
CoNICE: Consensus in Intermittently-Connected
Environments by Exploiting Naming with

Application to Emergency Response
Mohammad Jahanian and K. K. Ramakrishnan

University of California, Riverside, CA, USA. mjaha001@ucr.edu, kk@cs.ucr.edu

Abstract—In many scenarios, information must be dissemi-
nated over intermittently-connected environments when network
infrastructure becomes unavailable. Example scenarios include
disasters in which first responders need to send updates about
their critical tasks. If such updates pertain to a shared data
set (e.g., pins on a map), their consistent dissemination is
important. We can achieve this through causal ordering and
consensus. Popular consensus algorithms, such as Paxos and
Raft, are most suited for connected environments with reliable
links. While some work has been done on designing consensus
algorithms for intermittently-connected environments, such as the
One-Third Rule (OTR) algorithm, there is need to improve their
efficiency and timely completion. We propose CoNICE, a frame-
work to ensure consistent dissemination of updates among users
in intermittently-connected, infrastructure-less environments. It
achieves efficiency by exploiting hierarchical namespaces for
faster convergence, and lower communication overhead. CoNICE
provides three levels of consistency to users’ views, namely repli-
cation, causality and agreement. It uses epidemic propagation to
provide adequate replication ratios, and optimizes and extends
Vector Clocks to provide causality. To ensure agreement, CoNICE
extends basic OTR to support long-term fragmentation and
critical decision invalidation scenarios. We integrate the multi-
level consistency schema of CoNICE, with a naming schema
that follows a topic hierarchy-based dissemination framework,
to improve functionality and performance. Performing city-scale
simulation experiments, we demonstrate that CoNICE is effective
in achieving its consistency goals, and is efficient and scalable in
the time for convergence and utilized network resources.

I. INTRODUCTION

As the world becomes more and more dependent on network
connectivity, it is also important to be resilient to situations
when connectivity is intermittent. A pertinent example
especially in the recent years, which we consider in this paper
as a use case, is emergency response, where the networking
infrastructure, e.g., cellular access, becomes damaged and is
thus unavailable [1]. The design and use of protocols for infor-
mation dissemination that tolerate intermittent connectivity [2]
become important. To address such scenarios, Opportunistic
Networks tolerate a disconnected topology graph with mobile
nodes [3]. They leverage Device-to-Device (D2D) [4] message
exchanges in mobile encounters between nodes, just like
in Delay-Tolerant Networks (DTN) [2], without relying on
network infrastructure or the availability of an end-to-end path.

Ensuring the consistency of updates that are disseminated
among participants and the ‘rest of the world’ is important. It

is challenging to support distributed applications, such as the
ones where multiple users are applying changes to a shared
common database, in intermittently-connected environments.
Continuing with the emergency response scenario, an example
of such distributed application, one which has gained a lot
of attention recently, is geo-tagging of key locations such as
disaster-impacted sites. First responders involved in search
and rescue missions may mark on a map on their smart
phones of such locations and have to be updated across all
the devices of group members as well as deliver a reliable,
consistent view to incident commanders and others that require
situational awareness. Many algorithms and techniques to
ensure consistency have been proposed [5]. Causal consistency
ensures updates get processed at users in accordance with their
causal relations [6]. Causal ordering provides a ’moderate’
degree of consistency [7] better than It is stronger than best-
effort out-of-order delivery, as it orders “orderable” updates. It
is weaker than agreement-based total order delivery, as it is
ambiguous when it comes to ordering “un-orderable” updates.

Consensus methods, on the other hand, ensure agreement
and strong consistency. There are many proposals, the most
well-known of which is Paxos [8]. Consensus is an important
distributed algorithm with many applications such as in
datacenters [9], banking systems [5], and Blockchains [10].
An issue with the applicability of most of these consensus
solutions is that they are suited for connected and (partially)
synchronous environments. This has led to the design of
consensus algorithms and protocols for disconnected and
asynchronous environments, such as Paxos/LastVoting [11]
and One-Third Rule (OTR) [12] algorithms. However, these
solutions assume that the majority of users have “good
periods” [13] throughout the whole network, not supporting
scenarios with long-term fragmentation in which two isolated
groups of users conduct independent consensus sessions for the
same “ballot” and decide differently. Also, they are often too
slow to converge, as they need to involve the whole network
due to lack of systematic topic-based clustering of users.

The advance of information-centric paradigms [14], inspired
by the heavily content-oriented network usage of today, has led
to the proposal and design of widespread in-network naming
frameworks for better-organized information dissemination
[15]–[17], showing that with a proper naming schema [18], [19],
we can achieve better accuracy and more scalable dissemination
in terms of reducing end user and network load, compared978-1-7281-6992-7/20/$31.00 c©2020 IEEE

to the current address-oriented networking paradigms.
In this paper, we propose CoNICE (Consensus in Name-

based Intermittently-Connected Environments), a framework
for consistent dissemination of updates of a shared database
among mobile users, in an intermittently-connected environ-
ment. We assume no networking infrastructure, no geographical
routing or synchronized physical clocks. CoNICE uses graph-
based naming [20] to systematically divide the physical space
(through region-ing) and the consensus space (through user
subscriptions) into hierarchically structured subsets, optimizing
the consensus participation to get higher completion rate and
faster completion times. CoNICE is inherently failure-resilient,
where disconnection is not just a corner case scenario, but is
rather a common case. Inspired by the multi-level consistency
requirements provided by cloud and database systems [21],
[22], CoNICE provides the coexistence and flexibility of the
following three incremental consistency levels for the network:
replication (weakest consistency, lowest complexity), causality,
and agreement (strongest consistency, highest complexity). All
these consistency levels are integrated with a topic-based
hierarchical naming schema, through Name-based Interest
Profiles (NBIP). The consensus protocol of CoNICE, pro-
vides users with a strongly-consistent view that respects both
agreement and causality. CoNICE extends OTR with naming
and decision invalidation handling procedures, for a total and
causal ordering of updates. The naming component optimizes
consensus participation to only users who are relevant and helps
with efficiency and scalability. The decision invalidation helps
with overcoming the consensus property violations in case of
long-term physical fragmentation in the network. CoNICE does
not consider mobility as a failure; rather as an asset, helping to
deliver messages integral to ensuring consistency across many
users. Throughout the paper, we describe and evaluate our
architecture and protocol using the use case of first responders
geo-tagging with important information on a shared map during
a disaster with only an infrastructure-less network.

The major contributions of the paper are: 1) A framework
for consistent information dissemination in intermittently–
connected environments, considering the important case of
emergency response (our source code and data are available
GitHub1); 2) Enabling different incremental consistency levels
(replication, causality, and agreement) for information updates
in intermittently-connected networks; 3) A systematic coupling
of information flow organization with various consistency
preservation procedures, using naming graphs; 4) Extending
the OTR consensus with a protocol that leverages naming and
supports recovery from invalidated decisions; 5) Simulation
results that show our enhancement leads to a higher degree
of agreement among users, with lower overhead.

II. BACKGROUND AND RELATED WORK

Propagation in Intermittently-Connected Environments.
There have been a number of works on information propagation
in intermittently-connected networks [23]. Generally, these
solutions rely on nodes to store, carry, and forward messages [2].

1https://github.com/mjaha/CoNICE

Most solutions rely on nodes taking advantage of opportunistic
encounters to exchange messages (i.e., gossiping), typically
with high message delivery latency due to disconnections [24]–
[26]. There have also been proposals with additional as-
sumptions that leverage geographical routing and predictions
[27]–[29]. Methods such as Bubble Rap [30], dLife [31],
SCORP [32], and EpSoc [33] use social data regarding human
interactions as the basis of such routing predictions. We use
Epidemic Routing [24] in this paper because of its simplicity
for DTNs and the fact that it requires minimum assumptions
about network (no path/geography/social-connection based
decisions) which suits our scenarios, has a high delivery ratio,
achieves lower delays (relatively), and is especially suitable for
broadcast-oriented messaging [23] (although we can replace it
with the some of the other methods mentioned if additional
assumptions are reasonable and can be accommodated). In epi-
demic routing, users buffer messages and upon each encounter,
they exchange their Summary Vectors (SV), representing what
they have in their buffers. Each node determines what they
need from the peer’s SV, and requests and initiates message
exchanges, avoiding duplicate deliveries [24]. Apart from its
benefits, it is observed that epidemic routing has high overhead
[23]. We enhance it with the use of naming, to reduce load.

