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Abstract—Advanced network management systems, including
network measurement and traffic control, rely on a remote
controller to make control decisions. However, this approach
incurs a long control loop of a few seconds to minutes. Even
if we switch to switch-local controller, the latency is still tens
of milliseconds and is unacceptable for many latency-sensitive
tasks. In this paper, we propose Martini, a general framework
that supports measurement-based timely control. The key idea is
to perform measurement, control decision, and control entirely
in the switch data plane. This could shorten the control loop
of management tasks that require timely control based on only
locally measured statistics in the switch. First, Martini introduces
a set of primitives to describe management tasks. Next, Martini
provides an innovative network-wide task placement mechanism
to exploit resources of all switches to accommodate massive
management tasks. Finally, Martini provides a code library and a
compiler to support measurement and control on a state-of-the-
art switching ASIC. Evaluation results show that Martini can
effectively support a wide range of fine-timescale management
tasks such as microburst detection and fast load balancing by
reducing the control loop from seconds to nanoseconds.

I. INTRODUCTION
Network management in modern networks encompasses

a range of tasks including anomaly detection [59], [91],
attack defense [66], [87], and flow scheduling [2], [12], [30].
Network management normally involves two phases: (1) mea-
suring network traffic in real time to collect statistics (e.g., flow
sizes, unique flow number), and (2) controlling the network
in response to detected events (e.g., load balancing elephant
flows, explicit congestion notification) [45], [66], [87]. Many
efforts have been devoted separately to network measure-
ment and control. Literatures including OpenSketch [87],
Dream [64], UnivMon [59], Trumpet [66], SketchVisor [45],
Sonata [37] and more focused on improving the perfor-
mance, accuracy, and resource efficiency of measurement,
while Pyretic [62], FlowTags [29], FlexSwitch [80] and so
on focused on declaration and execution of control actions.

Actually, there exists a gap between measurement and
control, as the choices of control actions are based on measure-
ment. Advanced management systems [56], [59], [66], [73],
[87] employ a dedicated controller to connect the two phases.
As shown in Figure 1(a), the measurement module collects
statistics and reports to the remote controller, which then
makes decisions and installs control rules back into switches.
This approach introduces a long control loop between mea-
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Fig. 1: Traditional vs. Martini support for
measurement-based network control.

surement and control. The loop includes the data plane report
interval, data transmission and rule installation latency, and
the time to make decisions in controller. Our experiments in
§VI show that this loop ranges from seconds to minutes. Also,
using the switch-local control plane to process the data plane
events could only reduce part of the transmission latency.

Unfortunately, such a long control loop is unacceptable
for many latency-sensitive management tasks. For instance,
an advanced congestion control mechanism [33] reveals that
microbursts cause the majority of congestion and performs
fine-grained load balancing to avoid congestion. However,
most microbursts last for a few microseconds [11], [33], [90].
If we rely on the controller for control decision, a microburst
may have already caused congestion before the new rule
reaches the switch. Such untimeliness also prevents support
for many other management tasks including DNS reflection
attack defense [37], [83], superspreader identification and
quarantine [10], fast link failure recovery [20], etc.

To reduce the control loop, a basic idea, contrary to SDN,
is making control decisions in the switch data plane. In
this way, entire tasks are offloaded to the switch data plane,
which eliminates the detour through the controller. (1) Some978-1-7281-6992-7/20/$31.00 c�2020 IEEE



studies propose to enhance the programmability of OpenFlow
switches to support network tasks [13], [27], [33], [50], [63],
[81], [83]. But they requires redeveloping OpenFlow Switch-
ing ASIC to support new tasks, which introduces high cost
and long development cycles [17]. (2) Some recent studies
exploit programmable switches [17] to offload network tasks.
(2.1) [82], [66] propose to offload the detection of network
events such as heavy hitters to the data plane. However, the
detected events still have to be reported to the controller for
final control decision, which compromises the effectiveness of
above solutions to reduce control loop. (2.2) [5], [49], [61]
offload specific tasks into switches. However, they are not
extensible to other tasks and lack a general framework that
provides reusable function modules for network management
tasks. FlexSwitch [80] took a first step towards providing a
library of reusable modules. However, it only provides building
blocks related to resource allocation protocols. In summary,
due to the high diversity and complexity of management tasks,
each of existing solutions is tailored for one specific task or
requires system redesign to support new tasks.

Different from above works, our goal is to design a gen-
eral framework that can enable operators to easily describe
management tasks, translate task description into low-level
programs, and run multiple management tasks simultaneously
in switches. To achieve this target, we study a series of man-
agement tasks and observe that a large portion of tasks require
only local measurement results in a switch for decision. For
example, LocalFlow [78] measures flow sizes, detects burst
flows, and performs local load balancing in switches to avoid
congestion. We provide more examples in §II-A and Table VII.
Based on our observation, we propose Martini, a general
framework that supports measurement-based timely network
control using programmable switching ASICs. As shown in
Figure 1(b), Martini shortens the control loop by offloading
management tasks entirely to the switch data plane. Since
measurement and control already reside in the switch data
plane, offloading control decision merely occupies very few
additional resources (§IV-A). The Martini framework includes
three components. First, Martini provides a set of high-
level management task description primitives for operators to
easily describe and assemble the above all three phases of
management. Second, Martini presents an innovative network-
wide task placement mechanism to exploit resources of all
network switches to accommodate massive management tasks.
Finally, Martini provides a library of measurement and control
components and a compiler that automatically composes them
to generate programs on programmable switching ASICs.

In summary, Martini makes the following contributions.
• We identify the motivations and challenges of enabling

measurement-based timely traffic control for network man-
agement tasks, and propose the Martini framework to
shorten the control loop using switching ASICs. (§II)

• We provide a set of task description primitives for operators
to easily describe the measurement, local control decision,
and control actions in management tasks. (§III)

• We design a network-wide task placement mechanism that
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Fig. 2: The latency components of the control loop.

deploys management tasks onto all switches in the entire
network with high resource efficiency. (§IV)

• We introduce the implementation details of Martini includ-
ing a code library of measurement and control components
and a compiler that automatically generates codes for all
network switches to deploy management tasks. (§V)

• We implement Martini on a state-of-the-art programmable
switching ASIC, and test 16 commonly used management
tasks. Evaluations show that Martini achieves timely control
in all 16 management tasks by reducing the control loop
from seconds to nanoseconds. (§VI)

II. MOTIVATIONS AND CHALLENGES

We first motivate from the observation that today’s network
management systems, requiring timely control, suffer from
a long control loop. Then, we introduce three major design
challenges including management task description, network-
wide task placement, and task implementation in switches.
A. Motivations
Problem: Long latency between measurement and control
in current network management systems. As shown in
Figure 2, the current long control loop includes:
• Switch report interval: Statistics are periodically reported

to the controller. For example, SNMP provides per port
counters every few minutes [66]. OpenFlow reports flow
counters every few seconds [2], [27], [72]. A network event
cannot be reported until the end of its measurement interval.

