
Cooperative Network-wide Flow Selection
Ran Ben Basat

Harvard University
ran@seas.harvard.edu

Gil Einziger
Ben Gurion University
gilein@bgu.ac.il

Bilal Tayh
Ben Gurion University

tayh@post.bgu.ac.il

Abstract—Network-wide per-flow measurements are instru-
mental in diverse applications such as identifying attacks,
detecting load imbalance, and performing traffic engineering.
These measurements utilize scarcely available flow counters
that monitor a single flow, but there are often more flows
than counters in a single device. Therefore, existing flow-level
techniques suggest pooling together the resources of all the
network devices. Still, these either make strong assumptions on
the traffic or require an excessive number of counters to track
all the network flows.

In this work, we present novel, readily deployable, distributed
algorithms that do not require device coordination or assump-
tions about the traffic. Through an extensive evaluation on real
network topologies and network traces, we show that our algo-
rithms attain near-optimal flow coverage in diverse conditions.
Specifically, our algorithms reduce the space required to monitor
all the flows by up to 4x compared to the best alternative.

I. INTRODUCTION

Network-wide measurements are fundamental in applica-
tions such as traffic engineering, routing, load balancing,
quality of service enforcement, and intrusion detection [35],
[23], [31], [34], [43], [46], [56], [58]. In such measurements,
Network Measurement Points (NMPs) monitor the network
and send measurement data to a centralized controller that
attains a bird-eye view of the traffic within the entire net-
work [8], [9], [10], [28], [30], [36], [39], [42], [57]. The
controller analyzes the collected data for diverse tasks such
as identifying superspreaders [40], [51], [56] and elephant
flows [13], estimating the flow-size distribution [51], [54], [55]
and entropy [25], and detecting micro bursts [27].

Measurement is challenging to implement due to the rapid
line rates which force network devices to use fast SRAM
memory, which is often too small to store all the flows [41].
Therefore, existing approaches often resort to approximation
to save space [15], [16], [26], [29], [14], [17], [45], [52], [19].
Alternatively, per-flow measurement [42], [50], [58] allows
accurate monitoring of a subset of the flows, which suggests
that one can collect network-wide flow-level statistics by
partitioning the monitoring task among the network devices.
Such exact measurements enable important measurement tasks
such as identifying elephant flows, hierarchical heavy hitters,
and super-spreaders or calculating the flow-size entropy and
distribution, without resorting to approximations.

The related work tries to encode as many flow entries as
possible in the high-performance SRAM memory [38]; how-
ever, some network devices may still lack the space to monitor
all the flows that traverse through them. Other works pursue

NMP 1
NMP 2

NMP 3

NMP 4

Observed
flows:

Observed
flows:

Observed
flows:

Observed
flows:

Fig. 1: An example of flow-based monitoring, three network
flows traverse a network of four NMPs. An optimal solution
can monitor all flows even if each NMP can track a single flow,
for example, by monitoring the blue (solid) flow in NMP 1,
the green (dotted) flow in NMP 2, the black (compound) flow
in NMP 3, the red (dashed) flow in NMP 4. Our goal is to
minimize the overlap between the flow-sets that are tracked by
different NMPs, and thereby maximizing the overall number
of monitored flows, without switch to switch communication.

some form of cooperation between the NMPs. For example, in
cSamp [50], the controller calculates an efficient assignment of
flows to NMPs to maximize the number of monitored flows
subject to the capacity limitations of each device. However,
cSamp’s controller requires the routing of all the flows to per-
form this calculation. Alternatively, Flow-Radar [42] shares
the limited flow-counters between multiple flows, and use
an offline network decode that processes the flow-counters
to maximize the number of decoded flows. Our work avoids
shared flow counters as they require decoding the flows from
all network devices. Instead, we treat the monitoring task as a
distributed covering problem where each NMP independently
selects a subset of the flows to monitor. The goal is then to
maximize the number of monitored flows network-wide, i.e.,
those that are tracked by at least one NMP.

A. Our Contribution

We introduce the Cooperative Flow selection (CFS) algo-
rithm where NMPs independently select which flows to mon-
itor without traffic maps, and without explicit coordination.
CFS leverages the Time To Live (TTL) field of the IP header to
reduce the overlap between the flow sets tracked by different
NMPs; thereby, we maximize the number of flows that are
monitored at least at one NMP. Intuitively, as the TTL value
is reduced by one for each routing hop, different NMPs that
observe the same packet, see it with a different TTL value.
The problem is as illustrated in Figure 1.978-1-7281-6992-7/20/$31.00 c©2020 IEEE

We evaluate CFS on four real network data, and two
network graphs and show that it attains a high (e.g., 95%)
flow coverage using a small amount of memory. Despite
its effectiveness with a small number of counters, reaching
perfect coverage using CFS requires a large amount of space.
Therefore, we suggest the CFS-FR algorithm that efficiently
integrates CFS with the previously proposed Flow Radar [42]
algorithm to attain perfect coverage (1.0). Our evaluation
shows that CFS-FR requires less memory than CFS to achieve
complete flow coverage and that both CFS and CFS-FR
offer a better space/coverage tradeoff compared to Flow-
Radar. Our algorithms can also estimate the total number
of flows in the measurement, which increases the accuracy
of identifying superspreaders and of estimating the flow’s
size distribution. This capability makes our algorithms useful
for a wide range of memory configurations where other
algorithms fail. In addition, our algorithms can detect routing
loops in real time, and without making assumptions about
the routing. In comparison, Flow-Radar only detects such
loops at the end of the measurement, and while assuming that
flows are always routed on shortest paths. Our experiments
also include applications such as identifying heavy hitters
and superspreaders, estimating the flow-size distribution, and
detecting routing loops. In all tasks, our algorithms are more
accurate than the alternatives.

II. PRELIMINARIES

This section provides the necessary background and ex-
plains the model and measurement tasks that we address.

A. Background

Network measurement solutions target software [44], [16],
[9], hardware [41], [52], [48], [42], or a combination of
the two [35]. The rapid line rate and traffic volume make
measurement challenging in all deployments, but the typical
bottlenecks vary between hardware and software. In hardware,
real-time processing of packets at the line’s rate requires the
usage of scarcely available SRAM memory. Further, hardware
switches have restricted memory access patterns and often
cannot perform even arithmetic operations such as multipli-
cation [48]. Software processing offers significant flexibility.
Despite this flexibility, software implementations are often
limited by processing power. That is, we cannot perform com-
plex processing for every packet as it results in excessive CPU
usage [44]. Therefore, software solutions often use some form
of packet sampling to reduce the processing overheads [16],
[44]. While some measurement algorithms target a single
device [52], and are useful for local optimizations, the current
trend is to offer network-wide solutions that provide a bird-eye
view of the entire system [36]. Such measurement is essential
for numerous SDN optimizations such as traffic engineering,
detecting load imbalance, and for finding traffic anomalies
such as port scans [40], and superspreaders [56].

