
Legilimens: An Agile Transport for Background
Traffic in Cellular Networks

Muhammad Usama Chaudhry∗, Shibin Mathew∗, Shanyu Zhou∗,
Vijay Gopalakrishnan†, Emir Halepovic†, Hulya Seferoglu∗, and Balajee Vamanan∗

∗University of Illinois at Chicago (UIC); {mchaud30, smathe36, szhou45, hulya, bvamanan}@uic.edu
†AT&T Labs – Research; {gvijay, emir}@research.att.com

Abstract—Large data transfers can result in significant con-
gestion and performance degradation for interactive end-user
applications such as web browsing and streaming. While there
are existing TCP congestion control algorithms for delivery of
large volume data (e.g., LEDBAT, TCP-LP), our results show that
these protocols are not effective in cellular networks due to
variability in radio channel conditions and the use of cellular
schedulers in base stations. We propose Legilimens, an agile TCP
variant for cellular downlink transfers, which not only retains
desirable properties of existing approaches, but also exploits the
properties of the cellular schedulers to estimate load and capacity
and addresses the challenges in cellular networks. As a result,
Legilimens is able to deliver traffic using only the spare capacity
on the downlink. We conduct extensive evaluations of Legilimens
in multiple settings—in a large cellular network for real-world
performance, on the PhantomNet emulator for controlled exper-
iments, and ns-3 simulator for scaled experiments—all of which
demonstrate that Legilimens is superior to existing protocols
in transferring large volumes of data without interfering with
regular user traffic. Compared to existing low-priority protocols,
Legilimens improves the throughput of background flows by 2x
on average (up to 5x) without degrading the performance of
foreground flows across all the three testbeds.

Index Terms—Cellular networks, Proportional fair scheduler,
LTE, Background traffic, Low priority transport, TCP

I. INTRODUCTION

Cellular networks are increasingly used not just for in-
teractive end-user applications such as web browsing, chat,
social networks and video streaming but also for transferring
large volumes of data, especially on the downlink (e.g., cloud
data sync and software updates [1]). Large data transfers
can degrade throughput of users in the same radio cell by
over 70% and negatively impact nearby cells [1, 2]. When
such transfers use fair-share protocols such as CUBIC, they
compete with existing flows and may affect them adversely.
While existing flows may not always result in unusable perfor-
mance, they still perform worse than they would without such
transfers; naturally, their effect is more pronounced at high
loads. Therefore, techniques that allow for efficient delivery of
large data transfers without impacting users’ experience have
become necessary.

There exist several possible approaches to address this
problem. Some services, applications, and mobile operating
systems allow users to restrict or schedule transfers. Unfortu-
nately, these approaches have limited applicability because the
approaches are agnostic of prevailing network conditions and

users may prefer the convenience of up-to-date data. Another
possibility is to statically rate limit large transfers. However,
static rate limiting can cause under-utilization at low loads and
overwhelm the network at high loads. Dynamically adjusting
these rate limits is hard to realize correctly in practice, given
the bursty nature of the traffic. Existing traffic management for
cellular networks, in the form of QoS class identifier (QCI), is
not sufficient because QCI requires tight integration between
network and application, must be provisioned a priori by
operators, and has no flexibility to move flows between classes.

Transport-layer approaches, exemplified by protocols like
LEDBAT and TCP-LP, introduce the concept of two-class
service prioritization. The key idea is to have a “low-priority”
mechanism for delivering large volume or time-insensitive
data. This allows typical interactive applications (considered
foreground flows) to have fast response times using a fair-
share TCP variant such as CUBIC or BBR, while simultane-
ously making progress on large volume transfers (considered
background flows) using the lower priority TCP variant. LED-
BAT and TCP-LP rely on either round trip times (RTT) or one-
way delays (OWD) to infer congestion but our experiments
with such Low Priority Transport (LPT) protocols show that
they are not effective in cellular networks (Section II). We
conjecture that they are not effective due to the nature of
cellular networks—highly variable delays and the use of
Proportional Fair (PF) schedulers with per-device queues for
downlink transmissions.

Drawing inspiration from LPT protocols, we propose Legili-
mens, an agile LPT variant for cellular networks that delivers
background traffic without adversely affecting foreground traf-
fic. Legilimens shares the same goals as other LPT protocols—
to use all available bandwidth when foreground traffic is
not present, to not interfere with foreground traffic when it
is present, and to quickly yield (rampup) when foreground
traffic starts (stops)—but includes novel features that make
it effective in cellular networks. Specifically, a well-designed
LPT protocol for cellular networks must operate with minimal
queuing, so that its packets do not compete with those of
foreground flows at the scheduler.

Since cellular downlink is typically the bottleneck [3, 4],
we design Legilimens for downlinks. Legilimens uses a novel
approach to quickly estimate capacity and load based on
packet inter-arrival times, not RTT or OWD. Proportional Fair
(PF) schedulers are predominant on broadband data bearers978-1-7281-6992-7/20/$31.00 c©2020 IEEE

in LTE (and 5G [5]) networks as they provide a balance
between achieving peak data rates and serving users with poor
signal quality [6, 7]. Our overall design leverages and is
geared towards the generalized class of (PF) schedulers —
however, we believe it can also generalize to other fair queuing
mechanisms to some extent. The key novelty of Legilimens
lies in how we leverage the downlink PF scheduler’s unique
strength of providing fairness at short time scales to counteract
its weakness of interfering with the operation of traditional
LPT protocols. Based on the estimated capacity and load,
Legilimens strives to deliver background traffic using only
spare capacity. Legilimens operates in one of two modes:
normal mode and probing mode. If the load is low and
spare capacity is available, Legilimens operates in normal
mode and quickly captures available bandwidth. If the load
is substantial, Legilimens enters the probing mode, where it
yields all scheduling opportunities to other traffic most of
the time, while periodically sensing the network until spare
capacity becomes available.

We implement Legilimens in Linux as a sender-only modifi-
cation to the network stack, enabling simpler and incremental
deployment, without changes to the cellular infrastructure. We
discuss deployment in detail in Section III-C. We extensively
evaluate Legilimens in realistic (uncontrolled) and controlled
settings, including a large U.S. cellular network, using Phan-
tomNet [8] emulator and ns-3 [9] simulator.

In summary, we make the following contributions:
• We design a novel capacity and load inference algorithm

for senders in cellular networks, which overcomes and
leverages PF scheduling properties that impede traditional
LPT protocols and we show that our algorithm is robust
to sender- and receiver-side optimizations (e.g., batching,
delayed ACKs).

• We design and implement Legilimens, a sender-side LPT
protocol for cellular networks, which allows the network to
balance the conflicting goals of foreground and background
traffic while achieving high utilization and low congestion.

• We demonstrate that Legilimens achieves better overall
performance than existing fair-share and LPT protocols. We
show that fair-share protocols (e.g., BBR, CUBIC) adversely
interfere with foreground traffic and degrade its perfor-
mance, and that existing LPT protocols are not efficient in
using spare capacity for background transfers. Our exper-
iments in a real network show that Legilimens improves
the throughput of background flows by a factor of 2.8
on average (up to 5.2x) over existing LPT protocols (i.e.,
LEDBAT and TCP-LP) without hurting foreground flows.