Causal Consistency. Causal consistency is a popular con-
sistency model which ensures ordering of events (e.g., network
messages) based on their causal relationship. Works such as
[34] propose the use of physical clocks for ordering. However,
physical clocks may have skews. The protocol for clock
synchronization may involve significant overhead, especially
in a disconnected environment. GPS can provide accurate time
to equipped devices, with negligible skews. However, GPS
has several issues that make it a less than perfect method for
clock synchronization, especially in decentralized systems. It is
vulnerable to spoofing attacks [35], [36], and susceptible to bad
weather or lack of line-of-sight (e.g., indoors) [37].They cause
innacuracies and excessive usage, especially in “un-assisted”
mode. GPS can also greatly reduce battery life [38]. Scalar log-
ical clock [6] defines the relation that message m1 “happened
before” message m2 (m1→m2), if they follow FIFO order
(some user sends m1 and then sends m2), local order (some
user receives m1 and then sends m2), or a transitivity rule (there
exists some message m3 such that m1→m3 and m3→m2) [6].
A message is said to be causally delivered at a recipient user, if
all the causal prerequisites of that message have been delivered
at the user too [5]. The Vector clock method [39], [40] ensures
causal ordering using vectors carried as history in each message,
that represent the sender’s current state relative to every other
users’ progress. Work in [41] proposes differential clocks as an
optimization to vector clocks, only sending vector differences.
[42] proposes that explicitly specifying causality, by sender,
helps with scalability. Work in [43] proposes a method for
group causal ordering, and enabling causal delivery to multiple
groups of interested users. We use the notion of vector clock
but extend it to enable selectiveness through hierarchically-
structured naming and a reactive mode for faster causal delivery,
and capture both implicit and explicit causality.

R111 R112 R113

R121 R122 R123

R11

R12

R1

a

b

c
d

Fig. 1. Example region-ed map with base layer
(background) and data layer (pins/shapes)

R1

R11 R12

R111 R112 R113 R121 R122 R123

R11

R111

Fig. 2. Namespace pertaining to the map in Fig. 1
A

B B

C

D

R111

R111

R111

Dealing with R111

Dealing

with R111

Dealing

with R11

B starts move

at time t2

A creates pin

on R111 at

t1<t2

C receives

the pin at

t3>t2

D receives

the pin at

t3>t2

Fig. 3. A scenario overview

Consensus and Strong Consistency. There has been a
great deal of work on consensus, the most prominent of
which is Paxos [8], [44]. Paxos achieves agreement among a
number of networked nodes, by election of a leader, majority
voting, and deciding on a value, through a number of rounds.
Raft [9] implements Paxos, designed for strong consistency
in log replication among servers in a cluster. While such
solutions work well in connected networks and (partially)
synchronous systems (i.e., known upper bound on message
latency), it has been shown in [13] that they are not suitable
for disconnected environments. Their fault recovery, through
Failure Detectors [45], [46], is typically limited to node failures
rather than link failures. The Heard-Of model [13] proposes a
benign fault model, and proves that the consensus algorithms
Paxos/LastVoting (P/LV) [11] and One-Third Rule (OTR) [12]
can tolerate loss and be suitable for intermittently-connected
and mobile environments. The model demonstrates that rather
than assuming eventual synchrony, it is more realistic to
assume “good periods” in asynchronous systems, i.e., an epoch
in which nodes can hear of each other (receive their messages).
Work in [47] proves the one-third rule to reach correct
consensus and possibly finish in one round, as long as no more
than one third of the consensus participants crash. Another
benefit of OTR over P/LV is that it is coordinator-less, and thus
does not need to have the overhead and complexity of leader
election. We build on OTR, enhancing it with an integration
of naming and adding support for cases where decisions need
to be invalidated e.g., due to long-term network fragmentation.

Name-based Information Dissemination. The use of net-
work naming for systematic organization of information for
better dissemination efficiency has been introduced as the
integral part [48] of the Information-Centric paradigms, such as
in Named Data Networks (NDN) [15]. Work in [49] provides
name-based DTN-like dissemination frameworks. However,
extra steps are needed for ensuring consistent dissemination.
Works in [12], [50] propose the use of interest profiling
for selective gossiping. We extend their ideas to implement
the content-oriented graph-based naming for profiling as
well as proposing a flexible multi-level profiling for various
consistency levels. Methods such as NDN Sync [51] and
Secure Scuttlebutt [52] propose log replication consistency in
name-based intermittently-connected environments. However,
they only guarantee causal consistency, but do not provide
strong consistency or total ordering, which are important
when dealing with multi-user updates on a single, shared
database. Naxos [53] proposes a name-based version of Paxos

for NDN. However, Naxos only supports request/response
pull-based communication pattern, and assumes connected
environments with centralized orchestration. We integrate name-
based publish/subscribe push-based dissemination patterns, and
aim at ensuring strong total order consistency by supporting
consensus in dynamic intermittently-connected environments.

III. OVERVIEW OF CONICE
Emergency Response Scenario. We outline an example use

case for emergency response where first responders seek to
individually update map tags on their devices and then need
to arrive at a consistent, coherent view across users as they
opportunistically connect with each other. The map in CoNICE
is made up of a base layer and data layer, as shown in the
example in Fig. 1. The base layer is the map background,
available offline to each user. Informed by the geography
pertaining to the map, it is divided into hierarchically-structured
regions (e.g., county, city, etc.). For example, region R11 is
part of R1, and is made up of R111, R112, and R113. This
hierarchical structure is captured in a namespace, as shown in
Fig. 2. User dynamically create updates on the map (i.e., pins
or other shapes with data on them), which updates the map
data layer; e.g., update ‘a’ as a point in R111, or ‘b’ as a shape
spanning regions R122 and R123 in Fig. 1. Users create and
are interested in receiving updates related to the regions they
are dealing with (or to a part of the region they are interested
in). As shown in Fig. 3, the environment we consider is one
without infrastructure-based communication and users rely on
D2D [4] communications, with frequent disconnections. Users
are equipped with mobile devices capable of D2D wireless
communication (e.g., Bluetooth or WiFi-Direct), and have the
CoNICE application on their device. In the example scenario
(Fig. 3), user A (a first responder) creates a pin on region R111
and propagates it at time t1. Users C and D, who are both
interested in R111 (through subscribed interest in regions R11
and R111 respectively), have no path to A at t1. However,
thanks to user B moving between the two fragments and acting
as a mule doing store-carry-and-forward [2], the update gets
propagated to C and D, and they can add it to their view of the
map. Our primary goal is to make sure all the users converge
to a consistent view of all generated updates on the map data
layer, in this disconnected environment, as much as possible.

CoNICE Overview. An overview of the architecture of
CoNICE is depicted in Fig. 4. It consists of the integration of
multi-level consistency and multi-level naming. There are three
incremental levels of consistency. Consistency level 0, namely
Replication, suggests how much of the generated updates have

NBIP

2

NBIP

1

NBIP

0

Level 0

(root)

Level 1

Level n

(leaves)

.

.

.

.

.

.

Consistency

Level 2:

Agreement

Consistency

Level 1:

Causality

Consistency

Level 0:

Replication

Name-based

Interest

Profiles
Namespace

Strong

View

Moderate

View
Map

Application

Causal Ordering

Gossiping

Name Levels

Consistency

Levels

S
u
b
sc

ri
p
ti

o
n
s

Deliver causally

ordered updates (�1)

Deliver totally

ordered updates (�2)

Consensus

Deliver un-ordered

updates (�0)

Fig. 4. Architecture overview of CoNICE

been delivered to individual users. The Gossiping component
in each user’s device is responsible for this function, using
Epidemic Routing [24]. Consistency level 1, namely Causality,
ensures that orderable updates are applied according to their
causal relationships and precedence. This is provided by the
Causal Ordering component, which provides a moderately-
consistent view (Moderate View) of the map to the user in the
application. CoNICE uses a Vector Clock-based approach [39],
[40], extended by a selective and reactive repair mode for causal
ordering. Consistency level 2, namely Agreement, deals with
achieving agreement between different users’ views, even for
un-orderable updates. The Consensus component enables this,
and provides the user with a strongly-consistent view (Strong
View). For this component, CoNICE implements a solution
based on the One-Third Rule (OTR) consensus algorithm [12],
extending it by supporting selective participation and decision
invalidations for highly fragmented and intermittently con-
nected scenarios. Every user is equipped with a single, unified
namespace; a hierarchically structured graph pertaining to the
regions in the map. This namespace drives the various consis-
tency level components, achieved by Name-Based Interest Pro-
files (NBIP) in CoNICE. There is a NBIP for every consistency
level, each pointing (as a subscription) to a particular subset of
the namespace. The use of NBIPs allows the various compo-
nents to achieve better efficiency and accuracy in dissemination.

While we recognize security is important to make CoNICE’s
design robust and usable, we have to address it in detail in a
separate work complementary to this paper. Here we address
the basic protocol of CoNICE and its properties. To ensure
authentication and integrity, we can use hash chains [54],
similar to [52]; it complements CoNICE’s design, since it
is based on sequential updates, each update depending on (and
cryptographically linked to) the previous one. Further, to ensure
fine-grained access control, attribute-based encryption [55] can
be leveraged, similar to [56]; it fits well with CoNICE, since
it incorporates a namespace, and each user’s access privileges
corresponding to their role-based subscription. Thus, CoNICE
can prevent malicious attacks such as impersonation and forgery,
via information-centric security [57], which secures content
itself, rather than the channel used for delivery.

IV. NAMING AND CONSISTENCY LEVELS

CoNICE relies on graph-based naming structure and multi-
level consistency, both of which we elaborate on, in this section.

A. Graph-Based Naming Framework

The naming schema in CoNICE is designed and represented
as a graph structure (e.g., Fig. 2), according to the hierarchical

structure of map region-ing: the higher levels in the hierarchy
correspond to larger regions. An example of the namespace
may be something like “County→City→etc.” For mere repre-
sentation simplicity, we assume each node in the namespace
graph has a unique name, so that we do not need to identify a
node by mentioning its whole prefix path; e.g., we use ”R111”
instead of “/R1/R11/R111”.

Region-bound Messages (Publishing). Creation of a mes-
sage (e.g., an update) that needs to reach interested recipients
is a publication in which the region that the message relates
to is specified. The region is a name in the namespace and
helps with relevancy and selectiveness of dissemination and
consistency preservation procedures. A message belongs to
exactly one region; namely the smallest region large enough to
contain that message. For example in Fig. 1, update ‘a’ belongs
to R111 while update ‘b’ belongs to R12. To ensure higher
coverage during dissemination, we define that an update covers
region set {Ri}, containing all leaf-level regions that contain
that update. For example, update ‘a’ covers R111 (same region
it belongs to) while ‘b’ covers R122 and R123. The relevance
follows the namespace hierarchy. A message that belongs to
region Ri is relevant to subscribers of Ri and the ancestors of
Ri in the namespace. For example, for the namespace in Fig. 2,
update ‘a’ (specified to be in R111) should be consistently
delivered to all subscribers of R111, R11 and R1.

Name-based Interest Profiles (Subscribing). NBIPs cap-
ture the subscriptions of a user locally on their devices.
Each NBIP points to one or more nodes (names) in the
namespace, and includes the sub-namespaces (as a set of
names) below in the hierarchy, rooted at the pointed names.
There are three NBIPs: NBIP0 specifies the scope of the user’s
involvement in the gossiping procedure, NBIP1 for causal
ordering procedures, and NBIP2 for consensus sessions. We
have NBIP2 ⊆ NBIP1 ⊆ NBIP0 for every user.

B. Multi-level Consistency

There are three consistency levels in CoNICE. Users
maintain a queue for each region (name) they are interested in
for each consistency level, as shown in the example in Fig. 5.
All three users A, B, and C in the Fig. are interested in region
Ri (we just focus on Ri here, so queues related to other
possible regions of the users’ interest are not shown). QU

i (Ri)
denotes the level i queue at user U , and its slot number 0,
i.e., QU

i (Ri, 0), is the first element. The consistency levels are
incremental, each feeding the level above it (Fig. 4); elements
in Q0 serve as input for Q1, and Q1 serves as input for Q2.

The level 0 (replication) queue (Q0) shows the received
updates in the order in which they have been received and
entered the message buffer (cache) used by the gossiping
component. The updates in Q0 in the Fig, are marked by the
update content (‘a’, ‘b’, etc. shown in bold) and can contain
dependencies (e.g., b

a indicates that ‘b’ depends on ‘a’). As
seen in the Fig., different users can receive the updates in
different orders, as their connectivity is intermittent and there
may be no established path between users. In addition to
epidemic buffering, this consistency is important as it is the

b
─
a

a
─

c g
─
c,f

e
─
c

d
─
a

a b
─
a

c d
─
a

e
─
c

a b
─
a

c d
─
a

e
─
c

��
�(��):

User A 0 1 2 3 4 5

0 1 2 3 4

0 1 2 3 4

��
�(��):

�	
�(��):

a cg
─
c,f

e
─
c

d
─
a

a cd
─
a

e
─
c

a b
─
a

c d
─
a

e
─
c

0 1 2 3 4

0 1 2 3

0 1 2 3 4

��
�(��):

��
�(��):

�	
�(��):

User B
b
─
a

a f
─
b

a b
─
a

a b
─
a

c d
─
a

e
─
c

f
─
b

0 1 2

0 1 2

0 1 2 3 4

��
�(��):

��
�(��):

�	
�(��):

User C

Fig. 5. Example for per- name per- consistency level update queues across three users A, B, and C

starting point for the next level of consistency and for making
sure messages are replicated sufficiently to all users in the
network, despite the challenging nature of the connectivity.

The level 1 (causality) queue (Q1) contains the causally
ordered updates, respecting the order for the causally orderable
updates. As seen in the Fig., updates are only added to Q1

only after all their dependencies have also been added. For
example, for QA

1 , ‘b’ appears after ‘a’, ‘e’ appears after ‘c’.
But, ‘g’ does not appear at all, since one of its dependencies
‘f ’ has not been received at A yet (even though it has reached
user C, as seen by event 2 for user C). This is consistently true
across all users. However, for un-orderable updates (i.e., those
with no causality relation), different users can put them in their
Q1 according to the order with which they were received. For
example, updates ‘c’ and ‘d’ have no causal relation in the
figure and are thus un-orderable; in QA

1 , ‘d’ comes after ‘c’
while in QB

1 , the reverse is true. Despite the difference, neither
ordering is incorrect, as they do not violate causal ordering.
Q1 provides users with a Moderate View, which is useful as it
provides a causal, meaningful, and “a correct” (rather than “the
correct”) view of the map, even though it might be different
from another user’s “also correct” Moderate View.

The level 2 (agreement) queue (Q2) shows the updates in
the agreed (by all users) order, provided by the consensus pro-
cedure. It resolves the differences of different users’ Moderate
Views regarding un-orderable updates, and provides users with
a Strong View in the map that: a) honors the causal ordering,
and b) is the same across all different users, as seen in the Fig.
Each slot in Q2 is filled via the result of a distinct consensus
session. CoNICE first computes Q1 and then feeds it to the
consensus component as initial consensus contributions (i.e.,
vote values). For example, user B’s contribution for the second
slot of Q2 is ‘d’, while users A and C vote for ‘b’. Eventually,
the majority value (‘b’ for slot 1) is decided and disseminated
to everyone. This incremental approach to arriving at consensus
provides the following benefits:

1) Consensus starts from a point with potentially more nodes
converged on the ordering of a larger number of events,
compared to the alternative of jumping from Q0 to Q2.

2) Users are eventually provided with a Strong View that re-
spects causal ordering (to perform a meaningful application
order of updates), compared to the alternative of completely
bypassing and ignoring causal ordering.

3) Users are provided with a useful, causally ordered Moderate
View, while waiting for consensus sessions to be completed,
compared to the alternative of arriving at a causal ordering
after consensus. This is practically important in scenarios

such as emergency response, since causal ordering is much
less complex and less time-consuming (user-driven) than
consensus (community-driven across multiple nodes).

V. PROTOCOLS FOR CONSISTENT DISSEMINATION
In CoNICE, three components, each with their own set

of protocols, handle its three consistency levels (Fig. 4), all
integrated with naming. The gossiping protocol propagates and
replicates messages among users, the causal ordering protocol
takes care of causal consistency of delivered updates, and
consensus protocol ensures agreement and strong consistency.