Measurements can also be packet- or flow-based, and the
vast majority of measurements are packet-based [20], [48].

Flow-based measurements [50], [37], [32] focus on exact mea-
surement a subset of the network flows. Such measurements
often use hardware capabilities of per-flow counters [6]. Such
counters can monitor a flow and track its number of packets
or byte-size. Next, we survey leading flow measurement
techniques to position our work.

1) cSamp: cSamp [50] treats flow sampling as an opti-
mization problem. It receives routing paths of all flows and
the capacity constraints (number of flow counters) of every
NMP and searches for an optimal assignment of flows to
NMPs. Such an assignment maximizes the total number of
monitored flows without violating the capacity constraints for
NMPs. In practice, the flows are not always known prior to the
measurement, which implies that cSamp requires an additional
measurement mechanism to identify new flows and their paths.
Also, when new flows appear, cSamp may radically change the
assignment of flows to NMPs. Indeed, our algorithms can sup-
port cSamp, which in turn will guarantee that our assignment
is optimal. However, our evaluation shows that the benefit of
such coordination may be limited since our algorithms already
achieve near-optimal flow coverage in diverse settings.

2) Flow-Radar: Flow-Radar [42] (FR) shows that flow-
based measurement is feasible even within the restricted pro-
gramming model of programmable switches. FR maintains a
Bloom filter [24] (BF) on each NMP to approximate the set of
flows that passes through it. FR also maintains multiple (three,
in the suggested configuration) arrays of flow monitoring
entries (D). Each entry contains (i) a flow identifier (id), (ii)
packet and byte counts (pc, bc), and (iii) a flow count (fc).

Once a packet arrives, Flow-Radar first tests its flow identi-
fier for membership in the Bloom filter. If the flow identifier is
not a member, then it is added to the filter, and we know that
we encountered a new flow. In that case, FR uses multiple hash
functions (hi for array i), to select a single entry in each array.
Multiple flows may collide on the same entry, in which case
we bitwise-xor their identifiers into the flow id field. That is
we xor the newly arriving flow identifier (x) with D[hi(x)].id,
and increase the flow count (D[hi(x)].fc) by one. Next, we
update the packet and byte count fields according to the
arriving packet. This process is applied to each array.

The decoding process leverages on the reversibility of the
xor operation (we can undo an xor operation by performing
it again). At the end of the measurement, the controller
collects all entry arrays form all the NMPs and begins a
Network decode process. In that process, the controller seeks
an entry that only contains a single flow, and records the
flow identifier along with its packet and byte counts. If the
controller finds such entry for flow (x), it removes x from
the measurement by going over the arrays of all NMPs in
its path and remove x from their encoding. That is, FR xors
x’s identifier in the D[hi(x)].id field, reduces D[hi(x)].fc
by one and decreases D[hi(x)].pc, and D[hi(x)].bc by the
x′s packet- and byte-count respectively. By removing x,
FR can potentially find a new counter with a single flow
(D[hi(x)].fc = 1), and the process repeats until convergence
(that is, until there are no decodable flows).

Algorithm 1 provides pseudocode for the packet handling
of each NMP in FR. Notice that in Line 2 we test if x is
part of the monitored set (using the filter BF). If the flow
is not part of the set, we treat it as a new flow and add it
to the filter (Line 3). We also xor the flow identifier (x) in
a single entry of each array and increment the flow count
of that entry by 1 (Line 5 and Line 6). After Line 6, we
know that the flow is already within FR’s arrays; We increase
the packet count of corresponding entries by one and their
byte count by the packet’s size (w). Note that parameter t
represents the packet’s TTL, which is not used by Flow-
Radar. We keep it as part of the packet’s description so that
all pseudocode retains the same style.

Algorithm 1 The Flow-Radar Algorithm

1: procedure HANDLE PACKET(〈x, t, w〉)
2: if x /∈ BF then
3: BF.add(x)
4: for i = 0; i < nrArrays; i = i+ 1 do
5: D[hi(x)].id⊕ = x . bitwise-xor
6: d.fc = d.fc+ 1

7: for i = 0; i < nrArrays; i = i+ 1 do
8: D[hi(x)].pc+ = 1
9: D[hi(x)].bc+ = w

B. Model and Notations

The network data consists of a stream of packets S ∈
(U × N× N)

∗, where each packet 〈x, t, w〉 is associated with
a flow identifier x ∈ U , a time to live (TTL) value (t ∈ N),
and a weight (w ∈ N). Flow identifiers refer to 5-tuples that
include the source and destination IP addresses and ports as
well as the protocol field. In general, we can derive flow
identifiers from various packet header fields,

The network consists of z Network Measurement Points
(NMPs) R1, . . . Rz , and the routing for all packets from a
particular flow follows a sequence (an ordered set) of NMPs.
The notation O(x) denotes the ordered list of NMPs that
corresponds to the routing path of flow x. The TTL value
of a packet is reduced by one at each NMP. We assume that
the initial TTL value is the same for packets and starts from
255. The TTL IP header is an 8-bit field, which means that
its value is between 0 and 255. We note that this assumption
seems standard, for example, in data center scenarios where
the operator has complete control [21], [49]. In an ISP setting,
we may be able to set the TTL value at the ingress switch.
Finally, if we wish to avoid using the TTL, we can add a
small counter to packets at the first hop. each NMP observes
all the packets that pass through it with the appropriate TTL
values. Formally, NMP i sees a substream Si ⊆ S such that
∪zi=1Si = S (i.e., each packet passes through at least one
NMP). Our model is similar to that of [42], [13].

The size of a flow x ∈ U is its number of packets, or the
sum of byte-size of its packets, depending on the context.

Our model has a single controller that collects the data of all
NMPs at the end of the measurement. For ease of reference,
the notations used in this work are summarized in Table I.

Symbol Meaning
S The packet stream

NMP Network Measurement Point
z Number of NMPs
Si Traffic arriving at NMP i.
〈x, t〉 A packet from flow x with TTL t
O(x) The routing path for flow x.
U The universe of flow identifiers
fx The frequency of flow x ∈ U
θ Heavy hitter threshold
k Fat-tree parameter.
χ Number of entries per NMP.
ψ Superspreader threshold.
T (t) Target function, T maps a TTL value (t) into a point on the unit circle (0, 1).
h(x) Hash value of flow x, h maps a flow identifier (x) into a point on the unit circle (0, 1).
α Portion of memory allocated to CFS in the CFS-FR algorithm.