II. BACKGROUND AND MOTIVATION

A. Background on PF scheduler

Figure 1 depicts the key infrastructural differences between
wired/Wi-Fi networks and cellular networks. Cellular networks
(Figure 1b) differ from wired/Wi-Fi networks (Figure 1a) in
three key aspects: (1) cellular links exhibit time-varying ca-
pacities and delays; (2) cellular networks have separate queues
to isolate flows from different devices; (3) cellular networks

Figure 1: Cellular vs. wired/Wi-Fi networks

employ schedulers in base stations to provide fairness but the
scheduler is agnostic of applications’ needs. While the first
two are self explanatory, we expand on cellular schedulers.

PF schedulers are normally used for cellular downlinks
because they provide a balance between fairness and peak
cell throughput [6, 10]. Because the PF scheduler forms the
bedrock of most operator’ networks, we present a quick back-
ground on a general form of PF schedulers [11, 12]. Consider
a particular radio cell in a typical cellular network (Figure 1b).
There is a separate queue for each client that connects to this
cell. The scheduler operates at the granularity of Transmission
Time Intervals (TTI), which is typically 1millisecond in LTE.
Further, the available capacity is split into many frequency
bands, which consist of sub-carriers and time slots as Physical
Resource Blocks (PRB). During each scheduling interval, the
scheduler allocates resources in the form of PRBs to client
devices. To achieve a good balance between fairness and uti-
lization, the PF scheduler maximizes the ratio of the expected
data rate (normally derived from signal measurements) to the
moving average of achieved throughput for each client. The
winning client gets all PRBs that it needs in the current interval.
If the winner does not have enough data to exhaust all the
resources, the next winner will get the remaining resources,
and so on. So, if all clients have the same signal quality and
infinite data to send, scheduling will effectively become round-
robin. Also, note that even clients with poor signal quality
will eventually get their turn when their signal peaks (i.e.,
fairness) and that clients with good signal quality achieve high
throughput (i.e., utilization).

B. Opportunity study

LEDBAT [13] and TCP-LP [14] are two popular LPT proto-
cols. The key idea of these background transport protocols is to
detect congestion earlier than regular TCP using use one-way
packet delays [13, 15]. We performed a simple experiment to
study the performance of LEDBAT and TCP-LP in Wi-Fi and
cellular networks.

We use a simple Wi-Fi testbed, where two clients connect to
an access point. The access point is connected to a server using

(a) LEDBAT

(b) TCP-LP

Figure 2: Behavior of existing protocols

a high speed wired connection. There are two flows in the
network, one for each client. The first flow is a persistent long
flow that uses LEDBAT, representing the background flow; the
second flow uses CUBIC, representing the foreground flow. The
foreground traffic is an on-off traffic; the flow joins the system
every 60 seconds, transmits for 30 seconds and sleeps for 30
seconds. We repeat the experiment for a cellular network, in
which the two clients connect to a base station, instead of a
Wi-Fi access point.

Figure 2(a) shows the throughput of foreground flow (us-
ing CUBIC) and background flow (using LEDBAT) for Wi-
Fi (Figure 2a(left)) and cellular (Figure 2a(right)) testbeds.
While LEDBAT shows expected qualitative performance in Wi-
Fi by clearly yielding to foreground flow, it performs poorly
in cellular (i.e., the background flow does not use any spare
capacity when foreground flow is absent). Figure 2(b) shows
the results when we use TCP-LP for the background flow.
While TCP-LP also performs well in Wi-Fi, it competes with
and removes significant capacity from the foreground flow in
the cellular network (Figure 2b). Therefore, we conclude that
existing LPT protocols achieve sub-optimal performance in
cellular networks.

In wired and Wi-Fi networks, delay-based background trans-
port protocols perform well as all traffic passes through the
same bottleneck queues and the delay reliably signals the
aggregate congestion (queuing) on the path. However, cellu-
lar networks use per-device queues and the scheduler fairly
provides opportunity to all clients across scheduling intervals
based on radio signal and historical throughput. Therefore, the
delay would not increase as steeply as it would in wired and
Wi-Fi networks during congestion. Consequently, the measured
delay in LEDBAT and TCP-LP does not fully capture the overall
congestion of the radio cell and offers limited insight into the
cell capacity, which is dynamic. In addition, delay profiles
differ across cells impairing the ability to establish accurate
parameter settings and base delay estimates.

Figure 3: High-level overview

III. DESIGN

We propose Legilimens for background applications to uti-
lize spare capacity without significantly affecting other fore-
ground traffic. We provide a high-level overview of Legilimens
in Figure 3. Legilimens estimates capacity and cell load and
sends the background traffic to fill the spare channel capacity.
This is the normal operation mode. Legilimens uses AIMD-
style congestion control during normal mode.

On the other hand, if the load estimate indicates that there
is increased competition, Legilimens enters a dormant mode
(i.e., GAP mode in Figure 3) during which the flow waits
and yields to the foreground traffic. While waiting, Legilimens
intermittently sends short bursts of packets to probe for spare
capacity. Because we use regular data packets during probing,
there is no bandwidth overhead. Choosing the correct burst
size for probing is non-trivial – while large bursts provide
more accurate estimates, they degrade the performance of
foreground flows at high loads. Therefore, instead of em-
ploying a single burst size, we start with the small burst and
gradually increase it upon detecting lower load. We call this
the gradually aggressive probing (GAP) mode. The GAP mode
prevents spurious oscillations to normal mode and back, and
serves as hysteresis between the modes.

We require three key mechanisms to realize the design from
Figure 3. First, we need to estimate capacity, so we can provide
room for transient bursts of foreground traffic and to establish a
bound on sending rate. Second, we need an agile mechanism to
detect the load level (i.e., when there is other traffic). Finally,
we need a robust and efficient congestion control scheme to
achieve both high performance for all applications and fairness
among background applications.

Scheduling mechanisms in LTE are different and indepen-
dent for uplink and downlink [16], and their optimizations
can evolve separately. While we have designed Legilimens for
downlink only, we believe that background-traffic management
could be beneficial for uplink, and that our high-level ideas for
detecting capacity and load, and using gaps in transmission
to yield can be applied to uplink when low-priority effect
is desired. However, this requires careful investigation that
is beyond the scope of this paper. Also, we constrain our
design to not require network- or receiver-side changes to be
deployment friendly. Finally, Legilimens does not make any
assumptions about signal quality and load variations.
A. Estimating capacity and busyness

Intuition: Quickly and accurately estimating capacity and
the presence of other competing traffic is hard in wired and Wi-

Figure 4: Scheduler and timestamps

Fi networks due to shared FIFO queues. Our key insight is that
the PF scheduler in cellular networks enables us to accurately
detect capacity and competition in only a handful of TTIs.
For each TTI, the scheduler selects a receiver with the highest
ratio of its expected peak rate and recent throughput; hence
the scheduler is likely to service those receivers that it has not
recently serviced. In other words, because fairness is built
into PF schedulers (see Section II-A), if there is competition,
a receiver will lose its turn eventually and another receiver
will gets its turn. When a receiver loses its turn, there will be
gaps in the packet arrivals at the receiver, which we exploit
to detect competing traffic. Also, the scheduler is likely to
allocate all resource blocks to a single receiver in a given
TTI, provided the receiver’s queue has enough data (i.e., if
a sender sends a sufficiently large burst of data, it is likely
to receive full capacity for at least one TTI). Therefore, (1)
we estimate capacity by observing the maximum number of
packets that were serviced in each TTI; and (2) we detect
competing traffic by analyzing packet inter-arrivals at the
receiver. We avoid making changes to client-side software
by utilizing TCP timestamp option [17] so that the received
timestamps of data packets can be observed via ACKs at
the sender. TCP timestamp option is commonly enabled in
clients [18, 19].