A. Gossiping Protocol
Gossiping makes the propagation of messages possible in

intermittent connectivity, thus helping with level 0 consistency
(replication) in CoNICE. Our layering provides a separate
abstract interface, making the choice of the gossiping mech-
anisms independent of higher-level consistency mechanisms
and vice versa. We use epidemic propagation [24] as justified
in §II; note that it can be replaced with other information
propagation methods given particular system assumptions, as
long as they allow anycast propagation. Our assumption in
CoNICE is that each user has a unique user ID (UID), which
can be the mobile device’s IMEI or a number provided by the
CoNICE application at the time of installation. In CoNICE,
each message has a tag, specifying its type. Each message has
a message ID (MID) which is used to uniquely identify it in
the network. Users buffer messages for epidemic propagation
indexed by their MIDs. Users can create, relay (i.e., store,
carry, and forward), and receive messages. CoNICE makes this
propagation selective via interest profiling, namely NBIP0 for
gossiping. Typically, benevolent data mules help with relaying
any message, regardless of what they are about, while other
users (e.g., first responders) can have a more fine-grained
NBIP0 and only receive and relay message matching their
interest, discarding others. Updates contain the ID of the region
they belong to (RB) and the (set of) regions they cover (RC).
RB is integral in all levels, while RC is only used at level 0 (i.e.,
can be compared against NBIP0), and its purpose is to increase
coverage; a user receiving a message based on its RC , the RB

of which he is not subscribed to, can be indicated to subscribe to
the RB in the namespace hierarchy, to be able to also participate
in its level 1 and level 2 procedures. To further reduce the cost
of epidemic propagation, CoNICE uses hop count limits and
cleaning buffers of obsolete messages (similar to [12], [24]).

B. Causal Ordering Protocol
To ensure causal consistency, CoNICE uses and extends the

Vector Clock (VC) [39] method, mainly that we limit the notion

of causality to those updates that belong to the same region.
This way, thanks to CoNICE’s naming schema, the number of
causal prerequisites to fulfill decreases significantly from the
whole set of update space, to a selective set of “only relevant”
updates, thus helping with better scalability of causal ordering.

Different updates that belong to the same region can
potentially depend on each other. As an example, in Fig. 1,
update ‘d’ may depend on ‘c’, as they both belong to R121,
and the creator of ‘d’ has seen ‘c’ (may be the same creator);
e.g., ‘d’ may remove some data that ‘c’ has added, or modify
the information provided by ‘c’ about a particular disaster
site. These dependencies need to be specified and considered
both when it comes to creating and publishing updates, and
receiving and processing them. The causal ordering component
in CoNICE takes care of this, which helps with consistency
level 1 (causality). We restrict Lamport’s “happened before”
relation [6] to only messages that belong to the same region,
calling it “happened before in the same region”, to capture
causality. This is possible since the region ID is already carried
in updates in CoNICE’s gossiping module.

The procedure for update creation is shown in Alg. 1. An
update message in CoNICE is of the form shown in line
13. The update ID (UpID) consists of UIDA (user ID of
update creator A), RB (the region the update ‘belongs to’),
seqNum (sequence number), RC (set of leaf-node regions
‘covered’ by the update), and UpIDR (set of references for this
update, which we explain later). The data element contains
the map-related instruction for the update (e.g., “mark house
#1 as searched” or “need teams at building #2”). CoNICE
updates contain dependencies in two ways: implicit dependency
and explicit dependency. Implicit dependency pertains to the
dependency of the update on its creator’s previous updates on
the same region (thus ensuring the FIFO ordering [5]). For
a new update in region RB , the creating user looks for the
highest seqNum it has used for RB so far, and assigns the next
number to the update (line 8). Explicit dependency pertains to
the dependency of the update on other users’ previous updates
on the same region (lines 9–12), that creator A has already
causally delivered to higher layers (thus ensuring the local
ordering [5]). For each <user ,RB> pair, only the update ID
with the highest sequence number is picked (line 10). To further
reduce the message overhead, all those updates u in UpIDR

that precede an update u′ existing in UpIDR, are removed
from the references list (line 12). As a result, the reference list
in CoNICE updates will be more compact than the full vector
of VC, and also relieves users from having to maintain a global
vector of every user in the network. Finally, the created update
will be published by sending it to the gossiping module, and
will be added to the creating user’s level 1 queue (lines 13–16).

The procedure for handling the receipt of updates and
causally delivering them is described in Alg. 2. The processing
of the incoming update u only proceeds at user A if the RB

‘belongs’ to its NBIP1 (line 13). Pending updates that get
satisfied, will be added to Q1 (lines 14–15), and all (implicit
and explicit) missing prerequisites of u will be collected in
missing (lines 16–17). If there are no missing prerequisites,

Algorithm 1: Update Creation with Causality
1 input:
2 RB : belongs-to region; RC : set of regions covered; data: update data
3 initialization:
4 UIDA ← id of this user A
5 MA ← set of updates created by A
6 MQ1 ← set of all updates at level 1 queues at A
7 UpIDR ← {} /* set of reference updates to be included */
8 seqNum← nextSeqNum(RB ,MA)
9 foreach user B in creators(MQ1) do /* identify references */

10 UpIDR ← UpIDR ∪ latestUpdate(B)

11 foreach u ∈ UpIDR do /* make reference list more compact */
12 if ∃u′ ∈ UpIDR : u→ u′ then UpIDR ← UpIDR − {u}
13 msg ← 〈UPDATE ,UIDA, RB , seqNum, RC ,UpIDR, data〉
14 publishmsg /* send to gossiping module */
15 MA ←MA ∪msg
16 MQ1 ←MQ1 ∪msg

Algorithm 2: Update Receiving and Causal Ordering
1 input:
2 RB , RC , data: as in Alg. 1; UIDC : user id of the update creator;
3 seqNum: update sequence number; UpIDR : set of update references;
4 UIDR : user id of requestor in the response msg
5 initialization:
6 UIDA ← id of this user A
7 MQ0 ← set of all updates at level 0 queue at A
8 MQ1 ← set of all updates at level 1 queues at A
9 missing ← {} /* update IDs of missing prerequisites */

10 Upon receive
(msg=〈UPDATE ,UIDC , RB , seqNum, RC ,UpIDR, data〉) do

11 procUpdate(UIDC , RB , seqNum, RC ,UpIDR, data)

12 Procedure procUpdate(UIDC ,RB , seqNum,RC ,UpIDR, data)
13 if RB ∈ NBIP1A then
14 foreach u′ ∈MQ0 ∧ u′ /∈MQ1 do
15 if dependencies(u′) satisfied then MQ1←MQ1∪{u′}
16 missing ← missing ∪missingImplicit(u,MQ1)
17 missing ← missing ∪missingExplicit(u,MQ1)
18 if missing = {} then MQ1 ←MQ1 ∪ {u}
19 foreach UpIDi∈missing do publish〈REQUEST ,UpIDi〉

20 Upon receive (msg=〈RESPONSE ,UIDR,UIDC ,RB , seqNum,
RC ,UpIDR, data〉) do

21 procUpdate(UIDC , RB , seqNum, RC ,UpIDR, data)
22 if UIDR = UIDA then cancelmsg

u will be causally delivered and applied to its ‘Moderate
View’ (line 18). In case of outstanding missing prerequisites,
the VC algorithm typically waits till they are received. In a
disconnected environment with gossiping, this may lead to
starvation and indefinite waiting, since “gossips may die out”
[25]. To remedy this, CoNICE adds a reactive recipient-driven
procedure of requesting for those missing updates (line 19). The
REQUEST message identifies the update ID requested for,
and the requester’s ID (UIDR). Any user, not necessarily the
creator of the update, who has that update buffered, can respond
with a RESPONSE message, sent for the requester. When
receiving a response, user A processes it in a similar manner
to a normal UPDATE message, with one difference that if
the response was meant for A, A will cancel the update and
not propagate it in the network further (lines 20–22). CoNICE
ensures the following key property (proof in [58]):

Property 1. Causal Order of Moderate View. If user A
applies (and delivers) update u to its moderate view, then A
must apply every update causally preceding u before u.