TABLE I: A list of symbols and notations

C. Measurement Tasks

Here, we describe the measurement task that we address.
1) per-flow monitoring: The goal of per-flow monitoring is

to monitor as many flows as possible accurately. That is, each
NMP can monitor a fixed number of flows, and NMP Ri can
monitor flow x if Ri ∈ O(x). That is, an NMP can only moni-
tor a subset of the flows that it routes. When an NMP monitors
a flow, it maintains a counter that measures that flow’s size.
It updates the counter for each arrival of the flow’s packets.

The flow coverage is the portion of flows that are monitored
by at least one NMP. A flow coverage of 1.0 means tracking all
flows, while a flow coverage of 0.8 refers to monitor 80%.

2) Flow Size Distribution: Our goal here is to estimate
the distribution of flow sizes across the network. That is, we
estimate the number of flows with each possible size. We
measure the quality of the flow size distribution estimation
using Root Mean Square Error, comparing each estimated
frequency to the actual number of flows with that size.

3) Super Spreaders: A Superspreader is a source IP ad-
dress that communicates with more than ψ destination IP
addresses. Such addresses are the origin of many flows and
are thus visible in flow-based measurements. We measure
the quality of a superspreader set by the F1 score. The
F1 score factors both false positives (wrongly identified
superspreaders), and false negatives (missed superspreaders),
as follows: 2 · (1−FPR)·(1−FNR)

(1−FPR)+(1−FNR) where FPR is the false
positive ratio, and FNR is the false negative ratio.

4) Heavy Hitters: Given a threshold θ, the heavy hit-
ters (also known as elephant flows) are all the flows
whose size is larger than θ. We use the F1 score
to determine the quality of a set of heavy hitters
(in the same manner as with superspreaders).

III. COOPERATIVE FLOW SELECTION

We now introduce our algorithm, named Cooperative Flow
Selection (CFS). The intuition behind CFS is to view the
network-wide flow-based measurement as a covering problem
where each NMP selects a subset of the flows (that traverse
through it) to monitor. Our goal is to maximize the total num-
ber of monitored flows among all the NMPs. For simplicity,
CFS follows a straightforward design pattern where the NMPs
reach independent decisions and do not interact with other
network entities. Such a design pattern reduces the complexity
of implementing CFS and makes it easier to deploy in practice.

A. NMP Structure and Operation

Our NMPs can monitor up to χ flows using their χ
monitoring entries. NMPs associate flows grades that depend
on their IDs and the TTL value. Each entry contains a flow
identifier, its packet and byte counts, and its grade. Once a
packet from a monitored flow arrives, we increase its packet
count by one and its byte count by the packet’s size. Our
work seeks the exact packet and byte count for monitored
flows. Therefore, each NMP must decide if to monitor a
flow once encountering its first packet. We achieve this by
using a pseudo-random but deterministic rule that assigns
a grade for each flow. The calculation of such scoring is
deterministic, which means that all packets of the same flow
receive the same grade. Each NMP monitors the χ minimal-
grade flows with the that it encounters. That is, if an NMP
already tracks χ flows and see a new flow x, it will only admit
(start monitoring) x if its grade is smaller than one of the
currently tracked flows. In this case, the NMP stops tracking
the previous flow and allocates the entry for x (setting the
packet count to one). Note that at each point in time, the set
of monitored flows received a counter at their first packet,
and thus the packet and byte counts are exact.
B. Determining the Grade

We achieve implicit cooperation by having NMPs assign
different grades to each flow. Specifically, we strive that
flows will only be monitored at one NMP when space is
tight, and thus we aim that a flow will not get low grades
from multiple NMPs. Intuitively, one can assign a pseudo-
random uniform grade at each NMP, but this solution still
enables “lucky” flows to receive low grades in multiple
NMPs. Instead, we leverage the TTL field to make sure
that the grades are anti-correlated to each other.

We assign flow (x) with a hash value (h(x)), uniformly dis-
tributed in (0, 1). We also assign each TTL value (t) with a tar-
get value (T (t)). The grade of each flow is defined as the dis-
tance between the flow’s hash and the target value. That is:

grade(〈x, t〉) = |h(x)− T (t)|.
The strategy for determining T (t) follows in Section III-C.

As target values are points on (0, 1), h(x) is compared to a
different point on each hop, and it cannot be simultaneously
very close to multiple different points. For example, if h(x) is
close to 0.5, then it is not too close to 0.2. Thus, NMPs grade
the same traffic differently and prioritize different flows.
C. Determining Target Values

Ideally, we would like the target values encountered by each
flow to be evenly spread along (0, 1) as it would maximize
the diversity of monitored flows. However, it is impossible
to distribute the target values evenly as the same target value
may apply to flows with different routing path lengths.

We suggest two approaches for determining the target val-
ues. The Greedy approach attempts to maximize the minimal
distance between the target values for an unknown path length,
while Folding implicitly assigns a large number of target val-
ues for each TTL to evenly spread the points for each flow.

1) The Greedy Approach: We start by setting the first target
value at T (255) = 0.5. Then we determine T (254) to be the
point with maximal distance from T (255), e.g., T (254) =
0.25 or 0.75. We continue with T Similarly, T (253) is a point
that maximizes the minimal distance to T (255) (e.g., 0.75).

Simply put, this selects the next target to be farthest from
previous targets. The greedy strategy is not optimal but it is
simple to implement, and works reasonably well empirically.
That is, we can pre-compute the target values, and store them
on a small hash table.

2) The Folding Approach: Since the Greedy approach does
not distribute the target values uniformly for most routing
lengths, we suggest the Folding approach which behaves better
for varying routing path lengths.
Determining Target values: For a hop number y, we deter-
mine the target values to be: T (254 − y) = 2−(y+1), that is,
0.5 for TTL = 254, 0.25 for TTL = 253, and so forth.

In the Folding approach, the target values are not compared
to the flows hash value (h(x)), but to modified hash values
h̄(x, t) for flow x, and current TTL t. These values are
computed as we explain below.
Computing modified hash values: Given h(x), and de-
noting y = 254 − t, we define h̄(x, t) , h(x)
mod 2−y . For example, h̄(x, 254) = h(x), h̄(x, 253) ={
h(x) if h(x) < 0.5,

0.5− h(x) otherwise.
.

Scaling the grade: Since T (254 − y) = 2−(y+1) and
h̄(x, 254 − y) is in the range [0, 2−y], we need to scale the
distance to enable comparison of flows that visit the NMP
with different TTL values. Therefore, we define the grade as

grade(〈x, t〉) ,

{
min(1− h(x), h(x)) if TTL=255,
2254−t ·

∣∣h̄(x, t)− T (t)
∣∣ otherwise.

Intuition: We would like to allow each additional NMP down
the path of a flow to have a greater chance of tracking it, if
it is not yet monitored. Using the Folding approach, the first
hop tracks flows for which h(x) ≈ 0 or h(x) ≈ 1. The next
hop aims to track those that are not tracked yet, so it “folds”
the range to consider flows for which h(x) ≈ 0.5. Similarly,
the third hop should monitor flows for which h(x) ≈ 0.25
or h(x) ≈ 0.75 and the fourth hop monitor flows for which
h(x) ≈ 0.125, 0.375, 0.625, 0.875. By folding the range once
more we get that flows for which h is furthest from the values
that the previous hops tracked are more likely to be tracked.
Figure 2 illustrates this approach.

D. Estimating the flow coverage

Estimating the obtained flow coverage is useful to analyze
the collected data better. For example, superspreaders are
source IP addresses that communicate with more than ψ
destination IP addresses. If the flow coverage is 0.2, it is best
to report source IPs that communicate with 0.2ψ destination
IPs in the collected data. Thus, estimating the flow coverage
increases our accuracy in some measurement tasks.

The controller knows how many different flows were se-
lected, but not many flows appeared in the measurement. We

(a) first hop (b) second hop (c) third hop (d) fourth hop
Fig. 2: A graphical explanation of the Folding approach.
For TTL = 255 the flows that are closest to 0 and 1 are
selected. In the next hop, we select the flows with hash
that’s closest to the middle (0.5), and then (TTL = 253)
we fold one time and track the flows closest to the middle
(0.25 and 0.75), similarly in the fourth hop we fold two
times and we track those in the middle.

suggest estimating the total number of flows in the measure-
ment by borrowing the technique from [13]. The technique uti-
lizes mergable count distinct (CD) algorithms (e.g. [33], [12])
to estimate the number of distinct packets in the network.

CD algorithms monitor some observable (e.g., the minimum
hash value) of all the monitored flows. If the minimum value
is 0.01, then we estimate that there are 100 different flows. We
use multiple such estimators to improve accuracy. The work
of [13] suggests to use a mergeable count distinct instance
in each NMP, and merge these at the controller to estimate
the total number of packets within the measurement. Thus,
we trivially extend the method to estimate the total number
of flows. Count distinct algorithms support three methods: (i)
add that adds a new flow, (ii) query that returns an estimation
of the number of distinct flows added, and (iii) merge that
merges two instances of the algorithms into an instance that
estimates the total number of distinct items in both algorithms.

E. Handling Single Hop Routing Paths

Consider flows that only traverse a single NMP. Such flows
are the least likely to be selected by CFS as they only get one
chance. However, selecting these flows never decreases the
total number of monitored flows as there is only one NMP
that can monitor them. Therefore, we always monitor single
NMP flows at the expense of other flows. NMPs identify as
their destination IP address is the same as the next hop.

F. The CFS algorithm

Algorithm 2 presents a pseudocode of CFS. Here, Line 2
updates a count distinct algorithm with the flow identifier.
Line 3 handles monitored flows and increments their packet
and byte counters. The notation D is a collection of entries,
where each entry contains the flow identifier, grade, packet
counter, and byte counter. Line 7 calculates the hash value of
the packet, following with the grade calculation in Line 8. In
this pseudocode, we always add the packet to D, but then
in Line 10, we evict an entry if the size of D becomes
larger than χ, that is at the end of HandlePacket, the size
of D is at most χ. The method Evict (in Line 11) evicts the
minimally graded item. To implement the short routing paths
optimization, we design the evict method to avoid evicting
flows that have a single-hop path. For simplicity, we avoid
the additional notation to describe the evict method formally.
However, our CFS implementation includes this optimization.

Algorithm 2 Cooperative Flow Selection (CFS)

1: procedure HANDLE PACKET(〈x, t, w〉)
2: CDAlg.add(x).
3: if x ∈ D then
4: D[x].packets+ = 1
5: D[x].size+ = w
6: return
7: hx = h(x)
8: grade = Distance(h(x), T (t))
9: D.add(Entry(x, grade, 1, w))

10: if D.size() > χ then
11: D.Evict()

G. Limitations of CFS and the Synergy with Flow-Radar

Through experimentation, we discover that CFS is almost
optimal until we reach high flow coverage values (e.g., 0.95).
However, closing the gap between 0.95 and 1.0 is inefficient
(in some cases, it requires doubling the per-NMP space). Since
it is costly to double (or more) the memory only to capture
the last 5% flows, CFS may become ineffective when targeting
full coverage. Intuitively, while we can increase the per NMP
memory until 100% of the flows are monitored, doing so is
ineffective since there is a small number of flows that receive
relatively bad grades from all the NMPs in their path. Thus,
if we are to monitor these flows, we also need to monitor all
the flows that received better grades.

Surprisingly, Flow-Radar’s ability to remove already iden-
tified flows from the measurement allows us to do just that.
That is, we can run Flow-Radar in parallel to CFS, and
then remove the flows that were monitored by CFS from
Flow-Radar. That is, we get to run Flow-Radar only on
the flows that CFS fails to capture. That is, if a flow is not
tracked by CFS we add it to Flow-Radar. Similarly if a the
current flow replaces a higher-grade flow, we add the kicked
flow to Flow-Radar with its current packet and byte counts.

Before we decode flows from Flow-Radar, we remove the
CFS flows from all the Flow-Radar instances similarly to
Flow-Radar’s network decode process. That is, we do the
following: (i) xor their identifier from the identifier field,
(ii) reduce the number of xor-ed flows by 1, and (iii)
update the packet and byte counts to remove the packet
and byte count of the CFS flow. Doing that brings us to
a point where we have Flow-Radar instances that monitor
only the flows CFS misses. We proceed with these in-
stances normally and decode the missed flows according to
Flow-Radar’s network decode algorithm.

Algorithm 3 provides pseudo-code for the unified
CFS+Flow-Radar (CFS-FR) algorithm. As shown, we use both
algorithms in parallel, and the good synergy happens during
the controller’s decode phase. Intuitively, when using CFS-FR,
we need to decide how much memory to allocate to CFS, and
how much memory to allocate to Flow-Radar. The parameter
α ∈ (0, 1) determines the ratio between the two algorithms.
Specifically if CFS-FR is allocated χ entries, we allocate α ·χ
entries to CFS, and (1− α) · χ entries to Flow-Radar.