We use Figure 4 to explain how we can detect gaps in
the schedule — this indicates competition or busyness — by
observing timestamps. In this simple example, two senders
send data to two cellular clients that share the base station
(e.g., same LTE band); sender 1 sends to client 1 and sender
2 to client 2; we show only sender 1 and client 1. Sender
1 sends a stream of packets, which are queued in the base
station before they are scheduled to be sent to client 1. Let
us assume that the scheduler picks client 1. Therefore, client
1 is likely to receive a series of back-to-back packets until the
scheduler switches to sender 2. Sender 1 observes the TCP
options fields TSecr and TSval of ACKs: TSecr indicates
the timestamp at sender 1 when the packet was sent; TSval

indicates the timestamp at client 1 when the packet was
received. If there is a “gap” in the schedule, then packets
that were sent together (i.e., packets that have continuous
or same TSecr values) will have a discontinuity in TSval

values. Our idea of detecting capacity and competition by
observing timestamps does not make any assumptions about
signal quality and load. Our evaluations show that Legilimens
performs well in a real network and large-scale simulations
under representative workloads.

Figure 5: Scheduler with batching

Practical issues: While simply observing received times-
tamps allows us to detect competition, delayed ACKs [20]
and packet batching optimization at the receivers significantly
complicate the detection logic. When the receiver combines
and generates a cumulative ACK for multiple contiguous pack-
ets, the sender would infer an inflated capacity and spuriously
detect gaps in the received stream. Figure 5 shows the effect of
batching in the received packet stream. Without any batching
or delayed ACKs, we clearly see gaps in the received packet
stream in Figure 5(b) for the case of 2 senders, whereas there
is no gap in Figure 5(a) when there is only one sender. In
Figure 5(c), although there is only one sender (to client 1),
the client 1 combines two TTIs worth of data in layer-2 before
processing in higher layers, and, therefore, there is a gap in
the observed timestamps. However, there is no contention and
we should not throttle the sender. But, if we look for gaps in
the received timestamps to identify competition, we would not
distinguish between the cases of two senders without batching
(Figure 5(b)), one sender with batching (Figure 5(c)) and two
senders with batching (Figure 5(d)). It is hard to guess the
batching behavior of receivers. Therefore, we further refine
our detection logic in algorithm 1. Instead of only looking for
gaps in the received stream, we reconstruct the schedule at the
sender by observing the timestamps. The algorithm considers
both the data volume and packet inter-arrival times to infer
capacity and competition.

Capacity and busyness estimation algorithm: Algorithm 1
compares the recently received sequence number and times-
tamp (i.e., when the corresponding data packet was received at
the client) to the previous ACK. If the timestamps match, then
we accumulate the number of acknowledged segments for the
previous slot (line 22). If the timestamps do not match, first
we see if there is a gap (i.e., the current timestamp differs from
the previous timestamp by more than 1 TTI), as in line 8. If
there is no gap, we infer that the ACKs are back-to-back and
that the base station is not busy. If the ACKs are not back-
to-back, then we compute the amount of data sent per TTI
(i.e., the instantaneous rate in terms of packets per TTI) for
the previous slot (line 7). Since the scheduler is expected to
allocate full capacity for at least one TTI, we infer capacity
by looking at the amount of data sent per TTI and by taking

Algorithm 1 Estimate capacity and busyness

Input: ACK sequence number (s), timestamp (t)
Output: Capacity (capacity), IsBusy (busy)

1: function ESTIMATE(s, t)
2: if t > t0 then
3: i ← i + 1
4: slot[i].t ← t
5: slot[i].n ← (s − s0)
6: duration ← (t − slot[i− 1].t) / TTI
7: rate ← slot[i− 1].n / duration
8: if (duration > 1) then . If there is a gap
9: if (rate ≥ λ ∗ capacity) then

10: busy ←FALSE
11: else
12: busy ←TRUE
13: end if
14: if (rate > capacity) then
15: capacity ← 4

5 ∗ capacity + 1
5 ∗ rate

16: end if
17: else
18: busy ←FALSE
19: capacity ← 4

5 ∗ capacity + 1
5 ∗ rate

20: end if
21: else
22: slot[i].n ← slot[i].n + (s − s0)
23: end if
24: t0 ← t, s0 ← s
25: end function

the maximum value (line 15). If there is no gap, we update
capacity unconditionally so that the capacity can increase or
decrease based on channel conditions (line 19). We detect
busyness using a simple heuristic: if the instantaneous rate
is more than the capacity by a factor λ, then we infer that the
base station is not busy. Intuitively, if there is no other traffic,
we expect instantaneous rate to be very close to capacity. If
there are other senders or if there are not enough packets
at the base station to consume all the resource blocks for
one TTI, the instantaneous rate would be less than capacity.
Therefore, λ lies between 0 and 1. Setting λ = 0 would always
allow Legilimens senders to send in the normal mode (i.e.,
Legilimens would never yield). While λ = 1 would allow
Legilimens senders to send traffic in the normal mode only
when there are no other senders, it would be sub-optimal if
there are other senders but they do not have enough data to
saturate the capacity; we would want Legilimens to use spare
capacity in this case. Therefore, we chose λ = 0.5 (Table I)
in our experiments, which achieves a good trade-off between
foreground and background performance. Finally, we employ
exponential averaging with a weight of 1

5 to the newly inferred
capacity to filter outliers (line 15 and line 19);

B. Congestion control

Congestion window (cwnd) adaptation: We show Legili-
mens’s complete state machine in Figure 6. Legilimens relies

Figure 6: Legilimens congestion control
Table I: Parameter values

Parameter Description Value
λ Busy threshold 0.5
M Probe burst size 50 KB
T Time between GAP modes 250 ms

on estimated capacity and busy signals (section III-A)
to switch between sending (i.e., normal mode) and probing
(i.e., GAP mode). Because normal mode aggressively sends
data, a series of three probe modes is used (i.e., GAP modes
I, II, and III), each with a larger burst size than the previous,
to increase the confidence in our capacity estimates before
entering normal mode. During each GAP mode, we send a
burst of multiples of M packets and wait for T milliseconds
to estimate capacity and busyness by observing ACKs
using algorithm 1. If the base station is not busy, we enter the
next GAP mode, in which we increase the burst size and wait
for ACKs. After the third GAP mode (i.e., GAP III), we enter
normal mode if no busyness is detected. If, at any point, we
sense the presence of other senders, we revert back to the GAP
mode I. If busyness is sensed in GAP mode I, then exponential
random back-off is applied in multiples of T.

During normal mode, Legilimens uses AIMD-style conges-
tion control. Legilimens’s behavior soon after entering normal
node is similar to that of loss-based TCP variants after a
timeout — the protocol starts with a small window but quickly
ramps up the rate using slow start until a threshold and adjusts
the rate more gradually using congestion avoidance thereafter.

Fairness: Legilimens’s primary objective is to satisfy de-
mands of foreground applications and provide fairness be-
tween competing background flows. To this end, if any Legili-
mens sender estimates that there are other competing senders,
background or foreground, the sender exponentially backs off
(i.e., doubles the waiting interval, T). This back-off can happen
anytime during the probing burst as the sender estimates
busyness on each ACK. Our mechanism is somewhat similar
to CSMA in IEEE 802.11, and, therefore, we achieve fairness
between background traffic in a similar way. We study fairness
in our evaluation in Section VI-D. Table I lists our design
parameters along with their default values; we analyze their
sensitivity in Section VI-E.

Figure 7: Legilimens vs. CUBIC in the real network

Summary and discussion: In cellular networks, packet delay
can increase either due to (1) degradation in signal quality
or (2) contention at the base station. Existing LPT protocols
do not correctly identify the root cause of delay increase but
respond by either completely backing off or not at all in
both cases (see Figure 2). Legilimens’s capacity and busyness
estimation algorithm, leveraging the nature of PF schedulers,
deconstructs the schedule by observing timestamps and iso-
lates the two cases. For (1), Legilimens correctly reduces the
rate but does not completely back off. For (2), Legilimens
backs off, enters GAP mode and waits for the base station
to become free. Thus, differentiating between the two cases
is key to Legilimens’s performance gains over existing LPT
protocols.
C. Deployment model

Because Legilimens is designed only for cellular downlinks,
it should be deployed only on servers providing data to cellular
devices. A potential path for adoption could be deploying
Legilimens on cellular proxy servers and TCP splitters that
most cellular operators employ today [21], or on CDN edge
nodes that specifically peer with cellular gateways or are
placed inside cellular networks (e.g., mobile edge cloud) —
all of these serve traffic to only mobile devices over cellular
links. Further, network and CDN operators can utilize existing
traffic classification techniques to identify background traffic
and direct its delivery via servers that run Legilimens. This
would significantly reduce the number of servers that need to
support Legilimens, while still allowing cellular networks to
enjoy its benefits. For general server and CDN deployments,
servers can use mapping techniques between IP addresses and
known cellular gateways, or even HTTP headers that indicate
that clients are behind cellular gateways or proxies.

IV. EVALUATION OVERVIEW

We use three avenues to analyze Legilimens’s performance
(latency, bandwidth, fairness) under realistic conditions (vary-
ing signal quality, flow sizes, load) as well as understanding
its behavior (queuing, sensitivity to design parameters): a real
implementation on a major U.S. carrier network during idle
and busy hours (not isolated from user traffic), PhantomNet
(isolated from user traffic), and large-scale ns-3 simulations.

V. EVALUATION USING A REAL IMPLEMENTATION
A. Implementation

We implemented Legilimens on a Linux server (kernel
version 4.4). Our implementation takes about 300 lines of
additional code in the Linux kernel’s modular congestion
control framework. The framework eases the implementation

of new congestion control algorithms by providing hooks in
the kernel for taking actions whenever there is a congestion
control event (e.g., ACKS, timeouts). Our design requires TCP
timestamps [17] to be enabled.
B. Testbeds

Real network testbed: Our real testbed consists of 6 Sam-
sung Galaxy smartphones, all running Android 7.0. The
devices are band-locked to use the same LTE carrier (i.e.,
they share the same bottleneck radio link). For the stationary
experiments, test devices are located on the second story of a
3-story concrete building with wall-to-wall windows. The test
devices are connected to the standard macro cell using a 10
MHz carrier. The devices register Reference Signal Received
Power (RSRP) between -92 and -95 dBm and Reference Signal
Received Quality (RSRQ) between -10 to -13 dB.

PhantomNet testbed: Our PhantomNet testbed emulates a
cellular network using a server running open air interface
(OAI) inside the LTE packet core and eNodeBs (base stations).
eNodeB is based on Software-Defined Radio (SDR) running
OAI (Intel NUC + USRP B210). PhantomNet provides Nexus
5 phones accessible via Android Debug Bridge (ADB), target
server and a GUI interface. Log-distance path loss model is
used to produce realistic varying Signal to Noise Ratio (SNR).
We use remotely connected servers for generating test traffic.
C. Testing methodology

Because real network conditions are dynamic (especially
during busy hours), we run our experiments three times to get
sufficient confidence. Each experiment typically lasts for 4–8
hours and transfers about 100 GB of data.
D. Behavior as a low-priority protocol

Recall from Section II-B that LEDBAT and TCP-LP do not
work as intended in cellular networks. We perform a similar
experiment in the real network and in PhantomNet. We create
a simple workload that generates one background and one
foreground flow. The background flow is an always-on, long
flow that uses Legilimens. The foreground flow uses CUBIC
(our baseline) and sends data in an on-off pattern. We study
the per-second throughput of foreground and background flows
over time to see whether Legilimens (background) yields to
foreground flows.

Figure 7 shows how Legilimens shares the cellular link with
CUBIC. Unlike LEDBAT and TCP-LP (Figure 2), Legilimens
yields to CUBIC, backs off completely in GAP mode (to
allow scheduling opportunity to other flows), and efficiently
recaptures spare capacity when available. We also performed
the same experiment on PhantomNet and the results are similar
(PhantomNet results not shown). This study confirms that
Legilimens functions correctly as intended in cellular networks.
E. Performance with realistic workloads

Next, we would like to quantify the gains of using Legili-
mens for large background transfers. Our workload for this
study consists of a varying number of foreground flows and
background flows. We model our workload as heavy tailed
with a small number of large flows generating the vast majority

Figure 8: Performance (FCT) of short foreground flows in a real network under realistic workload

(a) Performance (throughput) of long foreground flows (b) Performance (throughput) of background flows

Figure 9: Performance of long flows (foreground and background flows) results under realistic workload

of bytes [22, 23]. Specifically, we model foreground traffic as
a mix of short, medium, and long flows: (1) 64 KB short
flows represent web objects and mobile app communication,
(2) 1 MB medium flows represent transfers such as video (e.g.,
chunk size in adaptive streaming), and (3) 32 MB long flows
represent app updates and cloud data sync. The short, medium
and long flows contribute to 10%, 30%, and 60%, respectively,
to overall (foreground) load. The background flows are long
and remain always on.