• Statistics uploading and rule installation: The switch
pipeline first sends statistics to report to the switch CPU,
which then communicates with the controller. Returned flow
rules follow the inverse path. The latency between pipeline
and CPU could reach tens of milliseconds and even more
under high load [22], [41], [44], [55], [64].

• Statistics transmission and rule issuing: Statistics and con-
trol rules are transmitted between the switch CPU and the
controller through communication APIs like OpenFlow [64],
[87]. However, it takes 50µs to 3ms for an OpenFlow switch
to receive a message from the one-hop-away controller [79].

• Control decision in the controller: Many monitoring systems
use sketches for measurement [45], [59], [65], [87] as they
can provide theoretical guarantees on error bound with
limited memory in switches. However, in order to reduce
the communication latency and save bandwidth, switches
can only report counters without large flow keys to the
controller [26], [45], [59], [87]. The controller then exploits
techniques such as reversible sketch [76], [87], group test-
ing [59], or sequential hashing [19] to retrieve the flow keys
for control decision. Our evaluation in §VI-B shows that this
process could take seconds to minutes.



In summary, traditional centralized control plane for control
decision introduces a long control loop. This latency may
increase as networks grow in capacity and utilization [66].
Requirement: Timely control based on measurement re-
sults in modern networks. Modern networks need to quickly
react to measurement results for timely control. We describe
a few examples here and list more in Table VII.
• Microburst detection and fast load balancing: Some recent

works exploit the control plane for congestion control [2],
[12], [71]. However, congestion instead increases the com-
munication latency between switches and controller. Slow-
reacting load balancing may then only be able to effectively
resolve congestion at the coarser timescale of 1s [90], while
the majority of congestion is caused by microbursts with a
few µs life cycle [11], [33], [75], [90]. Therefore, we should
quickly identify bursty flows that could cause microbursts
and ensure timely load balancing within several µs [78].

• DNS reflection attack detection and defense: Compromised
machines send spoofed DNS requests with IP addresses of
the target network to DNS resolvers, which respond to the
target network and create an attack [74], [35]. Such an
attack could grow to a threatening size of 300Gbps [18].
If the target network is executing a crucial and timely task,
tradition mitigation that take seconds to take effect may be
too slow to stop failing the task.

• Superspreader identification and quarantine: A super-
spreader refers to a source IP that simultaneously contacts
more than a threshold of unique destination IPs during a
time interval [37], [87]. Untimely controlled superspreaders
could cause serious fast worm propagation [85], thus quickly
identifying and quarantining them is highly important.
Above cases focus on handling violent situations in short

time-scales. Despite they may also work at coarser time-
scale (e.g. central control decision), a much quicker reaction
can work together with traditional methods and optimize the
overall management timeliness. Moreover, controlling at finer
time-scale is a new option to capture and deal with many
situations at their early stages, which can also save lots of
global processing resources such as CPU and bandwidth.
Martini: To achieve such fine time-scale management, Martini
proposes a scheme that performs timely control based on local
measurement results in switches. Therefore, the latency of
the report interval and data transmission is eliminated since
the control happens immediately after measurement in the
same switch. Furthermore, the latency of retrieving flow keys
for control decision is left out, as timely control is precisely
executed on the packet that triggers network events.

Generality: Martini can abstract the common tasks into one
unified scheme and put them in a library for users to re-
use them without reinventing the wheel. Any new task that
follows the scheme can be added to the library. Also, since
the network resources are limited, a general framework is far
more economical than multiple specific frameworks.

Benefiting global management tasks: Although some other
tasks require global information from multiple switches for
control decision and cannot follow such a scheme, such as

TABLE I: Martini measurement primitives and comparison
with Marple [68], Sonata [37].

Primitive Description Marple Sonata
filter (p) Filter packets that satisfy predicate p. X X
update (i, f, v) Update counter i with function f & value v. X X
query (i) Query the counter at index i. X X
groupby (k, f ) Group counters with key k and function f. X X
set window (t) Set the measurement window t. ⇥ X
set error rate (e) Set allowed maximum error rate e. ⇥ ⇥
set flow number (n) Set estimated flow number n. ⇥ ⇥
set flow rate (r) Set estimated total flow rate r. ⇥ ⇥
get change () Get the change of data across two intervals. ⇥ ⇥
get distribution () Get the distribution of measurement results. ⇥ ⇥

detecting network-wide heavy hitters [40], Martini can benefit
them by reporting to the controller after event detection. The
global task in the controller can then gather information for
control. These tasks do not require local control decisions
and are therefore out of the scope of Martini. Nevertheless,
Martini is still helpful for the description, placement, and
implementation of measurement and control parts of them.
B. Design Challenges
Management task description: Recent studies have proposed
languages for either measurement [37], [66], [68] or con-
trol [8], [60], [62], [80], but have not considered them col-
lectively. However, we are challenged to give descriptions for
the contents and connections of all phases in one management
task. Furthermore, we require high-level primitives to enable
code reuse to reduce operational burdens. To this end, We
proposes a set of high-level task description primitives to give
all phases of management tasks a unified description. (§III).
Network-wide task placement: Martini aims to accommo-
date all phases of managements tasks in switches. However,
switching ASICs have limited resources [17], which con-
strains accommodating massive management tasks. To address
this challenge, we use highly resource-efficient sketches for
measurement and provide a balanced and configurable trade-
off between resource usage and accuracy. Then we place
management tasks in the scope of the entire network to
exploit the resources of all network switches. We propose two
techniques including data partition and computation partition
to split a task into several subtasks for placement, and design
a network-wide task placement algorithm that places subtasks
on network switches to optimize global resource usage. (§IV).
Task implementation on switching ASICs: Implementation
is challenging in two aspects. First, we are challenged to
support various sketches for measurement and algorithms for
control in switching ASICs. In response, Martini provides a
rich component library for operators. Second, one management
task may span across several switches, making it challenging
to configure each switch and the information exchange among
switches. In response, Martini automatically compiles config-
urations for all switches by composing components in the code
library based on task placement results. (§V).

III. MANAGEMENT TASK DESCRIPTION
We define a set of primitives for operators to easily describe

management phases. The primitives are designed to be modu-
lar, reusable, and extensible so that each phase can be declared
separately and composed together easily. Then we present an
example management task using our primitives.



TABLE II: Partial control actions supported by Martini.
Primitive Description

drop () Drop the packet.
forward (p) Forward the packet out through port p.
report to controller () Report information to the controller.
ecmp ([p]) [43], [80] Per-flow load balancing across a list of ports [p].

wcmp ([{p, w}]) [92], [84]
Per-flow balancing across a list of weighted ports.
Each port p is assigned a forwarding weight w.

spray ([p]) [28] Per-packet load balancing across a list of ports [p].
flowlet ecmp (i, [p])
[5], [84]

Identify flowlets with inter-arrival time i.
Per-flowlet load balancing across a list of ports [p].

rate limit (v) Limit the sending rate of a flow to v.
ecn () [6] Tag the ECN bits of a packet once a queue is congested.
qcn (th, p) [4] Tag pkts with probability p if queue congestion exceeds th.
hull (t) [7] Implement phantom queues with threshold t.
drill ([q]) [33] Per-packet balancing based on lengths of queues [q].
localflow ([q]) [78] Balance flows into a list of equal cost queues [q]
set queue (qid) Insert a packet into the queue with ID qid.
red (p) [32] Drop packets with probability p on congestion.

wred ([{h1, h2, qid}])

Set dropping policies for each queue with qid.
If the queue size ¡ h1, do not drop packets.
If the queue size ¿ h2, drop subsequent packets.
Otherwise, drop packets according to the queue size.
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Fig. 3: Measurement schemes in Martini.

A. Martini Primitives
We introduce Martini primitives to describe measurement,

control decision, and control phases in a management task.
Measurement: There are two unique features in measurement:
(1) Decoupling statistics updating and querying. We observe
that traditional measurement primitives follow a measure
through scheme. As shown in Figure 3(a), for each packet that
satisfies the predict in filter, the traditional scheme will
update the measurement record, and directly use this updated
record for further processing or control decision [66], [37].
However, coupling statistics updating and querying may not
be able to support all tasks. For the fine-grained DNS reflection
attack defense task (§II-A), we should maintain records when
receiving DNS requests, and query the record and output the
existence of the corresponding request when receive DNS re-
sponses. Thus updating and querying are triggered by different
packets, which cannot be supported by traditional scheme.

To address this challenge, besides supporting the measure
through scheme, Martini refers to database operations and also
supports an update-query scheme as shown in Figure 3(b).
We list our measurement primitives in Table I. Operators
could filter one set of packets to update the record and
a different set to query or group the record to generate
output. Finally, we design the set_window primitive to
enable operators to configure the measurement window t.
(2) Resource-aware measurement description. Measurement
is often memory-intensive [82], [37]. Accurately estimating
the resource usage of measurement tasks is important for
placement. However, existing measurement primitives focus

1 DNS_reflection_task
2	 .set_window (1s)
3	 .filter	(udp.dstPort ==	53)
4 .update (i =	[srcIP,	dstIP,	transID],	f	=	set,	v	=	1)
5	 .filter	(udp.srcPort ==	53)
6 .query (i =	[dstIP,	srcIP,	transID])
7	 .detect	(stats	≠	1)
8 .drop().report_to_controller()

Fig. 4: DNS reflection attack detection and defense.
solely on functional declaration. Martini allows operators to
input estimated maximum error_rate, flow_number,
and flow_rate. The memory consumption of tasks can be
automatically inferred based on above values (§IV-A). To gain
accurate resource parameters, operators could deploy a simple
measurement task to gather accurate flow statistics during
runtime [80]. If flow statistics change, operators could simply
adjust resource allocation and deploy a new measurement task.
Decision: The control decision phase detects network events
based on the statistics stats generated by the measurement
phase as well as switch performance information such as
queue size. Detections are expressed using conditional ex-
pressions, e.g., f(stats, switch) > threshold or f(stats,
switch) is (not) true. Function f performs calculations
including min, max, sum, and, or, not, etc..
Control: This phase executes control actions on the pack-
ets that trigger network events. To enable modularity and
reusability, we abstract control actions into a unified paradigm
action name (action parameters). Any customized control
actions implemented in the programmable data plane can
expose their names and parameters to be used in Martini task
description. We list typical control actions in data centers, wide
area networks (WANs), and enterprise networks in Table II.
B. Example Management Tasks

Operators compose primitives for management tasks based
on the one-big-switch abstraction [9], [59] as if deployed
entirely in one single switch. We describe the DNS reflection
attack defense task here, and more examples are in Table VII.
Primitive integration. We start by introducing how to inte-
grate primitives of all phases into management tasks. Regard-
ing measurement and decision primitives, a control decision
could be made based on one or multiple measurement results.
Meanwhile, multiple control actions can be assigned to one
event, while different events could result in the same control
actions. We use an intuitive python-like padding style to denote
the conjunction of measurement phase and decision phase, as
well as the conjunction of events and corresponding actions.
DNS reflection attack detection and defense. As illustrated
in Figure 4, we filter DNS requests (line 3), use source IP,
destination IP, and DNS transaction ID as index, and record
their existence by setting corresponding counters to 1 (line 4).
For DNS responses, we query the existence of corresponding
requests (line 5, 6). If they does not exist, the responses will
be dropped and reported to the controller (line 7, 8).