1) Optimization: Although Algorithm 3 is simple, it can be
slightly optimized. Intuitively, the Bloom filter of the Flow-

Algorithm 3 Unified CFS + Flow-Radar (CFS-FR) Algorithm

1: procedure HANDLE PACKET(〈x, t, w〉)
2: CFS.HandlePacket(〈x, t, w〉)
3: if a flow is not tracked by CFS then Add it to FR

Radar instances needs to handle all the flows in the measure-
ment even when we allocate Flow-Radar with a small number
of entries. A simple optimization is to break the black-box
abstraction and implement a method to move flows between
CFS and Flow-Radar with multiple packets. That method dif-
fers from the handle packet method as it increments the packet
and byte counts by the entry’s value. We start by monitoring
all flows with CFS and do not update Flow-Radar. However,
when CFS evicts a flow (see line 11, in Algorithm 2), we
insert that flow to Flow-Radar that continues to monitor future
packets of that flow. That is, our modified Flow-Radar instance
only monitors flows that we moved to it. Thus, we only need
the Bloom filter for the flows observed by Flow-Radar, which
enables us to use a smaller Bloom filter for Flow-Radar.
H. Implementing CFS in practice

The CFS and CFS-FR algorithms are simple and can be
implemented in software switches such as OVS with minimal
overhead. Specifically, we can use the q-MAX algorithm [18]
to track the χ flows with the smallest grade with O(1)
worst-case update time per-packet. Our algorithms are also
readily deployable on PISA programmable switches using
suitable modifications. First, we note that almost all operations
(including the Folding approach) can be implemented using
simple supported operations such as hashing, addition, and
bitwise-shift and bitwise-and. The main challenge for such
deployment is in finding the minimally graded flow. Indeed,
finding the minimum in a large counter-set is a problem in
PISA switches [48], [52]. We overcome this difficulty as
follows. We store the counters in a d × w matrix such that
each column is stored in the memory of a pipeline stage. Each
flow is hashed into one of the d rows, and each row tracks
the w flows with the minimal grade mapped to it using a
rolling maximum (see [52]). That is, if the current flow has
a higher grade than another in its row, we replace the flow,
adding the previously stored one to the packet header vector,
which would trigger a sequence of displacements to maintain
the structure. Leveraging the Balls-and-Bins framework, we
can derive bounds on d and w to get that the χ flows with
the minimal grade will be stored except with a user-defined
probability. That is, for any desired success probability (e.g.,
99.9%), we can set d,w such that no more than w flows among
the χ with minimal grade are mapped into any specific row.
Therefore, the hardware deployment requires slightly more
than χ counters for the same performance, and the actual
number depends on the required success probability.

The following theorem, which follows from the analysis
of [53, Theorem 7], assumes that the algorithm is allocated
with d rows (corresponding to per-stage memory) and bounds
the required w (that corresponds with the number of pipeline
stages) required for tracking all of the χ flows (i.e., it will
be identical to the software implementation). For example,

if we have χ = 10000 with probability 90% (and thus,
δ = 0.1) and have d = 1010 then we use w = 27. Having
more space (larger d) reduces w; e.g., with d = 10000
we require just w = 11. Further, we note that a failure to
capture a flow at the switch does not mean that it will not be
tracked as it may be monitored by a different switch, and that
the additional space used on the switch allows tracking addi-
tional flows and potentially increasing the coverage further.

Theorem 1. Let d ∈ N+, let δ > 0 be a user-defined error
probability and let

w =

e · χ/d if χ > d ln(2d/δ)

e · ln(2d/δ) if d · ln δ−1/e ≤ χ ≤ d ln(2d/δ)
1.3 ln(2d/δ)

ln
(
d
χ·e ln(2d/δ)

) otherwise
.

Then no more than of the χ top-score flows are mapped into
the same row, and thus the algorithm tracks all of them, with
probability at least 1− δ.

I. Computing the Optimal Flow Coverage

In our experiments, we would like to quantify the gap be-
tween our algorithms and the optimal attainable coverage. We
assume knowledge of the routing of all flows, and the possibil-
ity to set the monitored flows by each switch. We optimize the
flow coverage under the capacity constraint of the switches.

To that end, we model the network as a directed graph
G = (V,E) (such that each link is modeled as two directed
edges) and consider functions c : E → N, M : V → N, such
that c(e) denotes the number of flows whose paths go through
e and M(v) denotes the number of flows a switch v can
track (its memory). We further denote by S(v) the number
of flows that originate from v (i.e., that are connected to v).
We build a flow network N = (G′, c̄, s, t), where
G′ = (V ∪ {s, t} , E ∪ {(s, v) | S(v) > 0} ∪
{(v, t) |M(v) > 0}), and ∀(s, v) : c̄((s, v)) = S(v),∀(v, t) :
c̄((v, t)) = M(v) and ∀e ∈ E : c̄(e) = c(e). That is, we add
two artificial nodes s, t, connect s to all switches that have
end-hosts, and connect all stateful switches to t. The capacity
of an arc (s, v) is the number of flows that originate from s
and the capacity of (v, t) is the memory of switch, M(v).

Using the above network, we can run a Max Flow algorithm
such as Edmonds-Karp or the state of the art algorithm by
Orlin [47] to efficiently compute the number of flows that
the optimal solution can track. Specifically, the flow value
f((v, t)) tells us how many flows the switch v monitors and
f((s, v)) is the number of monitored flows whose source is s.

J. Detecting Packet Loss and ’Black Holes’

When the same flow is monitored in multiple NMPs (e.g.,
when there is enough per-NMP space), a possible difference
between their counts is either due to packet loss or to in-flight
packets that passed a one NMP but did not reach the other
yet. Distinguishing between transient packets and actual loss
is possible once the flow terminates, or when we know the
characteristics of the network (e.g., its maximal delay).

In networking, black holes refer to places in the network
where incoming or outgoing traffic is silently discarded due

215 216 217 218 219 220 221 222 223

 Number of Flows
0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
ov

er
ag

e

218 219

(a) FatTree with k = 8

215 216 217 218 219 220 221 222 223

 Number of Flows
0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
ov

er
ag

e

217 218

(b) GEANT
Optimal
CFS-FR (fold)

CFS-FR (greedy)
CFS (fold)

CFS (greedy)
Flow-Radar

Fig. 3: Effect of the number of flows on the flow coverage
for fixed per-switch memory of 10,000 flow entries.

to some fault or a misconfiguration. By periodically collecting
the traffic from all NMPs, the controller can infer the existence
of a black hole by finding a flow that is monitored by two
different NMPs but only increased its packet count in one
of them. Another indicator for short-lived black holes is a
large number of lost packets on a specific flow that drastically
exceeds the normal loss.
K. Detecting Routing Loops

We extend CFS to detect suspected routing loops. Intu-
itively, in the case of a routing loop, the same NMP would get
the packets of a monitored flow multiple times with different
TTL values. Thus, to detect this case, we assign an additional
byte to each flow monitoring entry, which documents the TTL
of the monitored flow. CFS suspects a routing loop when
encountering packets of a monitored flow with a different TTL
field. In that case, it can notify the controller of a possible
routing loop. Note that this is not a definite indication as
routing changes can also cause such an event. However, when
we encounter a routing change, then the report of suspect
routing loops would cease once the system stabilizes. Thus, we
only conclude that a loop exists if we observe several distinct
TTL values for the same flow within a short timeframe.