Controlling the load in a real (operational network): While
we have access to measuring the resource utilization (i.e., PRB
utilization) of a cell, generating traffic at different load levels
is a challenge in a real (operational) network because of other
(non-experimental) traffic. Specifically, we want to evaluate at
three load levels: (1) PRB utilization of 30% (low load), (2)
PRB utilization of 60% (medium load), and (3) PRB utilization
of 80% (high load). One way to precisely control the load is
to run our experiments during idle hours. We analyzed reports
from the cellular infrastructure and we found that the typical
quiet hours (utilization < 10%) are between midnight and 6
AM. Therefore, we run our experiments during these hours.
Note that while we calibrate the average cell load to be around
our desired levels, instantaneous load constantly varies due to
the dynamics created by signal variation and traffic fluctuation,
which is typical in real networks.

Because Legilimens is for background flows only, we fix the
protocol for foreground flows to be CUBIC and we change the
protocol for background flows as CUBIC, LEDBAT, TCP-LP,
and Legilimens. In addition to these, we also run without any
background traffic (“w/o bg”), which is ideal for foreground
flows. We evaluate the protocols on our workload based on

the following metrics:
• Median and tail (e.g., 99.9th percentile) flow completion

times (FCT) of short flows
• Throughput of medium and long foreground flows
• Throughput of background flows
Figure 8 shows the median and 99.9th percentile FCT of

short flows in which the foreground traffic (CUBIC) shares
capacity with each background protocol; Figure 9(a) and
Figure 9(b) show the throughput of foreground long and back-
ground (long) flows, respectively; we do not show the through-
put of medium flows for brevity. The figures show performance
at the three load levels as well as their average performance
across loads. As load increases, all the schemes suffer longer
flow completions and low throughput due to contention. From
the figures, we observe that Legilimens does not interfere
with foreground flows—when background uses Legilimens,
the foreground flows achieve performance close to w/o bg
(ideal). Being a fair-share protocol, it is not surprising to see
that CUBIC achieves the lowest performance for foreground
flows and achieves the highest performance for background
flows. This is clearly not desirable. LPT protocols (LEDBAT and
TCP-LP) achieve good foreground performance but suffer in
background performance. For some loads (e.g., 60%), we see
that Legilimens is even better than “w/o bg”, which is clearly
an experimental artifact as we cannot precisely control the load
in a real network. Nevertheless, such variations are negligible
in scale when compared to Legilimens’s gains over other
LPT protocols. Legilimens achieves 2.8x higher throughput on
average (up to 5.2x) over existing LPT protocols (LEDBAT and
TCP-LP) while enabling foreground flows to achieve similar or
better throughput (better on average).

Figure 10: Cell load and utilization during busy hours

We repeated the same experiment on PhantomNet and ob-
served similar results (not shown). In PhantomNet, Legilimens
achieves 2x higher throughput on average (up to 3.4x) over
existing LPT protocols while also enabling foreground flows
to achieve slightly better performance.

F. Performance during busy hours

To study the behavior of Legilimens during busy hours,
we conduct test runs over 3 days between 13:00 and 17:00
hours, when our carrier network is loaded with user traffic,
over which we have no control. We run the workload from
Section V-E. We supply foreground traffic in lower volume,
at an overall rate of about 5 Mbps . We record the total
downlink data volume and PRB (UPRB) measurements from
the network. In each hour, we have four 15-minute timebins,
each containing one of these loads: (1) base load only, (2)
foreground traffic is added, (3) background flow using CU-
BIC is additionally added, and (4) Legilimens is used for a
background flow. The first two cases are merely to confirm
the volume of base load and foreground traffic, while we
study the cases with background traffic in Figure 10. We
select 15-minute bins with similar base load to compare the
total data volume of CUBIC (C) and Legilimens (L) to their
respective UPRB . We discard the timebins with base load
outliers because the load fluctuation was significant in those
bins. Figure 10 shows the pairs of CUBIC/Legilimens timebins
and their data volumes as stacked bars, sorted by increasing
base load (bottom bar sections). We can see that Legilimens
generates less traffic (top bar sections) and results in lower PRB
utilization (UPRB) than CUBIC, across the range of base loads
during busy hours. While CUBIC generates the same amount
of background load regardless of the base load, Legilimens
modulates its background throughput favorably depending on
base load. On average, Legilimens results in 13.8% lower PRB
utilization than CUBIC during busy hours, which is desirable.

G. Operation in a mobile scenario

To further evaluate Legilimens under fast-varying load and
radio signal over wide ranges, we conduct a mobile test. The
test lasts for 37 minutes over 24 km distance. It starts with
walking for about 8 minutes, then driving at moderate speed
(30-70 km/h) for about 3 minutes, followed by freeway speed
(70-110 km/h) for 10 minutes, and complets the remainder of
the test at moderate driving speed. Two J7 phones are used,
placed in a laptop bag, which is carried and then placed on
the vehicle seat. One phone receives a continuous Legilimens

Figure 11: Throughput of Legilimens (background) vs.
CUBIC (foreground) while moving

background flow, and another one receives a foreground CUBIC
flow with one-minute ON/OFF pattern.

Figure 11 shows the first 14 minutes of the test. Signal
strengths, measured as RSRP, varied from -111 to -68 dBm.
A total of 13 hand-offs occurred. While we do not expect to
see a clear pattern of yielding by Legilimens because we only
see two flows among a large volume of regular traffic in the
network, we clearly see that Legilimens is significantly more
conservative than CUBIC, which competes with other traffic.
Legilimens also does not appear to suffer major disruption by
changing signal strength, especially in the second half of the
plot, where driving causes frequent hand-offs.

VI. EVALUATION USING SIMULATIONS

We rely on simulations to analyze Legilimens at large
scales (hundreds of devices and several flows per device),
and to compare to a larger set of protocols. We also rely
on simulations to further analyze queuing behavior, fairness
among background flows, and parameter sensitivity.

A. Methodology

We use ns-3 v3.27 simulator with log-distance propagation
model for the radio signal. The radio channel is configured
with a single carrier with 10 MHz bandwidth and closed-
loop MIMO. Network topology consists of multi-hop wired
links that connect remote servers to Packet Data Network
Gateway (PGW) using 1 Gbps with 10 ms delay links. The
link speed between the base station and the SGW/PGW is also
1 Gbps. The cellular uplink and downlink are bottlenecks in
our topology. We run our experiments with carrier aggregation.

B. At-scale performance vs. other protocols

In this study, we simulate a workload similar to the one we
used in Section V-E and run it at 30%, 60%, and 80% load.
For scale, we simulate a substantially larger client base with
100 devices and a large number of foreground and background
flows to each device to exercise the impact of the PF scheduler
behavior under variety of RF signal characteristics. The key
difference between the real testbed and simulations is the scale
(i.e., the scheduler in our simulated network must serve flows
from 100 queues as opposed to 4 in our real testbed). The 100
devices are randomly placed in a cell and they generate a mix
of foreground and background flows. We run each 15-minute
test 3 times with different random seeds for client selection.