IV. NETWORK-WIDE TASK PLACEMENT

Controller inputs the task descriptions and places tasks on
network-wide switches. Existing placement solutions either



TABLE III: Mapping measurement description to sketches and estimating the resource consumption of each sketch. u is
short for update , and q stands for query . We omit the sketches’ usage of stateful actions for brevity.

u key u func u value q type Example Sketch Parameter SRAM (bits) Stage

wild card add 1 query Total packet count Single counter 32 1
otherwise query Total packet size Single register 32 1

set 1 query Unused port detection Single bit 1 1

Specific

add 1 query Flow packet count
Count-min sketch [25] Threshold: 0 < φ < 1

Per-flow relative error: ✏
64
✏φ 1otherwise query Microburst detection / PIAS

set 1
groupby (*) Unique connection number PCSA sketch [31] Relative error: ✏ ( 0.78✏ )2 ⇥ (32− 2

⇠
log2

0.78
✏

⇡
) 6

query DNS reflection attack defense Bloom filter [14], [34]
Number of flows: n
Hash function number: k
False positive rate: ✏

kn
ln[1/(1− k

p
✏)]

2

groupby Superspreader / DDoS victim Bloom filter + Count-min Input of both sketches Sum of two sketches 3

change () Flow size change detection k-ary sketch [26], [76]
Threshold: 0 < φ < 1
Per-flow relative error: ✏

512
✏2φ2 2

distribution () Flow size distribution multi-resolution sketch [54] 34M 4

TABLE IV: Stage consumption of control actions.
Primitive Stage Primitive Stage Primitive Stage

drop 1 forward 1 report to controller 1
ecmp 2 wcmp 2 spray 2

flowlet ecmp 5 rate limit 1 ecn 1
qcn 4 hull 3 drill 6

set queue 2 red 2 wred 3

focus on placement on a single switch [36] or do not consider
the intrinsic constraints of measurement based tasks [77] and
the switches capacities [9]. We discuss more details in §VII. In
comparison, we first estimate the resource usage of each task,
and then partition tasks into fine-grained subtasks that could be
distributed to all switches. Finally, we perform network-wide
task placement to optimize global resource usage.

A. Task Resource Estimation
One management task may operate on many flows that

follow different paths. We split one task into several task slices,
each of which only manages flows following the same path.
We later use task to represent task slice for brevity. Based on
the task description, we estimate the resource usage of each
phase in a task as input for placement. Martini is based on
pipelined switches [17], [37], with critical resources including
pipeline stages (1-32), SRAM (tens to hundreds of Mb),
and stateful actions. However, for non-pipelined switches, the
concept of ”stage” can still be generalized to node in the
network and Martini will still be applicable.
Measurement: Recent studies have proposed many techniques
to support measurement inside switches, such as sketches [45],
[59], [65], [87], hash tables [3], [82], sampling [23], [77], [86],
etc. We select sketches due to their high resource efficiency
and bounded error are suitable for limited switch resources.
As listed in Table III, we first map the description of the
measurement phase into its corresponding sketch. Then we
calculate the SRAM usage of the sketch based on the input or
default resource parameters. We also collect the stage usage
of each sketch based on our implementation (§V).
Decision: Since the control decision phase is a single con-
ditional expression, it only occupies one pipeline stage and
negligible SRAM resources for network events detection.
Control: Based on our implementation (§V), we found that
the pipeline stage is the main critical resource of control
actions in Table II, and list the consumption in Table IV. Each
control action requires negligible SRAM to hold control rules.

B. Computation and Data Partition
As shown in Tables III and IV, measurement could take

lots of SRAM resources, while both measurement and control
phases may consume many pipeline stages. Therefore, it is
infeasible for some tasks to be entirely accommodated inside
one switch. To address this challenge, we present our key
observation that a flow may go through multiple switches
before reaching its destination. Therefore, a task can be placed
on any switch in the path to correctly manage a flow. Based on
this observation, we propose to split a task into fine-grained
subtasks and distribute them onto the switches alongside the
flow forwarding path. We split a task in two ways including
computation partition and data partition.
Computation partition: A management task defined in Mar-
tini can be split according to its execution phases as in (§III).
We could distribute the three phases onto different switches
while ensuring their ordering. However, such partition intro-
duces extra information transmission among switches and may
affect the goodputs. We notice that the measurement phase
generates statistics (hundreds of bits) for decision, while the
decision phase detects network events and informs the control
phase with a single flag(of a few bits). As the decision phase
merely occupies one pipeline stage and few SRAM, we couple
measurement and decision and simply partition a task into
measurement and control for minimum overhead. Moreover,
multiple control phases in one task can also be partitioned.
Data partition: According to Table III, measurement is
usually SRAM intensive. For instance, a Bloom Filter that
monitors 106 flows using 2 hash functions with 1% false
positive rate needs 19Mb SRAM, which may exceed the
capacity of a single stage. Meanwhile, we observe that the
SRAM usage of sketches such as Bloom Filter is positively
correlated to the number of flows. Therefore, we equally divide
the flows into several partitions, and use multiple instances of
the same sketch to monitor the flow partitions. We minimize
the number of partitions while ensuring one stage has enough
resources to measure one partition to minimize stage usage.

After computation and data partition, a task is split into
several subtasks. Next we place the subtasks on switches with
respect to resource and ordering constraints.
C. Network-wide Placement Algorithm

Given the subtasks obtained above, we model their place-
ment as a 0-1 Nonlinear Programming problem in Table VI.



TABLE V: Notations for network-wide task placement.
(Output) Variables and indexes

x
(i,p)
(j,t)

0-1 variable indicating the start stage of subtask p
(i, p) subtask p of task i
(j, t) stage t on switch j

(Input) Subtasks
T Set of tasks

subi Number of subtasks of task i

CS(i,p) Number of stages consumed by subtask (i, p)

Mem(i,p)
t Memory consumed by the t-th stage of subtask (i, p)

State(i,p)t Number of stateful actions for the t-th stage of subtask (i, p)
C Set of ordering dependencies

(i, p1 E p2) Subtask (i, p1) should be before (i, p2) on the path of task i

(Input) Forwarding Information
S Set of switches

pathi Path of task i
↵i,j Position of switch j on the path of task i
δi,j Indicate whether switch j is on the path of task i

⇢
(j,t)
i Stage t on switch j is the ⇢

(j,t)
i -th stage along pathi

(Input) Hardware Resource Constraints
SN Number of stages inside a switch

StageMem Total SRAM memory inside a switch
StageState Total number of stateful actions inside a switch

TABLE VI: Formulation for network-wide placement.
Objective:

min
X

j2S

SN−1X

t=1

sgn
⇣
occupy(j,t)