IV. EVALUATION

In this section, we evaluate CFS and CFS-FR and explore
their benefits and limitations compared to prior works. Sec-
tion IV-A explains the methodology of our evaluation, while
Section IV-B contains the evaluation itself.
A. Methodology

1) Evaluated Algorithms: We compare our CFS, and CFS-
FR algorithms (denoted CFS, and CFS-FR respectively) with
Flow-Radar [42] (denoted Flow-Radar), and the recent heavy
hitter identification algorithm [13] (DUS-HH). The notations
CFS (fold) and CFS (greedy) denote the CFS algorithm with
the fold and greedy approaches respectively. We configure
the CFS-FR algorithm with α = 0.9, which means that we
allocate 90% of the entries to CFS, and 10% to Flow-Radar.
We configure Flow-Radar with the authors suggested config-
uration of three hash functions. We compare our algorithm
with Flow-Radar for a given number of per-switch entries.
Each entry in our algorithm has a flow ID, grade, packet
count and byte count. In Flow-Radar, instead of grade, entries

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
ov

er
ag

e

215.5 216 216.5 217

(a) Chicago

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
ov

er
ag

e

217 217.5 218

(b) New York

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
ov

er
ag

e

211.5 212 212.5

(c) Univ

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
ov

er
ag

e

217 217.5 218

(d) DDoS
Optimal
CFS-FR (fold)

CFS-FR (greedy)
CFS (fold)

CFS (greedy)
Flow-Radar

DUS-HH

Fig. 4: Flow coverage when varying the per switch
memory for the Fat Tree network topology (K=8).

have flow-count. Therefore, we estimate that each entry in
Flow-Radar has a similar byte-size to ours, making this a fair
comparison. Flow-Radar also requires additional memory for
its Bloom filters. In our implementation, we replace the filters
with (false-positive free) lists and do not consider this space
in the comparison. We compare the algorithms with the same
number of per-switch entries. The actual memory required for
their representation is similar for equal number of entries.

We denote by Optimal, the optimal attainable flow coverage
as calculated by our algorithm in Section III-I.

2) Network Topology: We evaluate our algorithms on two
different networks; a Fat Tree topology, which is common
in data centers, and the GEANT pan-European research and
education network [7]. The GEANT network consists of 40
switches, ordered in a mesh without an apparent hierarchical
structure. The Fat Tree topology uses parameter k = 8 [5]
and consists of 80 switches, and 128 hosts. In our evaluation,
we assume that all switches participate as NMPs.

3) Communication Pattern: We evaluate all-to-all com-
munication pattern; in the Fat Tree topology, we select
two hosts at random and route the flow on a shortest
path between them. In GEANT, we randomly choose two
switches and route the flow between them.

4) Routing: We use shortest path routing and select
one of the shortest paths at random for each flow when
there are multiple possible shortest paths between its
source and destination.

5) Datasets: We used the following datasets:
(a) The CAIDA Anonymized Internet Trace 2016 [1], from

the Equinix-Chicago high-speed monitor, denoted Chicago.
(b) A data center trace [22], denoted by Univ.
(c) The CAIDA Anonymized Internet Trace 2018 from New

York City, denoted by New York [2].

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
ov

er
ag

e

216 216.5 217

(a) Chicago

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
ov

er
ag

e

217 217.5 218

(b) New York

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
ov

er
ag

e

212.5 213 213.5

(c) Univ

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 C
ov

er
ag

e

218 218.5 219

(d) DDoS

Fig. 5: Flow coverage when varying the per switch memory for the GEANT pan-european network.

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(a) Chicago

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(b) New York (c) Univ

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(d) DDoS

Fig. 6: F1 score for identifying superspreaders with ψ = 1000, in the Fat Tree network topology (K=8).

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(a) Chicago

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(b) New York

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(c) Univ

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(d) DDoS

Fig. 7: F1 score for identifying superspreaders with ψ = 1000, in the GEANT pan-European network.

(d) A Cyber attack trace from [3], denoted DDoS.
Each flow in the input packet trace is routed on a path which
is selected as explained above.
B. Experimental Evaluation

1) Number of Flows and Flow Coverage Trade-off: Fig-
ure 3 shows results for synthetic traces where each flow has
a single packet, and we vary the number of flows for a fixed
number of entries per NMP. As illustrated,the attained flow
coverage depends on the number of flows. Notice that Flow-
Radar performs very poorly when there are too many flows
whereas all our algorithms are near optimal for the entire
range. Intuitively, Flow-Radar’s network decode procedure
fails when there are too many flows, while our cache based
approach monitors as many flows as it can. Notice that CFS-
FR in both fold and greedy approaches intersects with the
optimal line and that CFS intersects with the optimal in the
Fat-Tree topology, but is slightly sub-optimal in the GEANT
topology, yet the fold approach is slightly better than the
greedy approach.

2) Per NMP Space and Flow Coverage Trade-off: Next,
we vary the number of per-NMP flow entries, and study the

attained flow coverage in real network traces. In the Fat Tree
topology (Figure 4), notice that all our algorithms are near-
optimal for the entire range. The CFS-FR approach is slightly
worse than the CFS approach when there are too many entries,
since the 10% memory allocated for Flow-Radar is useless
for the range. Yet, it is slightly better when there is enough
memory, and closely follows the optimal coverage all the way
to full coverage. In contrast, the CFS method struggles to
move from very high coverage (≈ 0.95) to full flow coverage.
where the fold method, is slightly better than the greedy
method. Flow-Radar has two phases, either it is useless when
there is not enough space or it attains a full measurement when
there is enough space. Also, note that DUS-HH only captures
the heavy hitter flows which explains its low flow coverage.

Figure 5 shows the results for the GEANT pan-European
network topology. As can be observed, the trends in this topol-
ogy are very similar to those of the Fat-Tree topology despite
the fundamental difference in network structure. However,
observe that the number of required per-NMP flow entries also
depends on the network topology (e.g., Flow-Radar requires
slightly more space in GEANT than in Fat Tree).

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
100

101

102

103

104

105

106

107

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r

(a) Chicago

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
100

101

102

103

104

105

106

107

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r

(b) New York

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
100

101

102

103

104

105

106

107

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r

(c) Univ

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
100

101

102

103

104

105

106

107

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r

(d) DDoS

Fig. 8: Root Mean Square Error (RMSE) for flow size distribution estimation in the Fat Tree network topology (K=8).

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
100

101

102

103

104

105

106

107

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r

(a) Chicago

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
100

101

102

103

104

105

106

107

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r

(b) New York

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
100

101

102

103

104

105

106

107

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r
(c) Univ

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
100

101

102

103

104

105

106

107

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r

(d) DDoS

Fig. 9: Root Mean Square Error (RMSE) for flow size distribution estimation in the GEANT pan-European network.

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

215.5 216 216.5

(a) Chicago

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

217 217.5 218

(b) New York

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

211.5 212 212.5

(c) Univ

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

217 217.5 218

(d) DDoS

Fig. 10: F1 score for identifying heavy hitters with θ = 10000, in the Fat Tree network topology (K=8).