C. Consensus Protocol

CoNICE provides a consensus procedure with the goal of
achieving agreement, so that users (e.g., first responders) have
the same consistent ‘Strong View’ of the situation (e.g., map).
The consensus solution in CoNICE builds on the One-Third
Rule (OTR) algorithm [12]. We extend OTR in several ways,

Algorithm 3: Consensus: Contributions
1 input:
2 RS : region for this session S; sS : slot number to be decided for S;
3 nS : user A’s estimation of population for S
4 initialization:
5 QA

1 ← user A’s current level 1 queue
6 QA

2 ← user A’s current level 2 queue
7 UIDA ← id of this user A
8 contribss ← {} /* contributions multiset at A */
9 decS = 〈DECISION ,UIDD , RS , sS , aD, nD, vD〉 ← {}

10 solvedS ← false /* as decS is empty initially */

11 vI ← QA
1 (RS , sS) /* Noop if null */

12 if vI 6= Noop then startAttempt(1, 1, vI)
13 Procedure startAttempt(a, r, v)
14 vS ← v
15 aS ← a
16 startRound(aS , r)

17 Procedure startRound(r)
18 rS ← r
19 publishmsg=〈CONTRIBUTION ,UIDA, RS , sS , aS , rS , ns, vs〉
20 contribsS ← contribsS ∪msg

21 Upon receive (msg=〈CONTRIBUTION ,UID,RS , sS , a, r ,n, v〉)
do

22 if RS /∈ NBIP2A then cancelmsg
23 switch a do
24 case a > aS do
25 foreach m ∈ contribsS do cancel and deletem
26 nS ← max(nS , n)
27 contribsS ← {msg}
28 startAttempt(a, r)

29 case a < aS do publishDS

30 if solvedS then
31 publishDS
32 cancel and deletemsg

33 switch r do
34 case r > rS do
35 foreach m ∈ contribsS do cancel and deletem
36 ns ← max(nS , n)
37 contribsS ← {msg}
38 startRound(r)

39 case r < rS do cancel and deletemsg
40 case r = rS do
41 contribsS ← contribsS ∪msg
42 ns ← max(nS , n)
43 if |contribsS | > (2/3)× nS then
44 vS ← smallest most frequent non-

Noop in contribsS
45 if all equal to V in contribsS excluding Noop

then decide(RS , sS , aS , vS)

mainly with regards to naming and decision invalidations. The
naming integration in CoNICE, makes sure all the interested
users (even with overlapping interests) are involved in every
consensus session relevant to them, which also systematically
reduces the consensus participants to the interested ones,
helping with faster reaching of decisions. CoNICE’s decision
invalidation procedures make sure to repair decisions if long-
term fragmentation cases happen in the network, and also if
the total and causal order of the final strong view are violated
even after the OTR-based agreement is reached.

The initialization and contribution procedures of CoNICE’s
consensus are described in Alg. 3. Each consensus session
is associated with a region-slot pair (<RS , sS>), deciding
the value v (i.e., the update to be placed at the slot) to be
inserted to Q2(RS , sS). To avoid scheduling complexities and
overhead, we run consensus sessions for individual slots rather
than the entire Q2 content. Each session comprises multiple
attempts, and each attempt comprises one or more rounds.
We add the notion of attempt, because we may need to run
another attempt of an already decided consensus session, due
to the nature of our environment. Users initiate consensus with
initial values (vI) equal to their Q1(RS , sS) content (lines

Algorithm 4: Consensus: Decisions
1 Procedure decide(UID,RS , sS , a, n, v)
2 if ¬solvedS then
3 if ∃s′ 6= sS ∧QA

2 (RS , s′) = v then
/* conflict with earlier existing decision */

4 if vI = v then startAttempt(aS + 1, 1, Noop)
5 else startAttempt(aS + 1, 1, vI)

6 solvedS ← true
7 vS ← v
8 foreach m ∈ contribsS do cancel and deletem
9 contribsS ← {}

10 publishmsg = 〈DECISION ,UIDA, RS , sS , a, n, vS〉
11 DS ← msg

12 else /* need to invalidate */
13 if msg 6= DS then
14 if a = aD then
15 if n > nD then v′

D ← v
16 else if n < nD then v′

D ← vD
17 else if n = nD then
18 if v ≥ vD then v′

D ← v
19 else if v < vD then v′

D ← vD

20 decide(max(UIDD, UID), RS , sS , a, n, v′
D)

21 if a > aD then
22 startAttempt(a, 1, vI)
23 decide(UID,RS , sS , a, n, v)

24 QA
2 (RS , sS)← v

25 foreach v′ ∈ QA
2 (RS) that violates causality with v do

26 reorder locally through deterministic sort

27 Upon receive (msg = 〈DECISION ,UID, RS , sS , a, n, v〉)do
28 if RS /∈ NBIP2A then cancel
29 decide(UID, RS , sS , a, n, v)

11–12). If user A has no such content, its initial contribution
will be a ‘Noop’ (or null). Any non-‘Noop’ contribution will
be sent for round 1, containing the value (lines 13–20). The
CONTRIBUTION message identifies the region, which will
enable the subscribers of the region to participate in the
consensus. Most consensus algorithms (including OTR), depend
on knowing the consensus population (nS) a priori. We enable
a bootstrapping mechanism based on reachability beaconing
(similar to [59]), for a user to get an estimate of the population;
the number of users eligible to participate for RS , are the
number of total subscribers of RS and its ancestor nodes in
accordance with the namespace hierarchy, e.g., Fig. 2. In a
highly fragmented network environment that we consider, there
is a chance this estimation will be incorrect. To remedy this,
we allow the user to update its estimation of nS , from the
contributions it receives, to have an upper bound estimate of nS .

It is important that users synchronize to be in the same at-
tempt and round as much as possible. Upon receiving a contribu-
tion (lines 21–45), the user jumps to the attempt and round num-
ber of the contribution message if it is larger than its own (lines
24–28, 36–40). This helps users use the good period fuller when
it occurs. Users remove obsolete contributions from the buffer,
which helps with scalability and reduces the number of mes-
sages circulating in the network. Received contributions from
older attempts and rounds will be discarded, with a possible
response providing the decision that was already made. When
the contribution is in the same attempt and round that the user
is in (line 40), the user adds it to its contribution list (line 41).
When user’s received contribution set reaches the cardinality
equal to 2/3×nS (one-third rule, line 43), the user will either: 1)
start a new round, sending a contribution with the value equal to
the smallest (i.e., earliest in terms of causality) most frequently

Fig. 6. Map of our Helsinki-
based simulation scenario

Helsinki

Helsinki southern

major district

Helsinki western

major district

Helsinki central

major district

Vironniemi Kampinmalmi Ullanlinna Taka-Töölö Lauttasaari

K
lu

u
v

i

K
ru

u
n

u
n

h
ak

a

K
aa

rt
in

k
au

p
u

n
k

i

E
tu

-T
ö

ö
lö

L
ap

in
la

h
ti

R
u

o
h

o
la

h
ti

K
am

p
p

i

Jä
tk

äs
aa

ri

K
aa

rt
in

k
au

p
u

n
k

i

P
u

n
av

u
o

ri

U
ll

an
li

n
n

a

K
ai

v
o

p
u

is
to

E
ir

a

M
u

n
k

k
is

aa
ri

…

…

…

City

Major

Districts

Districts

Neighbor-

hoods

Vironniemi

K
lu

u
v

i

Kampinmalmi

E
tu

-T
ö

ö
lö

L
ap

in
la

h
ti

Fig. 7. Namespace for our Helsinki-based simulation scenario

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60

F
ra

ct
io

n
of

 c
on

ta
ct

s

Duration (s)
Fig. 8. Contact duration CDF

received value (line 44), or 2) decided on a value, if all values
in the set are the same (line 45). The decision procedure is
described in Alg. 4. A decision message will be published as a
result of reaching a decision (line 10). The value in the decision
message, determines what value (update) should be inserted
into everyone’s Q2 in that particular region’s slot (lines 24–26).
Another way of reaching a decision is to receive a decision
message from someone who has already decided (lines 27–29).
CoNICE’s consensus protocol satisfies the following properties:

Property 2. Consensus. Every consensus session for a
<R, slot> pair in the Strong Views preserves the following:
1) C1: Validity. Any value decided is some user’s initial value.
2) C2: Update Validity. Any value decided is a valid update
that was created. 3) C3: Agreement. No two users decide
differently. 4) C4: Termination. Every correct user (i.e., that
does not permanently crash or become unreachable) eventually
decides. 5) C5: Integrity. No user decides twice.

Property 3. Total and Causal Order of the Strong View. If
user A applies update u to its moderate view at <R, slot>, then
eventually, for any other correct user B that applies update u′

to its moderate view at <R, slot>, we have u=u′. Additionally,
the Strong View at any user A, respects causal order.

In normal situation, supported by basic OTR, the above
properties are easy to prove [13]. Due to the nature of the
environment and extended assumptions we consider, there are
additional cases where the properties may get violated, which
we provide remedies for in Alg. 4 (proofs in [58]):

1. Loss of causality. Due to the lack of central orchestration
and coordination in CoNICE, there may be cases that decided
values for Q2 may not respect causality; e.g., having vi for
<R, si> and v′i for <R, si+k> while v′i→vi (i.e., vi depends
on v′i). We can completely prevent this by running consensus
sessions one by one, sequentially. However, this is not
efficient and can lead to starvation, especially considering how
time-consuming a consensus session can be. Thus, we provide
a pragmatic solution to recover from this violation. In case this
happens, the user swaps the values between slots, through a
deterministic sorting algorithm (lines 25–26). This invalidation
can be repaired entirely locally, without further messages.