⌘

where

occupy(j,t) =
X

i2T

0

B@δi,j ·
subiX

p=1

0

B@
min{CS(i,p),t}X

⌧=1

x
(i,p)
(j,t−⌧+1)

1

CA

1

CA

Constraints:

(C1) 8(j, t) :
X

i2T

0

@δi,j ·
subiX

p=1

x
(i,p)
(j,t)

⌦Mem
(i,p)
t

1

A 6StageMem

(C2) 8(j, t) :
X

i2T

0

@δi,j ·
subiX

p=1

x
(i,p)
(j,t)

⌦ State
(i,p)
t

1

A 6StageState

(C3)

8 (p1 E p2, i) 2 C:X

j,t

⇣
⇢
(j,t)
i · x(i,p1)

(j,t)

⌘
+ CS(i,p1) 6

X

j,t

⇣
⇢
(j,t)
i · x(i,p2)

(j,t)

⌘

where ⇢
(j,t)
i = (↵i,j − 1) · SN + t

(C4) 8(i, p) :
X

j2S

SN−1X

t=1

x
(i,p)
(j,t)

= 1

We list related notations in Table V. We further linearize the
objective into an Integer Linear Programming problem (ILP) ,
as there exist many advanced ILP tools to accelerate problem
solving. Detailed modeling process is shown below.
Objective. Our intuition is that management tasks should
occupy minimal switch resources. However, a switch has
multiple types of mutually dependent resources. Each stage
has fixed amount of SRAM and stateful actions [17], [37].
The problem is which type of resources to optimize. We
notice that the total SRAM and stateful actions usage can
be pre-estimated, while subtasks can share a pipeline stage
if the SRAM and stateful actions in the stage are sufficient.
Therefore, we choose to minimize the stage occupancy of all
tasks. (j, t) is occupied by subtask p if the first stage of p is
on switch j and less than CS(i,p) stages ahead of (j, t), i.e.

9⌧ 2 {1, 2, ...,min{CS(i,p), t}}, s.t. x
(i,p)
(j,t−⌧+1) = 1 (1)

we traverse all subtasks and sum the formula above up as
occupy(j,t). Therefore occupy(j,t) > 0 indicates that (j, t) is

occupied. We use sgn function to normalize occupy to {0, 1},
where sgn(x) = 1 if x > 0, and 0 otherwise. The final
expression of the objective is shown in Table VI.
Resource Constraints (C1, C2). Similar to [46], we analyze
SRAM and stateful actions constraints in the granularity of a
stage. As one subtask may span across multiple stages, the
SRAM for subtask p in task i on stage (j, t) is:

Pmin{CS(i,p),t}
⌧=1 x

(i,p)
(j,t−⌧+1) ·Mem

(i,p)
⌧ (2)

The formula is the convolution of x
(i,p)
(j,t) and Mem

(i,p)
t [70],

denoted as x
(i,p)
(j,t) ⌦ Mem

(i,p)
t for simplicity. Thus the total

memory resource on stage (j, t) should satisfy (C1). Similarly,
we can also get the constraint of stateful actions (C2).
Ordering Constraints (C3). We should ensure the ordering
between subsequent control subtasks. In pathi, one subtask p1
placed before another subtask p2, is denoted as (i, p1 E p2).
It requires that the start stage of p1, (j1, t1), should be more
than CS(i,p1) stages ahead of the start stage of p2, (j2, t2). We
denote ⇢

(j,t)
i as the absolute order of stage (j, t), calculated as

⇢
(j,t)
i = (↵i,j − 1) ·SN+t, with ↵i,j as the position of switch

j on pathi. The absolute order of (j1, t1) naturally equals to
⇢
(j1,t1)
i ·x(i1,p1)

(j1,t1)
. Since x

(i,p1)
(j,t) turns into 1 only in (j1, t1), and

stays 0 throughout all the other stages, it establishes that

⇢
(j1,t1)
i · x(i,p1)

(j1,t1)
=

P
j,t

⇣
⇢
(j,t)
i · x(i,p1)

(j,t)

⌘
(3)

This holds true for p2 as well. So we replace the relation of
p1 and p2 with the above expression and get constraints (C3).
Variable Constraints (C4). Finally, each subtask can be
placed only once. Therefore, C4 should be satisfied.
Linearization of 0-1 NLP. To further linearize the original
problem into a 0-1 ILP problem, we introduce a series of
auxiliary variables, y(j,t) 2 {0, 1}, s.t.:

8i, p, y(j,t) > δi,j ·
Pmin{CS(i,p),t}

⌧=1 x
(i,p)
(j,t−⌧+1) (4)

We then have the following proposition:
Proposition 1. The objective in Table VI is equivalent to:

min
X

j2S

SN−1X

t=1

y(j,t), i.e. y(j,t) = sgn
⇣
occupy(j,t)

⌘
(5)

Summary: The above 0-1 ILP problem can be solved within
limited time [38] in Martini. We evaluate the effectiveness and
efficiency of the algorithm in §VI-C.
Runtime incremental task deployment: During runtime,
operators may deploy new tasks or enable deployed tasks to
monitor a new set of flows with new forwarding paths, which
we also consider as new tasks. To avoid disrupting deployed
tasks, we trade optimality for stability through incremental
deployment. We first estimate resource usage of new tasks and
partition them into subtasks. Then we perform incremental
network-wide placement of the new subtasks by using the
same 0-1 ILP formulation while modifying the resource con-
straints to represent remaining resources in the network. We
evaluate its efficiency in §VI-C.
Scalability and Limitations: The following aspects discuss
the limitations in our placement algorithm, and how to address
them to improve scalability:



Task placement constraints. First of all, some management
tasks may not permit arbitrary partition and placement. For
example, for control actions such as load balancing and
scheduling, where to place them may make a big difference.
Martini allows the user to add additional constraints on task
locations, for example, the user can regulate that certain tasks
must be placed close to the gateway, or at leaf switches.

Task Resource estimation. Our model requires prior knowl-
edge about the tasks such as their routings and basic parame-
ters such as flow numbers and flow rate. In real world settings,
they might be highly variant and hard to predict. But operators
could estimate traffic volume according to historical data [37].
Moreover, even if the traffic is larger than expected, only
the measurement accuracy is affected without compromising
Martinis availability, as long as traffic volume is within the
capacity of switches.