3) Superspreaders: Next, we evaluate the performance of
algorithms when identifying superspreaders. Such measure-
ments are often used by intrusion detection systems [56].
Figure 6 illustrates the results for the Fat-Tree topology,
and Figure 7 for the GEANT network. Here all the variants
of our algorithms achieve similar and considerably better
performance than Flow-Radar. CFS approaches are slightly
better than CFS-FR since Flow-Radar is inefficient for this
task. Intuitively, we can identify the vast majority superspread-
ers even when do not monitor every single flow. Thus, our
approaches are considerably more robust than Flow-Radar.
Specifically, our algorithms reduce the needed space for the
task by at least 50%, and up to 97%.

4) Flow Size Distribution: We now evaluate the root mean
square error (RMSE) when estimating the flow size distribu-
tion on the Fat Tree (Figure 8), and on the GEANT network
(Figure 9). First, observe that Flow-Radar is accurate when it
has enough memory and is otherwise useless while CFS and
CFS-FR are useful for the entire range. Notice that in some
cases Flow-Radar outperforms CFS for some of the range.

This is mainly because Flow-Radar can be 100% accurate
when CFS has very high (but not perfect) coverage. However,
CFS-FR is better than Flow-Radar for the entire range.

5) Heavy Hitters: We now focus on identifying the heavy
hitter flows that transmit more than θ = 10000 packets. Fig-
ure 10 shows results for the Fat Tree topology and Figure 11
shows results for the GEANT topology. First observe that
when space is limited DUS-HH is better than all algorithms,
as it efficiently monitor just the heavy hitter flows. When there
is enough space, the flow based algorithms are better as they
provide near exact measurement. Here, CFS and CFS FR out
perform Flow-Radar for the entire range.

6) Loop detection: In the next experiment, we inject ran-
dom routing loops between two of the NMPs on the flow’s
path. We evaluate how many of these potential loops are
detected by CFS when varying the per-switch memory. One
fundamental benefit of CFS compared to the related work is
its ability to report routing loops in real time.

Figure 12 shows results for the Fat-Tree topology, while
Figure 13 shows the results for the GEANT network. We
detect more loops as we increase the amount of per-switch

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

216 216.5 217

(a) Chicago

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

217 217.5 218

(b) New York

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

213 213.5 214

(c) Univ

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

218 218.5 219

(d) DDoS

Fig. 11: F1 score for identifying heavy hitters with θ = 10000, in the GEANT pan-European network.

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Lo
op

s F
ou

nd

(a) Chicago

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Lo
op

s F
ou

nd

(b) New York

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Lo
op

s F
ou

nd
(c) Univ

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Lo
op

s F
ou

nd

(d) DDoS

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Lo
op

s F
ou

nd

CFS (fold) CFS (greedy)
Fig. 12: Portion of detectable loops in the Fat Tree network topology. (K=8).

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Lo
op

s F
ou

nd

(a) Chicago

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Lo
op

s F
ou

nd

(b) New York (c) Univ (d) DDoS

29 210 211 212 213 214 215 216 217 218 219

 Per Switch Memory [entries]
0.0

0.2

0.4

0.6

0.8

1.0

Lo
op

s F
ou

nd

CFS (fold) CFS (greedy)
Fig. 13: Portion of detectable loops in the GEANT pan-European network.

resources, and require more space for loop detection than for
providing full flow coverage. We require more resources be-
cause not all the NMPs on the flow’s path witness the loop.

V. DISCUSSION

Our work shows that per-flow monitoring is an attractive
measurement option for numerous network-wide measurement
tasks including identifying the heavy hitters [9], hierarchical
heavy hitters [16], estimating the flow size distribution [11],
estimating the number of distinct flows [33], identifying
superspreaders [56], and detecting routing loops. However,
the previous flow monitoring algorithms either require prior
knowledge about the underlying traffic [50] or require large
amounts of resources (e.g., memory) to obtain full coverage.

Our work suggests cache-based algorithms where NMPs
decide which flows to monitor without explicit coordination.
Our mechanisms exploit the TTL field of the IP packet headers
to break the symmetry and increase the total number of
monitored flows. Specifically, we showed that our algorithms
obtain near-optimal flow coverage for two network topologies
and four real internet traces.

Next, we evaluated several network measurement tasks and
showed that our algorithms indeed cash in on the better flow
coverage. Specifically, we outperform Flow-Radar [42] for
identifying superspreaders, estimating the flow size distribu-
tion, and for identifying the heavy hitters. When identifying
superspreaders, we allow for a high F1 score (e.g., > 0.8) with
less than 1% of the per NMP space required by Flow-Radar to
match our accuracy. For detecting routing loops, CFS provides
real-time detection, whereas Flow-Radar only detects routing
loops at the end of the measurement.

We paid attention to the native primitives of modern net-
work devices [6], and to the programming limitations of
Protocol Independent Switch Architecture (PISA) devices. In
the future, we seek to deploy CFS on such switches. Finally,
we released the code we used [4] to benefit the community.

Acknowledgements: We thank the reviewers and our
shepherd, Patrick P.C. Lee, for valuable feedback. This work
was partially supported by the Zuckerman Institute and the
Lynne and William Frankel Center for Computing Science,
and the the Cyber Security Research Center at BGU.

REFERENCES

[1] The caida ucsd anonymized internet traces 2016 - january. 21st.
[2] The caida ucsd anonymized internet traces 2018 - january. 21st.
[3] Capture traces from mid-atlantic ccdc 2012. http://www.netresec.com/

?page=MACCDC.
[4] CFS and CFS-FR implementation. https://github.com/Bilal-Tayh/CFS.
[5] fat-tree topology. https://en.wikipedia.org/wiki/Fattree.
[6] Understanding mlx5 ethtool Counters. https://community.mellanox.

com/s/article/understanding-mlx5-ethtool-counters.
[7] GEANT topology, 29/03/2012. http://www.topology-zoo.org/files/

Geant2012.gml.
[8] Yehuda Afek, Anat Bremler-Barr, Shir Landau Feibish, and Liron

Schiff. Detecting heavy flows in the SDN match and action model.
Computer Networks, 2018.

[9] Daniel Anderson, Pryce Bevan, Kevin Lang, Edo Liberty, Lee Rhodes,
and Justin Thaler. A high-performance algorithm for identifying
frequent items in data streams. In ACM IMC, 2017.

[10] Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer
Rexford, and David Walker. Snap: Stateful network-wide abstractions
for packet processing. In ACM SIGCOMM, 2016.

[11] E. Assaf, R. B. Basat, G. Einziger, and R. Friedman. Pay for a sliding
bloom filter and get counting, distinct elements, and entropy for free.
In IEEE INFOCOM, 2018.