(a) Throughput of long foreground flows (b) Throughput of background flows

Figure 12: Simulation results for realistic workload

Figure 13: Queuing behavior

Figure 14: Fairness analysis among Legilimens flows

Because LEDBAT and TCP-LP perform similarly, we omit
TCP-LP in our simulation study. Instead, we compare to
VEGAS [24], and more recent BBR [25] and VERUS [26];
we use their open-source ns-3 implementations [27, 28]. We
set the design parameters as recommended in the original
papers and we verified the implementations by reproducing the
bottom-line results from their papers. In addition, we compare
to an ideal scheduler that strictly prioritizes foreground over
background traffic but performs PF scheduling within each
class. While such a scheduler is not available in practice, it
serves as a good comparison point.

Figure 12(a) and Figure 12(b) show the throughput achieved
by foreground and background flows in our simulation study.
We do not show numbers for short and medium foreground
flows because the trends are similar. The figures show per-

formance at the three load levels as well as their average
performance across loads. As load increases, the throughputs
of all the schemes decrease due to contention. The trend,
however, is similar to Figure 9. Fair share protocols such as
CUBIC, BBR, and VERUS do not prioritize foreground flows
and suffer from poor foreground throughput. Delay-based
protocols that back off when delays increase, such as VEGAS
and LEDBAT, achieve good foreground throughput but are
not able to exploit spare capacity to send background data.
Legilimens performs within 12% (on average) of the ideal
schemes (i.e., “w/o-bg” and “Ideal Priority”) in foreground
throughput. Interestingly, Legilimens achieves about 1.84x
higher background throughput than “Ideal Priority”. Because
“Ideal Priority” causes starvation of low priority background
flows, the flows suffer several timeouts and their throughput
suffers. In contrast, Legilimens uses the GAP mode to pause
and resume transmissions much more quickly. Overall, Legili-
mens achieves 2.2x higher throughput on average (up to 5.8x)
over existing LPT protocols (including VEGAS) while enabling
foreground flows to achieve similar (within 10%) throughput.

C. Queuing behavior

To further understand protocol behavior, we analyze their
queue lengths. Figure 13 shows the queue lengths of CUBIC,
LEDBAT, VEGAS, and Legilimens. Each background flow starts
alone and a foreground CUBIC flow joins at 5 second mark, as
indicated by vertical lines. While CUBIC, LEDBAT, and VEGAS
compete with foreground flows for scheduling opportunity
and exhibit higher queue lengths, Legilimens keeps nearly
empty queues for long periods. Thus, Legilimens provides
significantly more opportunity for foreground traffic.

D. Fairness

We study fairness among background flows by initiating
multiple long background flows to the same device and ob-
serving their time-averaged throughput. For this experiment,
we start 4 Legilimens flows in a staggered manner every
20 seconds. Since any single Legilimens flow considers all
other traffic as foreground, even if other background flows
are present, it has to transition between operation modes.
Figure 14 shows that Legilimens flows adapt their sending
rate with increasing competition and converge to fair shares.
The Jain’s Fairness Index for the periods of 2, 3, and 4
concurrent flows are 0.999, 0.993, and 0.996, respectively,

(a) Sensitivity to λ (b) Sensitivity to probe size (M) (c) Sensitivity to probe interval (T)

Figure 15: Sensitivity analysis

indicating high fairness. We have also tested fairness of 8 and
24 concurrent Legilimens flows, and they resulted in fairness
indices of 0.992 and 0.999, respectively. From this experiment,
we conclude that Legilimens achieves near-perfect fairness
among background flows.

E. Sensitivity to design parameters

We study Legilimens’s performance sensitivity to design pa-
rameters (Table I) using the same workload from Section VI-B.
Figure 15 shows the sensitivity in terms of throughput of back-
ground and foreground flows, normalized to their throughput
with default values of parameters used in Legilimens.

Figure 15(a) shows the sensitivity as busy threshold (λ)
varies from 0 to 1 while the other two parameters are set to
their default values. At λ = 0, Legilimens behaves like a fair-
share protocol and foreground performance suffers; at λ = 1,
background flows starve. There is a wide stable range between
0.25 and 0.75 where both foreground and background flows
achieve good throughput, and we pick a default value of 0.5.

Figure 15(b) analyzes probe size (M) impact, as it varies
from 25 KB to 100 KB. Smaller probes are inaccurate and
very large probes impose overhead — both impact foreground
throughput. However, between 25KB and 100KB, variations
are within 20%. We pick a probe size of 50 KB as default.

Figure 15(c) shows impact of probe interval (T). Probing
too frequently (smaller values) or infrequently adversely af-
fects foreground performance, whereas background flows do
better at lower frequency, which gives them more time to send
data. Legilimens achieves stable, good performance for both
foreground and background between 200 ms and 300 ms. We
pick an interval of 250 ms as default.

VII. RELATED WORK

Legilimens is related to fair-share and LPT protocols as
well as to capacity estimation. Fair-share protocols can
be categorized as loss-based and delay-based. RENO [29],
NEWRENO [30], TAHOE [31]), and CUBIC [32] are some
of the well-known loss-based TCP variants. Most of the
conventional, loss-based TCP variants, incur high queuing
delays due to “buffer bloat” in cellular networks [33]. AQM-
based protocols [34–38] require support in routers and are
hard to implement in practice. Delay-based protocols (e.g.,
VEGAS [24]) do not suffer from buffer bloat as much as
loss-based protocols but they do not work well with cellular
networks’ variable delays. Although LPT protocols (e.g., TCP-
LP [14], LEDBAT [39], NICE [40]) perform well in wired and

Wi-Fi networks, they do poorly in cellular networks [4, 41–44].
We have extensively discussed TCP-LP [14] and LEDBAT [39].

SPROUT [12] and VERUS [26] explicitly consider the time-
varying capacity of cellular links. BBR [45], PropRate [46],
and ExLL [47] use both bandwidth estimation and round
trip times/one-way delays to maximize throughput while
minimizing delay. While these fair-share protocols improve
performance in cellular networks, their underlying goal is to
equally share the bottleneck capacity. In contrast, Legilimens
is a LPT with a goal of efficiently utilizing spare capacity
without affecting foreground flows. Further, we use novel
mechanisms to achieve our goal. Our evaluations show that
VERUS and BBR do not perform well as LPT. Loadsense [48]
schedules background traffic based on passive estimation of
cellular load by observing the power of channel and pilot
signal. However, passive estimation requires support at clients.
In contrast, Legilimens performs active measurements and does
not require support at clients.

There is a large body of work on capacity estimation. While
several of these ideas [49–53] are applicable to a broader
class of networks, our algorithm optimizes for PF schedulers
in cellular downlinks, which enables us to be simple and
efficient (e.g., we use data packets for probing, so there is
no overhead). QProbe [54] leverages the scheduler to estimate
congestion at the base station. However, QProbe uses the
estimation to identify bottleneck links, whereas Legilimens
uses the estimation to schedule background traffic. To the
best of our knowledge, none of the existing papers estimate
busyness, which is central to Legilimens’s goal of prioritizing
foreground flows over background flows.