Algorithm scalability. For large scale networks, the number
of tasks will grow exponentially and ILP may be hard to scale.
To solve it, we can only deploy partial tasks to the network
each time, and incrementally deploy remaining tasks, which
could leverage our fast incremental deployment algorithm.
Moreover, Users can also specify additional constraints such as
task locations to reduce the overall solution space complexity.

V. IMPLEMENTATION DETAILS

We implement the Martini framework based on Barefoot
Tofino [69], a state-of-the-art PISA target. In this section, we
first elaborate our implementation of the component library,
which serves as the code template for measurement and
control subtasks. Then we introduce the Martini compiler
that automatically deploys massive management tasks onto
switches based on placement results.

A. Component Library
We create the component library in P4 [16], with all

sketches introduced in Table III and control in Table IV. Two
major challenges emerge through the implementation.
Support for the measurement window: Measurement func-
tions often collect statistics with a time window [59], [87].
Thus we need to maintain a timer to periodically clear counter
arrays in switches. However, P4 does not provide hardware
primitives for timer or counter array clearance, making it
uneasy to support windows in PISA switches.

Martini addresses this challenge with the round based
timing mechanism shown in Figure 5. We set each round as
a fixed-time interval, and counters are cleared across different
rounds. In the switch, we store cur_time as the the start
time of the current round, and cur_round as the current
round. Once the difference between the ingress timestamp of
a packet and cur_time exceeds the measurement window,
cur_round and cur_time are updated. Each counter is
associated with a separate ”last-time-updated” round, and if it
is below cur_round, the counter gets cleared and round is
renewed to cur_round. We use an 8-bit field for round, thus
for a 32-bit counter, the resource overhead is 25%. However,
an 8-bit round covers at most 256 consecutive intervals. If the
difference of the rounds of two consecutive packets is multiple

cur_round cur_time round counter

Round indicator Counter array

packet
timestamp

if timestamp – cur_time > interval:
cur_round ++;
cur_time = cur_time + interval;

attach cur_round→pkt;
cur_round

if cur_round > round:
round = cur_round;
counter = 0;

update counter;

packet
packet

Fig. 5: Round based timing mechanism.
of 256, the cur_round for the two packets will be the same
due to wrap-around. Then the corresponding counter will be
incorrectly updated instead of reset. Nevertheless, evaluation
in §VI-D shows that the error rate tops at 0.2% for real world
traces, so this design is practical to use.
Control based on queue lengths: Control actions such as
drill or LocalFlow decide which queue a packet or a
flow should enter based on the lengths of candidate queues.
However, in PISA [17], [37], queue length information can
only be obtained in egress, while queuing decisions are made
only in ingress. To address this challenge, Martini samples
packets in egress at a rate of 5% for each queue and clones
the sampled packet as a probe. Martini tags the length of
the queue on the probe and recirculates it to ingress. The
probe provide queue lengths to ingress and drops after use.
In this way, we could acquire queue lengths in ingress. As
probes are recirculated using recirculation bandwidth in each
pipeline and are dropped in ingress, the throughput will not
be compromised. We demonstrate this in §VI-B.

B. Martini Compiler
According to the network-wide placement result of subtasks,

Martini compiler generates codes and table entries for all
network switches by assembling the component library. The
compiler composes the codes of the subtasks according to their
start stage and resource usage. We pay special attention to the
following challenges during compilation.
Extra flow classification for data partition: Data partition
requires to split flows on a path to several measurement
subtasks, each of which corresponds to one part of the flows.
To establish the correspondence, an extra flow classification
is decided dynamically during task placement and cannot be
predefined in the component library. To realize this goal,
the compiler reuses the filter stage in each measurement
subtask to identify the class of flows it should monitor, without
consuming an extra stage.
Event transmission for computation partition: Computation
partition requires transmitting network events between mea-
surement and control. If the two phases are placed in the same
switch, we create a metadata to carry the event. Otherwise, we
modify the packet headers for event delivery between switches.
However, adding new header fields may hurt the goodput. We
refer to prior wisdom [29], [39] and exploit unused bits in
current headers including the 20-bit Flow Label field in IPv6,
6-bit DS field in IPv4, and the 12-bit VLAN Identifier field if
unused. Martini compiler enables the measurement component
to tag the metadata or headers based on whether the two phases
are in the same switch.

VI. EVALUATION
We evaluate the Martini framework on a testbed with two

Barefoot Tofino switches(33 x 100 GbE), each of which is di-



TABLE VII: Management tasks implemented in Martini. We show the lines of code to describe management
tasks without resource related primitives in column Martini, and the lines of generated P4 code in P4.

Task type # Task that handles ... Description: The task measures network traffic ! identifies ... Martini P4

Attack Defense

1 TCP SYN flood [88] IPs that receive more half-open TCP connections than threshold ! drops later SYN packets 6 232
2 Port scan [47] IPs that send traffic to more than a threshold of destination ports ! drops their packets 6 290
3 DDoS victim [87] IPs that receive traffic from more than a threshold of unique sources ! performs RED on those traffic 6 322
4 DNS reflection attack [53] DNS responses without corresponding requests ! drops the illegal requests 7 260
5 NTP amplification attack [74] IPs that receive NTP packets from more than a threshold of unique sources ! drops these packets 7 291
6 Stateful firewall [63] Unsolicited inbound TCP connections without any outbound flows ! drops the connections 8 245

Anomaly Detection
7 Superspreader [87] IPs that contact more than a threshold of unique destinations ! reports to the controller 6 303
8 FTP monitoring [63] FTP data channel setup requests when their control channels are not established ! drops the requests 8 237
9 Heavy changer [26] Flows whose sizes have changed significantly across two intervals ! reports to the controller 7 386

Flow Scheduling

10 Heavy hitter [59] Flows whose size exceed threshold ! performs per-flow port balancing 6 259
11 Microburst [33] Flows whose packet numbers within a window exceed a threshold ! performs queue-based balancing 9 319
12 PIAS [10] Flow bytes sent exceed a threshold ! inserts flow into a lower priority queue and ECN on congestion 8 207
13 Video congestion control [15] An I frame in an MPEG stream is dropped ! drops later differentially-encoded B frames 7 296
14 Link failure recovery [20] Failure-carrying packets coming backward ! uses backup routes for subsequent flows on this path 8 237