2. Long-term physical fragmentation. Sometimes, more
“intense” cases of fragmentation can occur, going beyond the
“good periods” assumption of OTR: assume two disconnected
shelters in a region, each with a number of users trapped in
them, with no mules or paths between the two shelters for a
very long time (much longer than consensus durations). As a
result of such “long-term” fragmentation, users independently
beacon, create, disseminate, and solve consensus within their

partitions. In case a path appears subsequently between the
two shelters (i.e., by a mule), and messages get exchanged
between the two, the network will include two decisions with
different values for the same <R, s> pair. This will violate
the correctness of consensus. To remedy this, we make use of
UID and n fields of decision messages to invalidate decisions
already-made (lines 12–23), and upgrade the decisions of users
to one from the fragment with the higher population (and in
case of tie, the one with a higher user ID). This invalidation
can be repaired within the same attempt.

3. Duplicate decisions. There may be cases where the same
value is picked for two different slots; e.g., having vi for
<R, si> and vi for <R, si+k>. This shows that for some
reason, one value was picked for two slots. This can be caused
by divergences in users’ initial values and is not fixed by the
basic OTR. Thus, there will be a value that was missed during
the consensus rounds, and got replaced by the same value
picked in another session. As a result, consensus has to restart,
albeit as the next attempt. The user detecting the two duplicates,
will keep the first one (in this example, si), and starts a new
session to re-do consensus for the second slot (si+k). The only
catch is, if the initial value of the user for si+k (i.e., from its
Q1) is vi, it will pick ‘Noop’. Otherwise, that user will pick
Q1(R, si+k). This way, the consensus will be performed again,
giving vi less chance to be picked for si+k at the end (lines
3–5). This invalidation can be repaired with a new attempt.

VI. EVALUATION

To evaluate CoNICE, we perform a simulation based
on a partial map of the city of Helsinki (Fig. 6, [60])
using the ONE simulator [61]. The associated hierarchically-
structured namespace (Fig. 7) follows the “City→Major
districts→Districts→Neighborhoods” structure. Our simulation
environment consists of the three districts (and hierarchically,
the neighborhoods in them) highlighted in the Fig., and is
4500×3400 meters large. We model an emergency response
scenario where there are 30 pedestrian first responder users
(F-users), each dealing with one of the three districts: they are
moving in the area, indicate an interest in events in them, and
publishing updates for them. There is no networking infrastruc-
ture, but all users are equipped with D2D wireless capability.
To increase message delivery, we place additional benevolent
mules, namely 500 pedestrian civilians (C-users) and patrol
vehicles (V-users). V-users move faster, have higher buffer
capacity and wireless range than pedestrian users. Benevolent
mules participate in relaying and causal delivery of every
message they receive (regardless of region). However, they do

 0

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 F
-u

se
rs

of updates

EpidemicRouting+NR
EpidemicRouting+NR+NBIP (CoNICE)

Fig. 9. Relevant replication coverage CDF

 0

 150

 300

 450

 600

 750

 900

 0 500 1000 1500 2000 2500 3000

of

 d
el

iv
er

ie
s

Latency (s)

EpidemicRouting+NR
EpidemicRouting+NR+NBIP (CoNICE)

Fig. 10. Relevant delivery latency (cumulative)

 0

 0.25

 0.5

 0.75

 1

 0 0.02 0.04 0.06 0.08 0.1

F
ra

ct
io

n
of

 F
-u

se
rs

Buffer occupancy (MB)

EpidemicRouting
EpidemicRouting+NR

EpidemicRouting+NR+NBIP (CoNICE)

Fig. 11. Buffer occupancy with level 0

 0

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 F
-u

se
rs

of updates

VectorClock+NR+NBIP
VectorClock+NR+R

VectorClock+NR+NBIP+R (CoNICE)

Fig. 12. Relevant causal completeness CDF

 0

 150

 300

 450

 600

 750

 900

 0 500 1000 1500 2000 2500 3000

of

 c
au

sa
l d

el
iv

er
ie

s

Latency (s)

VectorClock+NR+NBIP
VectorClock+NR+R

VectorClock+NR+NBIP+R (CoNICE)

Fig. 13. Relevant causal delivery (cumulative)

 0

 0.25

 0.5

 0.75

 1

 0 0.05 0.1 0.15 0.2 0.25

F
ra

ct
io

n
of

 F
-u

se
rs

Buffer occupancy (MB)

VectorClock
VectorClock+NR+NBIP

VectorClock+R
VectorClock+NR+R

VectorClock+NR+NBIP+R (CoNICE)

Fig. 14. Buffer occupancy with levels 0 and 1

TABLE I: RESULTS FOR LEVEL 0

Metric/Approach Epidemic
Routing

Epidemic
Routing+NR

EpidemicRouting+
NR+NBIP (CoNICE)

F-
users

Average RCrel N/A 28.40 29.53
Average RCtot 73.60 74.76 29.53
Average RLrel (s) N/A 852.25 758.89
Average RLtot (s) 1,080.07 1,084.17 758.89
Average Buffer
Occupancy (MB) 0.07 0.07 0.02

Net-
work

Total Relays 49,612 50,123 48,612
Irrelevant Relays N/A 1,393 0

not participate in any consensus sessions. Mobility is based on
map routes, with waiting times of at most 2 min. Each F-user
creates three updates in the first half hour of the simulation
(thus, total of 90 uniquely created updates), randomly belonging
to one of the neighborhoods in their respective district. All
messages are 1 KB. We report on two sets of scenarios, one
with 1 hour in simulated time and another for 12 hours.

A. Experiments on Gossiping and Causal Ordering
To investigate level 0 and level 1 consistency, we use the

1-hour simulation scenario. There are a total of 59,558 D2D
contacts during this time, and the cumulative distribution of
contact durations is (partially) shown in Fig. 8. As the Fig.
shows, 95 percent of contacts lasted less than 1 minute and 70
percent less than 10 seconds, which demonstrates the highly
dynamic nature of the environment. The mobility and contact
distribution is the same for all experiments in this sub-section.

First, we focus on gossiping only (i.e., no causal ordering or
consensus). We define replication coverage (RC) as a metric
that shows how many of updates each node has received
(albeit out of order). Total RC (RCtot) denotes all updates
a user received, while relevant RC (RCrel) only considers
the relevant ones pertaining to the F-user’s tasks (can be at
most 30). Note that always RCrel≤RCtot, and with the right
interest profiling, it is expected that RCrel=RCtot. CoNICE’s
gossiping enhances epidemic routing. Fig. 9 shows the CDF
of RCrel. As Table I and Fig. 9 show, CoNICE achieves

TABLE II: RESULTS FOR LEVEL 1

Metric/Approach Vector
Clock

Vector
Clock+
NR+NBIP

Vector
Clock
+R

Vector
Clock+
NR+R

VectorClock+
NR+NBIP+
R (CoNICE)

F-
users

Average CCrel N/A 25.73 N/A 28.30 28.70
Average CCtot 39.86 25.73 68.30 71.16 28.70
Average CLrel (s) N/A 693.23 1088.16 800.18 729.31
Average CLtot (s) 1,093.01 693.23 1,119.02 1,084.79 729.31
Average Buffer
Occupancy (MB) 0.07 0.02 0.17 0.13 0.05

Net-
work

Total Relays 49,612 98,485 108,289 88,134 89,792
Irrelevant Relays N/A 0 N/A 2,648 0

better RCrel than ‘epidemic routing+NR’ (NR is name-based
region-ing for publications), as it adds name-based interest
profiling (NBIP). Fig. 9 shows that higher percentage of F-users
have received higher number of updates with CoNICE. It also
achieves better latency with more relevant deliveries (RLrel), as
shown cumulatively in Fig. 10 (at most can reach 30×30=900).
This is due to naming which makes relays and queued messages
more useful and relevant. This is also shown in Fig. 11, which
shows the buffer occupancy (MB) across all F-users at the
end of the simulation. Also, basic epidemic routing that uses
no naming (thus, the notion of ‘relevancy’ is not applicable),
receives lower RCtot than when enhanced with NR. Its total
relays value is similar to the rest while achieving less. CoNICE
achieves higher coverage with lower buffer and network cost.

