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Abstract—Software-Defined Networking (SDN) facilitates net-
work innovations with programmability. However, programming
the network is error-prone no matter using low-level APIs or
high-level programming languages. That said, SDN policies de-
ployed in networks may contain misconfigurations. Prior studies
focus on either traditional access control policies or network-
wide states, and thus are unable to effectively detect potential
misconfigurations in SDN policies with bitmask patterns and
complex action behaviors.

To address this gap, this paper first presents a new data
structure, minimal interval set, to represent the match patterns
of rulesets. This representation serves the basis for composition
algebra construction and fast misconfiguration checking. We then
propose the principles and algorithms for fast and accurate con-
figuration verification. We finally implement a misconfiguration
checking tool in Covisor with optimisations to further reduce the
overhead. Experiments with synthetic and random rulesets show
its fitness for purpose.

I. INTRODUCTION

Software-defined Networking (SDN) decouples network
control logic from the data plane via an open interface
(e.g., OpenFlow [26]). It simplifies network management and
enables a network to customize its behaviors [25]. This sepa-
ration benefits from a good abstraction of data plane - a series
of “Match-Action” flow tables so that network administrators
can put more efforts to build network applications. The vision
of SDN is to construct a SDN “APP Store” for network
management services [23], [29]. And network administrators
can download one or more third-party applications suited to
their needs and deploy them into the network. