect the counter array to obtain statistics. However, existing
approaches collect counter values via the switch OS, which
incurs high latency and hurts the timeliness of network
management. To this end, we build a sketch collector on
ApproSync, which contains two steps: (1) When a packet
updates counter values, the read handler inserts those updates
to its hash table; (2) When the state divergence exceeds the
threshold, it pushes latest sketch values to the control plane.

We first evaluate the performance of sketch collector. We
implement five sketch algorithms, Count-Min (CM) [40],
FlowRadar (FR) [3], UnivMon (UM) [2], SketchLearn (SL)
[21] and ElasticSketch (ES) [37]. We set these sketch algo-
rithms with the following realistic settings [21, 37]. (1) Count-
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Fig. 13: (Exp#8) Fast and accurate sketch collector.

Min uses three hash functions and 216 4-byte counters. (2)
FlowRadar uses three hash functions in both the Bloom filter
[63] and the invertible Bloom lookup table (IBLT) [64]. It uses
1 MB memory in total, and allocates 1

10 of the memory for the
Bloom filter and the rest for the IBLT part. (3) Both UnivMon
and SketchLearn use a 32-level sketch, where each level uses
one hash function and 215 4-byte counters. (5) ElasticSketch
has a heavy part of 212 entries and a light part of 219

entries, and the total memory usage is 0.69 MB. We deploy
these algorithms on a switch, and use the sketch collector to
collect counter values from the switch. Figure 13(a) indicates
that compared to the OS-based approach, ApproSync reduces
the collection time by orders of magnitude. Next, we inject
traffic at 120 Gbps to examine the loss rate of state updates.
Figure 13(b) presents the loss rate with respect to the threshold
t that determines the emitted rate of state updates. We compare
ApproSync with traffic mirroring and *Flow. We observe that
traffic mirroring and *Flow loss around 60% state updates
due to the lack of a reasonable rate control. ApproSync also
suffers from a high loss rate when t = 2. However, the state
loss is completely eliminated as the threshold increases.

Finally, we qualify the accuracy of heavy hitter detection,
whose settings are the same as that in §II-B. We only present
the results of Count-Min due to space limitation. We also build
an original version of Count-Min without state loss (“Ideal”)
as the baseline. Figure 13(c)-(d) presents false negative rate
and relative error, respectively. We observe that state loss in
traffic mirroring and *Flow seriously improves false negative
rate and relative error. Instead, ApproSync achieves near-
optimal accuracy closed to “Ideal”.

VIII. RELATED WORK

State read. Prior solutions [31, 32, 33, 34, 11, 35] exploit
packet sampling to reduce bandwidth consumption. However,
sampling techniques inevitably degrade accuracy. TurboFlow
[65] processes state values in the switch OS. However, a
switch OS fails to process multi-Tbps state updates and incurs
high latency. Instead, ApproSync bypasses the switch OS to
mitigate performance overhead. Moreover, Marple [13] caches
flow records in the switch ASIC before mirroring states to

remote servers. However, states are frequently evicted, which
saturates link capacity (see Exp#3 in §VII). ApproSync im-
proves in-switch caching by adaptively controlling the trade-
off between accuracy and bandwidth consumption. KeySight
[42] aggregates packets based on packet processing behav-
iors to reduce overhead. MAFIA [43] proposes intent-based
primitives to ease the deployment of measurement tasks on
programmable switches. Sonata [66] pre-processes packets in
switches to reduce workloads in the control plane. ApproSync
is complementary to these solutions with its state synchroniza-
tion mechanisms.
State write. Commodity controllers modify states via TCP-
based protocols such as OpenFlow [6], Thrift [7] and gRPC
[8], which require a switch OS for complicated processing.
Applications built on these protocols (e.g., P4NFV [67]) suffer
from high latency. Swing State [68] directly migrates state
values in the data plane to achieve rapid state migration.
P4Sync [69] offers strong authenticity guarantees when mi-
grating state values among switches. P4State [70] takes a
step further to only migrate essential state values to reduce
migration overhead. However, the write operations issued by
these solutions could be lost. Instead, ApproSync provides
low-latency and loss-free state write.
Approximate systems. Approximation is a well-studied topic
in distributed systems, including database [71], machine learn-
ing systems [72, 73, 74], and stream processing systems
[75, 76, 77, 78]. BlinkDB [71] samples data to dynamically
estimate the response time and error of a database query.
JetStream [75] uses data aggregation and adaptive filtering to
achieve trade-offs between accuracy and resource efficiency.
AF-Stream [77] provides approximate fault tolerance in the
content of stream processing. In contrast, ApproSync exploits
approximate techniques to achieve low-latency and accurate
state synchronization in programmable networks.

IX. CONCLUSION

We propose ApproSync, a framework that synchronizes
states between the data plane and control plane. ApproSync
utilizes approximate techniques to reduce resource consump-
tion and bound errors during state synchronization. It offers
two types of operations, state read and state write. We imple-
ment ApproSync on Barefoot Tofino switches. Our evaluation
indicates that ApproSync outperforms existing solutions with
order-of-magnitude latency reduction and higher accuracy.
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