We then bring causal ordering into play. CoNICE’s causal
ordering enhances Vector Clock with the use of NR, NBIP, and
Reactive mode (R), in addition to other minor optimizations
such as variable-length vectors. Table II provides a compar-
ison summary. Fig. 12 shows the CDF of relevant causal
completeness (CCrel), which denotes how many of updates
have been causally applied at F-users. As the Fig. shows,
CoNICE achieves better CCrel compared to alternatives that
enable NR, since CoNICE allows more selective use of causal
ordering overhead (through NBIP) and requesting for unfulfilled
prerequisites on demand using the reactive mode rather than
waiting. It also achieves better causal latency (CLrel) as Fig. 13

 0

 0.25

 0.5

 0.75

 1

 0 5 10 15 20 25 30

F
ra

ct
io

n
of

 F
-u

se
rs

of agreed updates

OTR+NR
OTR+NR+NBIP (CoNICE)

Fig. 15. Relevant agreement completeness CDF

 0

 150

 300

 450

 600

 750

 900

 0 2 4 6 8 10 12

of

 d
ec

is
io

ns

Latency (h)

OTR+NR
OTR+NR+NBIP (CoNICE)

Fig. 16. Relevant decision latency (cumulative)

 0

 0.25

 0.5

 0.75

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
ra

ct
io

n
of

 F
-u

se
rs

Buffer occupancy (MB)

OTR
OTR+NR

OTR+NR+NBIP (CoNICE)

Fig. 17. Buffer occupancy with levels 0–2

TABLE III: RESULTS FOR LEVEL 2
Metric/Approach OTR OTR+NR OTR+NR+NBIP (CoNICE)

F-
users

Average ACrel N/A 0.26 28.60
Average ACtot 0 0.93 28.60
Average ALrel (h) N/A 8.29 4.91
Average ALtot (h) None 7.51 4.91
Average Buffer
Occupancy (MB) 1.01 1.14 0.18

Net-
work

Total Relays 3,489,035 3,512,598 3,504,557
Irrelevant Relays N/A 77,086 0
Consensus Initiations 2,049 2,101 853
Consensus Decisions 0 28 858

shows, and reasonable network overhead in terms of the number
of relays (Table II). For cases without NR, Table II shows that
pure Vector Clock achieves the lowest RCtot. This is because
without name-based region-ing, every update can potentially
depend on all others, which results in an extremely high number
of references that have to be fulfilled and processed. Name-
based region-ing makes appendices more selective, having
to only depend on relevant updates. Fig. 14 shows CoNICE
achieves better buffer usage than most of the alternatives, except
‘VC+NR+NBIP’ which does not use reactive mode and achieves
lower completeness. As seen, using causal ordering leads to
slightly higher latency and buffer usage than pure level 0, but
achieves causal order consistency.

B. Experiments on Consensus
To investigate consensus, we extend our scenario to 12

hours with the total of 683,876 D2D contacts. We now enable
level 2, i.e., consensus, on top of levels 0 and 1. After the
passage of approximately one hour, users start to initiate
consensus sessions for the slots they have content for. We
compare CoNICE with the basic OTR, and show the impact
of adding NR and NBIP. The agreement completeness (AC)
metric shows how many of level 2 queue slots of users have
been filled with agreed-upon updates. Just as before, we have
ACrel and ACtot. As Table III shows, basic OTR fails to reach
any decisions, and thus has zero AC. ‘OTR+NR’ is slightly
better but is still not satisfactory. As the Table, and Fig. 15
(CDF of ACrel) show, CoNICE achieves a dramatically better
agreement completeness. Fig. 15 shows that with CoNICE, 90%
of F-users agree on 26 or more updates, while with ‘OTR+NR’,
75% of F-users agree on zero updates, in the entire 12-hour
simulation period. This is due to the fact that CoNICE uses
NBIP, which limits the consensus participants only to those that
are relevant, namely F-users dealing with neighborhoods within
the same district. Table III also shows that OTR and ‘OTR+NR’
initiate much higher consensus sessions than CoNICE (2,049
and 2,101 vs. 853), but reach significantly fewer decisions

(0 and 28 vs. 858). CoNICE even reaches more decisions
than it initiates, which shows the improvement contributed by
level 2 over level 1. This is because due to CoNICE’s faster
consensus convergence, some F-users can fill their slots in
Q2 the corresponding of which they do not have in Q1 (as
example in Fig. 5). Fig. 16 shows the cumulative latency
of reaching relevant agreement decisions (ALrel) across all
F-users. As shown, CoNICE achieves considerably more. As
can be seen (and previously shown in [12]), the latency of
reaching consensus decisions is on the scale of hours in an
intermittently-connected network, while CoNICE’s causal order
delivery is in the order of minutes (Table II). This shows yet
another benefit of going through level 1 first and then level
2: users will have a somewhat useful moderate view in the
order of minutes while dealing with the incident, while waiting
for possibly hours to reach consensus and build a strong view.
CoNICE achieves far better agreement completeness, using
the same level of relays as other alternatives (Table III), and
using much less buffer at F-users as shown in Fig. 17. These
results show that CoNICE significantly improves on OTR,
for achieving higher agreement completeness among users,
while also using less buffer capacity. These improvements of
CoNICE are greatly beneficial in practical situations such as
geo-tagging in emergency response, as first responders can
build their consistent strong views much faster and be able to
deal with their critical tasks more effectively and efficiently.

VII. CONCLUSION

We proposed CoNICE, a framework to ensure consistent dis-
semination of updates among users in intermittently-connected
environments. It exploits naming and multi-level consistency for
more selective and efficient causal ordering and consensus. Our
simulation experiments on an application of map-based geo-
tagging in emergency response shows that CoNICE achieves
a considerably higher degree of agreement completeness than
the state-of-the-art asynchronous consensus algorithm, OTR,
as it exploits naming, showing the applicability of CoNICE in
practical, intermittently-connected scenarios.

VIII. ACKNOWLEDGEMENTS

This work was supported by the US Department of Com-
merce, NIST (award 70NANB17H188) and US NSF grant
CNS-1818971. We thank our shepherd, Prof. Rute Sofia, for
her support and the reviewers for their valuable comments.

REFERENCES

[1] M. Jahanian, Y. Xing, J. Chen, K. K. Ramakrishnan, H. Seferoglu, and
M. Yuksel, “The evolving nature of disaster management in the internet
and social media era,” in 2018 IEEE International Symposium on Local
and Metropolitan Area Networks (LANMAN). IEEE, 2018, pp. 79–84.

[2] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, 2003, pp.
27–34.

[3] C. Boldrini, K. Lee, M. Önen, J. Ott, and E. Pagani, “Opportunistic
networks,” Computer Communications, no. 48, pp. 1–4, 2014.

[4] J. Liu, N. Kato, J. Ma, and N. Kadowaki, “Device-to-device communica-
tion in lte-advanced networks: A survey,” IEEE Communications Surveys
& Tutorials, vol. 17, no. 4, pp. 1923–1940, 2014.

[5] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to Reliable
and Secure Distributed Programming, 2nd ed. Springer Publishing
Company, Incorporated, 2011.

[6] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, p. 558–565, Jul. 1978.

[7] D. R. Cheriton and D. Skeen, “Understanding the limitations of causally
and totally ordered communication,” in Proceedings of the fourteenth
ACM symposium on Operating systems principles, 1993, pp. 44–57.

[8] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[9] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX
ATC’14), 2014, pp. 305–319.

[10] M. Swan, Blockchain: Blueprint for a new economy. ” O’Reilly Media,
Inc.”, 2015.

[11] F. Borran, R. Prakash, and A. Schiper, “Extending paxos/lastvoting with
an adequate communication layer for wireless ad hoc networks,” in 2008
Symposium on Reliable Distributed Systems. IEEE, 2008, pp. 227–236.

[12] A. Benchi, P. Launay, and F. Guidec, “Solving consensus in opportunistic
networks,” in Proceedings of the 2015 International Conference on
Distributed Computing and Networking, 2015, pp. 1–10.

[13] B. Charron-Bost and A. Schiper, “The heard-of model: computing in
distributed systems with benign faults,” Distributed Computing, vol. 22,
no. 1, pp. 49–71, 2009.

[14] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies, 2009, pp. 1–12.

[15] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66–73, 2014.

[16] J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. K. Ramakrishnan,
“Copss: An efficient content oriented publish/subscribe system,” in 2011
ACM/IEEE Seventh Symposium on Architectures for Networking and
Communications Systems. IEEE, 2011, pp. 99–110.

[17] I. Psaras, L. Saino, M. Arumaithurai, K. K. Ramakrishnan, and G. Pavlou,
“Name-based replication priorities in disaster cases,” in 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, 2014, pp. 434–439.