VIII. CONCLUSION

We propose Legilimens, an agile transport protocol for
background traffic in cellular networks. Legilimens employs
a novel algorithm to quickly and accurately estimate capacity
and busyness, using them to achieve two conflicting objectives
— quickly yield to foreground traffic and efficiently capture
spare capacity. This makes Legilimens superior to existing
LPT protocols, which achieve one of the objectives but not
both. As background applications become more reliant on
cellular networks, schemes such as Legilimens are needed to
enforce high-level objectives that accommodate the needs of
users (foreground applications), content providers (background
applications), and network operators (resource utilization). We
plan to explore techniques to optimize Legilimens for uplink
cellular traffic and evaluate its performance in wired and Wi-Fi
networks in the future.

REFERENCES
[1] C. E. Andrade, S. D. Byers, V. Gopalakrishnan, E. Halepovic, M. Ma-

jmundar, D. J. Poole, L. K. Tran, and C. T. Volinsky, “Managing
massive Firmware-Over-The-Air updates for connected cars in cellular
networks,” in Proceedings of the 2nd ACM International Workshop on
Smart, Autonomous, and Connected Vehicular Systems and Services, ser.
CarSys ’17, 2017, pp. 65–72.

[2] S. Zhou, M. U. Chaudhry, V. Gopalakrishnan, E. Halepovic, B. Va-
manan, and H. Seferoglu, “Managing Background Traffic in Cellular
Networks,” in Proceedings of the International Symposium on Local
and Metropolitan Area Networks (LANMAN), 2019.

[3] Y. Zhang, Å. Arvidsson, M. Siekkinen, and G. Urvoy-Keller, “Un-
derstanding HTTP flow rates in cellular networks,” in 2014 IFIP
Networking Conference, June 2014, pp. 1–8.

[4] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and A. Terzis,
“CQIC: Revisiting cross-layer congestion control for cellular networks,”
in Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications, 2015, pp. 45–50.

[5] Y. Huang, S. Li, Y. T. Hou, and W. Lou, “GPF: A GPU-based design
to achieve˜ 100 µs scheduling for 5G NR,” in Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking,
2018, pp. 207–222.

[6] R. Margolies, A. Sridharan, V. Aggarwal, R. Jana, N. Shankara-
narayanan, V. A. Vaishampayan, and G. Zussman, “Exploiting mobility
in proportional fair cellular scheduling: Measurements and algorithms,”
IEEE/ACM Transactions on Networking, vol. 24, no. 1, pp. 355–367,
2014.

[7] H. Holma and A. Toskala, WCDMA for UMTS: Radio access for third
generation mobile communications. John Wiley & Sons, 2005.

[8] A. Banerjee, J. Cho, E. Eide, J. Duerig, B. Nguyen, R. Ricci, J. Van der
Merwe, K. Webb, and G. Wong, “PhantomNet: Research infrastructure
for mobile networking, cloud computing and software-defined network-
ing,” GetMobile: Mobile Computing and Communications, vol. 19, no. 2,
pp. 28–33, 2015.

[9] “NS-3 network simulator,” http://www.nsnam.org/.
[10] “LTE eNodeB scheduler and different scheduler type,”

http://www.techplayon.com/lte-enodeb-scheduler-and-different-
scheduler-type, 2018.

[11] R. Srikant and L. Ying, Communication networks: an optimization,
control, and stochastic networks perspective. Cambridge University
Press, 2013.

[12] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts
achieve high throughput and low delay over cellular networks,” in
Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’13. USENIX Association, 2013,
pp. 459–472.

[13] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “LEDBAT: The new
bittorrent congestion control protocol.” in ICCCN, 2010, pp. 1–6.

[14] A. Kuzmanovic and E. W. Knightly, “TCP-LP: A distributed algorithm
for low priority data transfer,” in INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications.
IEEE Societies, vol. 3, 2003, pp. 1691–1701.

[15] G. Carofiglio, L. Muscariello, D. Rossi, and C. Testa, “A hands-on
assessment of transport protocols with lower than best effort priority,”
in Local Computer Networks (LCN), 2010, pp. 8–15.

[16] N. Abu Ali, A.-E. Taha, M. Salah, and H. Hassanein, “Uplink scheduling
in LTE and LTE-Advanced: Tutorial, survey and evaluation framework,”
Communications Surveys & Tutorials, IEEE, vol. 16, pp. 1239–1265, 01
2014.

[17] V. Jacobson, B. Braden, and D. Borman, “TCP extensions for high
performance,” Internet Requests for Comments, RFC Editor, RFC 1323,
May 1992. [Online]. Available: http://www.rfc-editor.org/rfc/rfc1323.txt

[18] D. Murray and T. Koziniec, “The state of enterprise network traffic
in 2012,” in 2012 18th Asia-Pacific Conference on Communications
(APCC), 2012, pp. 179–184.

[19] E. Halepovic, J. Pang, and O. Spatscheck, “Can you GET me now?:
Estimating the time-to-first-byte of HTTP transactions with passive
measurements,” in Proceedings of the 2012 Internet Measurement
Conference, ser. IMC ’12. ACM, 2012, pp. 115–122. [Online].
Available: http://doi.acm.org/10.1145/2398776.2398789

[20] R. Braden, “Requirements for internet hosts - communication layers,”
Internet Requests for Comments, RFC Editor, STD 3, October 1989.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc1122.txt

[21] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. R. Choffnes, and R. Govin-

dan, “Investigating transparent web proxies in cellular networks,” in
PAM, 2015.

[22] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and
O. Spatscheck, “An in-depth study of LTE: Effect of network protocol
and application behavior on performance,” in Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM ’13, 2013,
pp. 363–374.

[23] B. Vamanan, H. B. Sohail, J. Hasan, and T. Vijaykumar, “Timetrader:
Exploiting latency tail to save datacenter energy for online search,” in
Proceedings of the 48th international symposium on microarchitecture,
2015, pp. 585–597.

[24] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global internet,” IEEE Journal on Selected Areas in
Communications, vol. 13, no. 8, pp. 1465–1480, 1995.

[25] M. Claypool, J. W. Chung, and F. Li, “BBR: An implementation
of bottleneck bandwidth and round-trip time congestion control
for ns-3,” in Proceedings of the 10th Workshop on NS-3, ser.
WNS3 ’18. ACM, 2018, pp. 1–8. [Online]. Available: http:
//doi.acm.org/10.1145/3199902.3199903

[26] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg, “Adaptive
congestion control for unpredictable cellular networks,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15. ACM, 2015, pp. 509–522.
[Online]. Available: http://doi.acm.org/10.1145/2785956.2787498

[27] M. Claypool, “An implementation of bottleneck bandwidth and round-
trip time congestion control for ns-3,” https://github.com/mark-claypool/
bbr.

[28] “Verus-ns3,” 2020. [Online]. Available: https://github.com/
SoonyangZhang/verus-ns3

[29] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno
and SACK TCP,” SIGCOMM Comput. Commun. Rev., vol. 26, no. 3,
pp. 5–21, Jul. 1996. [Online]. Available: http://doi.acm.org/10.1145/
235160.235162

[30] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno
modification to TCP’s fast recovery algorithm,” Internet Requests for
Comments, RFC Editor, RFC 6582, April 2012. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6582.txt

[31] V. Jacobson, “Congestion avoidance and control,” in Symposium
Proceedings on Communications Architectures and Protocols, ser.
SIGCOMM ’88. ACM, 1988, pp. 314–329. [Online]. Available:
http://doi.acm.org/10.1145/52324.52356

[32] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger,
“CUBIC for fast long-distance networks,” Internet Requests for Com-
ments, RFC Editor, RFC 8312, February 2018.