Network Monitoring 15 Flow size distribution [87] The distribution of flow sizes ! reports this information to the controller 7 240
16 TCP incast [89] IPs that receive TCP connections from more than a threshold of unique sources ! informs controller 6 290

rectly connected with several servers. Each server is equipped
with two Intel(R) Xeon(R) E5-2690 v2 CPUs (3.00GHz, 10
physical cores), 256G RAM and two 10G NICs. For test traf-
fic, we use real world data traces from CAIDA [21], and replay
the traces at 100Gbps using the Spirent Test Center [24]. For
test topology, we simulate real world topologies in Table VIII.
Our evaluation goals are to:
• demonstrate the expressivity of the Martini description

primitives to describe many management tasks. (§VI-A).
• demonstrate that comparing to the traditional pattern, Mar-

tini could significantly reduce the control loop while main-
taining high throughput, and therefore could effectively
support tasks that require timely control. (§VI-B).

• demonstrate that the network-wide placement could achieve
optimal resource usage for real world topologies and tasks
within reasonable calculation time. (§VI-C).

• demonstrate that the error caused by the round based timing
mechanism is tiny for real world traces. (§VI-D).

• demonstrate the capability of the compiler to generate codes
for all network switches within little calculation time to
deploy tasks on real world topologies. (§VI-E).

A. Expressivity
To demonstrate the expressivity of the Martini task descrip-

tion primitives, we specify sixteen common management tasks
shown in Table VII. Among them, the DNS (#4) and FTP tasks
(#8) follow the update-query scheme introduced in §III-A,
while other tasks follow the measure through scheme. Tasks
2, 3, 5, 7, and 16 use the groupby primitive, while others
use the query primitive for measurement. Task 3 performs
control in egress. Tasks 11 and 12 control in both ingress
and egress. Other tasks control in ingress. We also show
that Martini makes it easier to describe management tasks by
composing primitives. It takes less than 10 lines of code to
describe a task in Martini, while requiring around 30⇥ lines
of code to implement the same task in P4.
B. Control Loop Reduction

To demonstrate that Martini could effectively reduce control
loop, we implement both traditional and Martini patterns on
our testbed and deploy all 16 tasks in Table VII. For the
traditional pattern, we perform measurement in a Tofino switch
and control decision in a server that is directly connected to
the switch. We measure the latency of each components in the

control loop including switch report interval, statistics trans-
mission to the controller, control decision, and rule issuing
to the switch. Note that the latency between switch CPU &
hardware pipeline is a few ms.

We also implement a strawman approach that performs
control decision in the switch local CPU to possibly shorten
the control loop by reducing communication latency. Mean-
while, Martini implements both measurement and control in
the switch pipeline. We measure the entire pipeline latency
with or without control decision and calculate the difference
as the control loop. Moreover, we assume that computation
partition breaks measurement and control into two switches.
In this case, we deploy measurement and control in two
directly connected Tofino switches. Packets get timestamped
in first switch, and loop back from the second to the first.
The first switch timestamps packets again and the control loop
is calculated as half of the timestamp difference. For each
experiment, we report the average latency and the standard
deviation across 100 runs.
Communication latency: We use ZeroMQ [42] for commu-
nication between switches and the controller. We set the total
flow number as 1.2M according to CAIDA traces, and set
the error rate of the sketch in each task as 5%. According
to Table III, for the microburst task, a switch needs to
report 1.28Mb statistics to the controller. For the DNS task,
the statistics to report are 19.29Mb. The superspreader task
needs to upload 20.57Mb. As shown in Figure 6(a), the
communication latency is positively correlated to the data size.
Uploading statistics takes much longer time than rule issuing.
Statistics transmission in the remote control pattern takes 3 to
50 ms. Local control in switch CPU could significantly reduce
the communication latency by 90%, but the latency is still
millisecond-level. In comparison, Martini places measurement
and control in switches and completely avoids this latency.
Control decision latency: Based on received statistics, the
controller makes control decisions by first decoding the coun-
ters to derive flow keys. We evaluate three techniques for this
process including sequential hashing [19], group testing [26],
and reversible sketch [45], [87]. We vary the flow key length
and measure the algorithms’ running time. For the microburst
task, we monitor flows at 5 tuple granularity of 104 bits.
For the DNS task, the flow key is 80 bits in total. For the
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Fig. 7: Control loop of tasks in Table VII.

superspreader task, the key is the 32-bit srcIP. We feed CAIDA
traces into the sketches in the data plane and decode the
sketches with the three algorithms. The results in Figure 6(b)
show that the calculation time rises as the key length increases.
We also find that group testing takes the shortest time for a few
milliseconds, while reversible sketch takes up to 3.5 minutes.
Furthermore, running algorithms in the switch CPU takes 30%
to 50% more time than the server as switches use relatively
low-end CPUs. Such significant latency seriously compromises
control timeliness. Note that Martini performs control directly
on the packets that trigger events. Therefore, Martini avoids
key deriving latency and shortens the decision latency to a few
ns, i.e., the latency of a single pipeline stage.
Total control loop: Finally, we present the total control loop
of the three example tasks in traditional and Martini patterns.
For the former, we set the report interval of the microburst
task as 100ms [2], and other tasks as 1s [37]. We use group
testing for fast key deriving. We sum up all components of
the control loop and present the results in Figure 6(c). We
observe that the control loop of the traditional patterns is 2 to
4 seconds. For the Martini one-switch case, the control loop is
the time for control decision in a single pipeline stage, which
takes around 10 ns. For the Martini two-switches case, the
control loop grows to around 370 ns due to the event queuing
and transmission latency. Furthermore, we measure the control
loop of all tasks in Table VII in Martini. Results in Figure 7
demonstrate that above observations hold across all tasks in
Martini. Note that the latency of the DDoS task (#3) in one-
switch case reaches 126 ns. This is because its control action
(RED) occurs in egress, while other task control in ingress.
But the latency is still tiny compared with traditional patterns.
High throughput maintenance: We evaluate the capability
of Martini to maintain high throughput. We replay CAIDA
traces at 100Gbps and measure the throughput of the tasks in
above settings. Evaluation results show that all 16 tasks could
maintain line rate of 100Gbps including the microburst task
(#11) which requires packet cloning and recirculation. This
demonstrates Martini’s ability to maintain high throughput.