[18] S. S. Adhatarao, J. Chen, M. Arumaithurai, X. Fu, and K. K. Ramakrish-
nan, “Comparison of naming schema in icn,” in 2016 IEEE international
symposium on local and metropolitan area networks (LANMAN). IEEE,
2016, pp. 1–6.

[19] C. Ghasemi, H. Yousefi, K. G. Shin, and B. Zhang, “On the granularity
of trie-based data structures for name lookups and updates,” IEEE/ACM
Transactions on Networking, vol. 27, no. 2, pp. 777–789, 2019.

[20] M. Jahanian, J. Chen, and K. K. Ramakrishnan, “Graph-based namespaces
and load sharing for efficient information dissemination in disasters,” in
2019 IEEE 27th International Conference on Network Protocols (ICNP).
IEEE, 2019, pp. 1–12.

[21] J. R. G. Paz, “Introduction to azure cosmos db,” in Microsoft Azure
Cosmos DB Revealed. Springer, 2018, pp. 1–23.

[22] F. Houshmand and M. Lesani, “Hamsaz: replication coordination analysis
and synthesis,” Proceedings of the ACM on Programming Languages,
vol. 3, no. POPL, pp. 1–32, 2019.

[23] K. K. Ahmed, M. H. Omar, and S. Hassan, “Survey and comparison
of operating concept for routing protocols in dtn,” Journal of Computer
Science, vol. 12, no. 3, pp. 141–152, 2016.

[24] A. Vahdat, D. Becker et al., “Epidemic routing for partially connected
ad hoc networks,” 2000.

[25] Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing,”
IEEE/ACM Transactions on networking, vol. 14, no. 3, pp. 479–491,
2006.

[26] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an
efficient routing scheme for intermittently connected mobile networks,”
in Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant
networking, 2005, pp. 252–259.

[27] U. G. Acer, S. Kalyanaraman, and A. A. Abouzeid, “Weak state
routing for large-scale dynamic networks,” IEEE/ACM Transactions
on Networking, vol. 18, no. 5, pp. 1450–1463, 2010.

[28] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in
intermittently connected networks,” in International Workshop on Service
Assurance with Partial and Intermittent Resources. Springer, 2004, pp.
239–254.

[29] J. Borah, “Application of computational intelligence paradigm in the
probabilistic routing for intermittently connected network,” IOSR J.
Comput. Eng, vol. 8, pp. 32–36, 2012.

[30] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forwarding
in delay-tolerant networks,” IEEE Transactions on Mobile Computing,
vol. 10, no. 11, pp. 1576–1589, 2010.

[31] W. Moreira, P. Mendes, and S. Sargento, “Opportunistic routing based
on daily routines,” in 2012 IEEE international symposium on a world of
wireless, mobile and multimedia networks (WoWMoM). IEEE, 2012,
pp. 1–6.

[32] ——, “Social-aware opportunistic routing protocol based on user’s
interactions and interests,” in International conference on ad hoc networks.
Springer, 2013, pp. 100–115.

[33] H. Lenando and M. Alrfaay, “Epsoc: social-based epidemic-based routing
protocol in opportunistic mobile social network,” Mobile Information
Systems, 2018.

[34] R. Koch, R. Moser, and P. Melliar-Smith, “Global causal ordering with
minimal latency,” in International Conference on Parallel and Distributed
Computing and Networking, 1998, pp. 262–267.

[35] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Proceedings of
the 18th ACM conference on Computer and communications security,
2011, pp. 75–86.

[36] P. Papadimitratos and A. Jovanovic, “Gnss-based positioning: Attacks
and countermeasures,” in MILCOM 2008-2008 IEEE Military Communi-
cations Conference. IEEE, 2008, pp. 1–7.

[37] H. K. Alper, “Network time with a consensus on clock,” Cryptology
ePrint Archive, Report 2019/1348, 2019, https://eprint.iacr.org/2019/1348.

[38] A. Dimri, H. Singh, N. Aggarwal, B. Raman, K. K. Ramakrishnan,
and D. Bansal, “Barosense: Using barometer for road traffic congestion
detection and path estimation with crowdsourcing,” ACM Transactions
on Sensor Networks (TOSN), vol. 16, no. 1, pp. 1–24, 2019.

[39] J. FIDGE, “Timestamps in message-passing systems that preserve the
partial ordering,” in Proc. 11th Australian Comput. Science Conf., 1988,
pp. 56–66.

[40] F. Mattern, “Virtual time and global states of distributed systems,” Parallel
and Distributed Algorithms, pp. 215–226, 1989.

[41] M. Singhal and A. Kshemkalyani, “An efficient implementation of vector
clocks,” Information Processing Letters, vol. 43, no. 1, pp. 47–52, 1992.

[42] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “The
potential dangers of causal consistency and an explicit solution,” in
Proceedings of the Third ACM Symposium on Cloud Computing, 2012,
pp. 1–7.

[43] R. J. de Araújo Macêdo, “Causal order protocols for group communi-
cation,” in Proc. of Brazilian Symp. nn Computer Networks (SBRC),
1995.

[44] L. Lamport et al., “Paxos made simple,” ACM Sigact News, 2001.
[45] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable

distributed systems,” Journal of the ACM (JACM), vol. 43, no. 2, pp.
225–267, 1996.

[46] E. Gafni, “Round-by-round fault detectors (extended abstract) unifying
synchrony and asynchrony,” in Proceedings of the seventeenth annual
ACM symposium on Principles of distributed computing, 1998, pp. 143–
152.

[47] F. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal, “Consensus in one
communication step,” in International Conference on Parallel Computing
Technologies. Springer, 2001, pp. 42–50.

[48] M. Jahanian and K. K. Ramakrishnan, “Name space analysis: verification
of named data network data planes,” in Proceedings of the 6th ACM
Conference on Information-Centric Networking, 2019, pp. 44–54.

[49] L. Wang, S. Bayhan, J. Ott, J. Kangasharju, A. Sathiaseelan, and
J. Crowcroft, “Pro-diluvian: Understanding scoped-flooding for content
discovery in information-centric networking,” in Proceedings of the 2nd
ACM Conference on Information-Centric Networking, 2015, pp. 9–18.

[50] A. Datta, S. Quarteroni, and K. Aberer, “Autonomous gossiping: A self-
organizing epidemic algorithm for selective information dissemination
in wireless mobile ad-hoc networks,” in International Conference on
Semantics for the Networked World. Springer, 2004, pp. 126–143.

[51] T. Li, Z. Kong, S. Mastorakis, and L. Zhang, “Distributed dataset
synchronization in disruptive networks,” in 2019 IEEE 16th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS). IEEE,
2019, pp. 428–437.

[52] D. Tarr, E. Lavoie, A. Meyer, and C. Tschudin, “Secure scuttlebutt: An
identity-centric protocol for subjective and decentralized applications,”
in Proceedings of the 6th ACM Conference on Information-Centric
Networking, 2019, pp. 1–11.

[53] L. Wang, Y. Lyu, J. Liu, W. Shang, W. He, D. Wang, and G. Min,
“Naxos: A named data networking consensus protocol,” in 2018 IEEE
20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 2018, pp. 986–991.

[54] L. Lamport, “Password authentication with insecure communication,”
Communications of the ACM, vol. 24, no. 11, pp. 770–772, 1981.

[55] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in SP, 2007.

[56] C. A. Lee, Z. Zhang, Y. Tu, A. Afanasyev, and L. Zhang, “Supporting
virtual organizations using attribute-based encryption in named data
networking,” in CIC, 2018.

[57] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy,
and access control in information-centric networking: A survey,” IEEE
communications surveys & tutorials, vol. 20, no. 1, pp. 566–600, 2017.

[58] M. Jahanian and K. K. Ramakrishnan, “Conice: Consensus
in intermittently-connected environments by exploiting naming
with application to emergency response,” University of
California, Riverside, Tech. Rep., 2020. [Online]. Available:
https://www.cs.ucr.edu/∼mjaha001/CoNICE-TR.pdf

[59] D. Cavin, Y. Sasson, and A. Schiper, “Consensus with unknown partici-
pants or fundamental self-organization,” in International Conference on
Ad-Hoc Networks and Wireless. Springer, 2004, pp. 135–148.

[60] Wikipedia, “Subdivisions of helsinki.” [Online]. Available:
https://en.wikipedia.org/wiki/Subdivisions of Helsinki

[61] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn
protocol evaluation,” in Proceedings of the 2nd international conference
on simulation tools and techniques, 2009, pp. 1–10.