[33] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling bufferbloat in
3G/4G networks,” in Proceedings of the 2012 Internet Measurement
Conference, ser. IMC ’12. ACM, 2012, pp. 329–342. [Online].
Available: http://doi.acm.org/10.1145/2398776.2398810

[34] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center TCP
(DCTCP),” in Proceedings of the ACM SIGCOMM 2010 conference,
ser. SIGCOMM ’10. ACM, 2010, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/1851182.1851192

[35] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-Aware Datacenter
Tcp (D2TCP),” in Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, ser. SIGCOMM ’12. Association
for Computing Machinery, 2012, p. 115–126. [Online]. Available:
https://doi.org/10.1145/2342356.2342388

[36] H. Rezaei, M. Malekpourshahraki, and B. Vamanan, “Slytherin: Dy-
namic, Network-assisted Prioritization of Tail Packets in Datacenter
Networks,” in Proceedings of the International Conference on Computer
Communications and Networks (ICCCN), Jul 2018, pp. 1–9.

[37] H. Almasi, H. Rezaei, M. U. Chaudhry, and B. Vamanan, “Pulser: Fast
Congestion Response using Explicit Incast Notifications for Datacenter
Networks,” in Proceedings of the International Symposium on Local and
Metropolitan Area Networks (LANMAN), 2019.

[38] J. Xue, M. U. Chaudhry, B. Vamanan, T. N. Vijaykumar, and M. Thot-
tethodi, “Dart: Divide and Specialize for Fast Response to Congestion
in RDMA-Based Datacenter Networks,” IEEE/ACM Transactions on
Networking, vol. 28, no. 1, pp. 322–335, 2020.

[39] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, “Low
extra delay background transport (LEDBAT),” Internet Requests
for Comments, RFC Editor, RFC 6817, December 2012. [Online].

http://www.nsnam.org/
http://www.techplayon.com/lte-enodeb-scheduler-and-different-scheduler-type
http://www.techplayon.com/lte-enodeb-scheduler-and-different-scheduler-type
http://www.rfc-editor.org/rfc/rfc1323.txt
http://doi.acm.org/10.1145/2398776.2398789
http://www.rfc-editor.org/rfc/rfc1122.txt
http://doi.acm.org/10.1145/3199902.3199903
http://doi.acm.org/10.1145/3199902.3199903
http://doi.acm.org/10.1145/2785956.2787498
https://github.com/mark-claypool/bbr
https://github.com/mark-claypool/bbr
https://github.com/SoonyangZhang/verus-ns3
https://github.com/SoonyangZhang/verus-ns3
http://doi.acm.org/10.1145/235160.235162
http://doi.acm.org/10.1145/235160.235162
http://www.rfc-editor.org/rfc/rfc6582.txt
http://doi.acm.org/10.1145/52324.52356
http://doi.acm.org/10.1145/2398776.2398810
http://doi.acm.org/10.1145/1851182.1851192
https://doi.org/10.1145/2342356.2342388

Available: http://www.rfc-editor.org/rfc/rfc6817.txt
[40] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP Nice: A mechanism

for background transfers,” ACM SIGOPS Operating Systems Review,
vol. 36, no. SI, pp. 329–343, 2002.

[41] J. Wang, A. Huang, WeiWang, Z. Zhang, and V. K. N. Lau, “On
the transmission opportunity and TCP throughput in cognitive radio
networks,” Int. J. Commun. Syst., vol. 27, no. 2, pp. 303–321, May
2012.

[42] A. Gurtov and R. Ludwig, “Responding to spurious timeouts in TCP,”
in Proc. of IEEE INFOCOM, vol. 3, 2003, pp. 2312–2322.

[43] R. Ludwig and R. Katz, “The Eifel algorithm: Making TCP robust
against spurious retransmissions,” ACM Computer Communication Re-
view, vol. 30, pp. 30–36, January 2000.

[44] X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and H. Zang, “Expe-
riences in a 3G network: Interplay between the wireless channel and
applications,” in MOBICOM, 2008, pp. 211–222.

[45] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” Queue, vol. 14, no. 5,
p. 50, 2016.

[46] W. K. Leong, Z. Wang, and B. Leong, “TCP congestion control
beyond bandwidth-delay product for mobile cellular networks,” in
Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’17. ACM,
2017, pp. 167–179. [Online]. Available: http://doi.acm.org/10.1145/
3143361.3143378

[47] S. Park, J. Lee, J. Kim, J. Lee, S. Ha, and K. Lee, “ExLL: An
extremely low-latency congestion control for mobile cellular networks,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’18. ACM,
2018, pp. 307–319. [Online]. Available: http://doi.acm.org/10.1145/

3281411.3281430
[48] A. Chakraborty, V. Navda, V. N. Padmanabhan, and R. Ramjee, “Coordi-

nating cellular background transfers using Loadsense,” in Proceedings
of the 19th annual international conference on Mobile computing &
networking, 2013, pp. 63–74.

[49] S. Keshav, “Congestion control in computer networks,” Ph.D.
dissertation, EECS Department, University of California, Berkeley,
Sep 1991. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/1991/6386.html

[50] A. Morton and S. V. den Berghe, “Framework for metric composition,”
Internet Requests for Comments, RFC Editor, RFC 5835, April 2010.

[51] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth esti-
mation: metrics, measurement techniques, and tools,” IEEE network,
vol. 17, no. 6, pp. 27–35, 2003.

[52] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet-dispersion tech-
niques and a capacity-estimation methodology,” IEEE/ACM Transac-
tions on Networking, vol. 12, no. 6, pp. 963–977, Dec 2004.

[53] N. Hu, L. E. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locating
Internet Bottlenecks: Algorithms, Measurements, and Implications,” in
Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, ser.
SIGCOMM ’04. ACM, 2004, pp. 41–54. [Online]. Available:
http://doi.acm.org/10.1145/1015467.1015474

[54] N. Baranasuriya, V. Navda, V. N. Padmanabhan, and S. Gilbert,
“QProbe: Locating the bottleneck in cellular communication,” in
Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’15. ACM, 2015,
pp. 33:1–33:7. [Online]. Available: http://doi.acm.org/10.1145/2716281.
2836118

http://www.rfc-editor.org/rfc/rfc6817.txt
http://doi.acm.org/10.1145/3143361.3143378
http://doi.acm.org/10.1145/3143361.3143378
http://doi.acm.org/10.1145/3281411.3281430
http://doi.acm.org/10.1145/3281411.3281430
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1991/6386.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1991/6386.html
http://doi.acm.org/10.1145/1015467.1015474
http://doi.acm.org/10.1145/2716281.2836118
http://doi.acm.org/10.1145/2716281.2836118