[12] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca
Trevisan. Counting distinct elements in a data stream. In RANDOM,
2002.

[13] Ran Ben Basat, Gil Einziger, Shir Landau Feibish, Jalil Moraney, and
Danny Raz. Network-wide routing-oblivious heavy hitters. In ACM
ANCS, 2018.

[14] Ran Ben Basat, Gil Einziger, and Roy Friedman. Give me some slack:
Efficient network measurements. Theoretical Computer Science, 2019.

[15] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner.
Optimal elephant flow detection. In IEEE INFOCOM. IEEE, 2017.

[16] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli,
and Erez Waisbard. Constant time updates in hierarchical heavy hitters.
ACM SIGCOMM, 2017.

[17] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli,
and Erez Waisbard. Volumetric hierarchical heavy hitters. In IEEE
MASCOTS, 2018.

[18] Ran Ben Basat, Gil Einziger, Junzhi Gong, Jalil Moraney, and Danny
Raz. q-max: A unified scheme for improving network measurement
throughput. In ACM IMC, 2019.

[19] Ran Ben Basat, Roy Friedman, and Rana Shahout. Stream frequency
over interval queries. Proc. VLDB Endow., 2018.

[20] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Ran-
domized admission policy for efficient top-k and frequency estimation.
In IEEE INFOCOM, 2017.

[21] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni
Antichi, Minian Yu, and Michael Mitzenmacher. PINT: Probabilistic
In-Band Network Telemetry. In ACM SIGCOMM, 2020.

[22] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic
characteristics of data centers in the wild. In ACM IMC, 2010.

[23] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
Microte: Fine grained traffic engineering for data centers. In ACM
CoNEXT, 2011.

[24] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, July 1970.

[25] Christian Callegari, S Giordano, and Michele Pagano. An information-
theoretic method for the detection of anomalies in network traffic.
Computers and Security, 70, 07 2017.

[26] Min Chen, Shigang Chen, and Zhiping Cai. Counter tree: A scalable
counter architecture for per-flow traffic measurement. IEEE TON, 2017.

[27] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and
Ori Rottenstreich. Catching the microburst culprits with snappy. In
SelfDN, 2018.

[28] Graham Cormode. Continuous distributed monitoring: A short survey.
In AlMoDEP, 2011.

[29] Graham Cormode and Marios Hadjieleftheriou. Finding frequent
items in data streams. Proc. VLDB Endow., 2008. Code:
www.research.att.com/ marioh/frequent-items.html.

[30] Xenofontas Dimitropoulos, Paul Hurley, and Andreas Kind. Proba-
bilistic lossy counting: An efficient algorithm for finding heavy hitters.
SIGCOMM CCR, 2008.

[31] Gero Dittmann and Andreas Herkersdorf. Network processor load
balancing for high-speed links. In Proc. of the 2002 Int. Symp. on
Performance Evaluation of Computer and Telecommunication Systems.

[32] Nick G. Duffield, Carsten Lund, and Mikkel Thorup. Flow sampling
under hard resource constraints. In ACM SIGMETRICS, 2004.

[33] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and et al. Hyperloglog:
The analysis of a near-optimal cardinality estimation algorithm. In
AOFA, 2007.

[34] Pedro Garcia-Teodoro, Jesús E. Dı́az-Verdejo, Gabriel Maciá-
Fernández, and E. Vázquez. Anomaly-based network intrusion detec-
tion: Techniques, systems and challenges. Comp. and Security, 2009.

[35] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. Sonata: Query-driven network telemetry.
ACM SIGCOMM, 2018.

[36] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. Network-
wide heavy hitter detection with commodity switches. In SOSR, 2018.

[37] Nicolas Hohn and Darryl Veitch. Inverting sampled traffic. In ACM
IMC, 2003.

[38] Nan Hua, Bill Lin, Jun (Jim) Xu, and Haiquan (Chuck) Zhao. Brick: A
novel exact active statistics counter architecture. In ACM ANCS, 2008.

[39] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao
Chen, and Gong Zhang. Sketchvisor: Robust network measurement for
software packet processing. In ACM SIGCOMM, 2017.

[40] Jaeyeon Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast
portscan detection using sequential hypothesis testing. In IEEE S&P,
2004.

[41] Y. Li, H. Wu, T. Pan, H. Dai, J. Lu, and B. Liu. Case: Cache-assisted
stretchable estimator for high speed per-flow measurement. In IEEE
INFOCOM, 2016.

[42] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A
better netflow for data centers. In USENIX NSDI, 2016.

[43] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Lossradar: Fast
detection of lost packets in data center networks. In ACM CoNEXT,
2016.

[44] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir
Braverman, Roy Friedman, and Vyas Sekar. Nitrosketch: Robust
and general sketch-based monitoring in software switches. In ACM
SIGCOMM, 2019.

[45] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient
computation of frequent and top-k elements in data streams. In ICDT,
2005.

[46] B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion
detection. Network, IEEE, 1994.

[47] James B Orlin. Max flows in o (nm) time, or better. In ACM STOC,
2013.

[48] Ran Ben Basat, Xiaoqi Chen, Gil Einzinger, Ori Rottenstreich. Efficient
Measurement on Programmable Switches Using Probabilistic Recircu-
lation. In IEEE ICNP, 2018.

[49] Pegah Sattari. Revisiting IP Traceback as a Coupon Collector’s Problem.
In PhD Dissertation. University of California, Irvine, 2007.

[50] Vyas Sekar, Michael K. Reiter, Walter Willinger, Hui Zhang, Ra-
mana Rao Kompella, and David G. Andersen. Csamp: A system for
network-wide flow monitoring. In USENIX NSDI, 2008.

[51] Vyas Sekar, Michael K. Reiter, and Hui Zhang. Revisiting the case
for a minimalist approach for network flow monitoring. In ACM IMC,
2010.

[52] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich,
S. Muthukrishnan, and Jennifer Rexford. Heavy-hitter detection entirely
in the data plane. In ACM SOSR, 2017.

[53] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu.
Cheetah: Accelerating database queries with switch pruning. In ACM
SIGMOD, 2020. Full version: https://arxiv.org/abs/2004.05076.

[54] P. Tune and D. Veitch. Sampling vs sketching: An information theoretic
comparison. In IEEE INFOCOM, 2011.

[55] D. Veitch and P. Tune. Optimal skampling for the flow size distribution.
IEEE Transactions on Information Theory, 61(6), June 2015.

[56] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic
measurement with opensketch. In USENIX NSDI, 2013.

[57] Haiquan Zhao, Ashwin Lall, Mitsunori Ogihara, and Jun Xu. Global
iceberg detection over distributed data streams. In IEEE ICDE, 2010.

[58] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul
Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and
Haitao Zheng. Packet-level telemetry in large datacenter networks. In
ACM SIGCOMM, 2015.