TABLE VIII: Topologies tested in our experiments
Topology Description Switch Edge

Fat-tree [1] Fat tree network with k = 4 20 32
AT&T [52] AT&T North America backbone network 25 52

Stanford [51] Stanford campus backbone network 26 56

Effective support for management tasks that require timely
control: Above results in reducing the control loop means that
Martini could effectively support timely management tasks.
As revealed in [78], for the microburst task, enabling local
control could improve total bandwidth by 19.5% and reduce
average flow completion time by 12.6% for a heterogeneous
VL2 workload on a 512-host, 4:1 oversubscribed FatTree.
For the DNS task, when the attack traffic rate is 300Gbps,
reducing the control loop from 3.4s to 10ns could theoretically
defend against 1020Gb attack traffic. For the superspreader
task, operators could reduce the superspreader detection time
from 3.4s to 10ns and therefore prevent worm propagation.

C. Network-wide Task Placement
We compare the Martini placement algorithm with two

strawman solutions including an ID First algorithm and a
Cross First algorithm. The ID First algorithm places sub-
tasks following the same path sequentially in the front most
available switch in the path. This ensures that a flow is
only managed once by an subtask [59]. In the Cross First
algorithm, we prefer to place subtasks on the switches that
are in the forwarding paths of the most number of tasks. In
this way, subtasks on these switches could share stages, which
potentially reduces the total number of used stages.

We implement the algorithms in a server and simulate the
topologies of three real-world networks in Table VIII as input.
We randomly pick tasks 5, 10, 15 and 20 times from Table VII
as test sets, and randomly assign one path to each task to make
a task slice. We measure the total number of used stages across
all switches according to the results of the three algorithms.
We use LINGO 17.0 [58] to quickly solve the 0-1 ILP problem
in Martini. As shown in Figure 8, Martini outperforms the two
naive algorithms in all topologies by occupying 9.4% to 56.3%
fewer stages. Furthermore, as presented in Figure 9, Martini
can quickly generate the optimal placement result within 2.5
minutes even for the largest scale configuration with over
8,000 variables and constraints in the 0-1 ILP. Note that this
algorithm runs offline only once for initial placement.

For incremental deployment of a new task, Martini performs
the same ILP formulation with updated resource constraints.
The calculation time is below 1s according to Figure 9.
However, incremental task placement may be suboptimal. To
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Fig. 8: Total number of used stages across all switches for naive algorithms and Martini placement algorithm.
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TABLE IX: Optimality gap of incremental placement
# tasks Fat-tree (# stages) AT&T (#stages) Stanford Campus (#stages)

Optimal Incremental Optimal Incremental Optimal Incremental
5 15 15 14 14 16 16
10 27 31 (+14.8%) 28 28 (+0%) 29 30 (+3.4%)
15 41 45 (+9.8%) 41 46 (+12.2%) 41 48 (+17.1%)
20 53 58 (+9.4%) 53 62 (+17.0%) 53 64 (+20.8%)

evaluate its optimality gap from optimal placement, we deploy
5 initial tasks and incrementally deploy new tasks one by one
until 20 tasks are deployed. As shown in Table IX, incremental
placement consumes 9.4% to 20.8% more stages than the
optimal solution depending on the topology, while achieving
task deployment stability and fast calculation.

D. Error Caused by Round Based Timing
We evaluate the percentage of faulty counter updates in

round based timing (§V-A). Based on CAIDA traces, we vary
the measurement window and count packets that cannot trigger
correct counter clearance by identifying packet pairs whose
rounds difference are multiples of 256 measurement windows.
As shown in Figure 10, the percentage of packets causing error
increases as the measurement window decreases, and tops at
0.2% when the window is 10µs. This is acceptable since
SRAM usage for timing is significantly reduced by 83.3%.

E. Compiler Performance
Finally, we run the the Martini compiler program with a

single isolated server core. We compile the placement from
5 to 20 tasks on the test topologies in §VI-C and measure
the compilation time. As shown in Figure 11, Martini finishes
compilation within 200 ms. This demonstrates its scalability
to quickly generate codes for real world network topologies.

VII. RELATED WORK
Network measurement or management frameworks: Re-
cent studies [45], [56], [57], [59], [87] have proposed frame-
works for high performance and resource efficient measure-
ment in switches. SNAP [9] offered a framework for stateful
task description and deployment. In comparison, Martini is
a general framework that supports measurement-based timely
control in management tasks, and is based on advanced
programmable switches with complex resource constraints.
Task description languages: Many recent works have pro-
posed languages to describe either measurement or control

tasks. For measurement tasks, Trumpet [66] designed a match-
action like language to define network events. Marple [68] fo-
cused on querying performance information. Sonata [37] pro-
posed primitives that imitated stream processing. NetQRE [88]
focused on quantitative monitoring. Meanwhile, Pyretic [62],
NetKat [8], FlexSwitch [80] and so on could describe control
tasks. In contrast, Martini presents modular, reusable, and
extensible primitives to describe and assemble all phases in
a management task. Furthermore, Martini covers resource
estimation and support for advanced measurement features,
which have not been addressed by previous works.
Management task placement: Sonata [37] identifies the
need for placing tasks w.r.t. switch resource constraints, but
mainly solves the problem on a single switch. Martini instead
performs network-wide placement. Some work [9], [59], [77]
proposed to place measurement tasks on multiple switches
in the network. Especially, SNAP [9] designed mechanisms
for network-wide placement of stateful applications. However,
it only considers link constraints and neglects resource con-
straints directly on switches. In comparison, Martini proposes
algorithm to place resource-intensive management tasks in
consideration of switch constraints. Some studies [48], [67]
have proposed mechanisms to place management rules in the
entire network. However, they only considered the memory
constraints in SDN switches, while Martini takes into account
multiple types of resource constraints in switching ASICs.

VIII. CONCLUSION AND FUTURE WORK

This paper presents Martini, a general framework that
enables measurement-based timely network control using pro-
grammable switching ASICs. Evaluations show that Martini
could reduce the control loop to nanoseconds. In the future, we
will enrich the primitives for more complex tasks and generate
automatic verification for management task description.
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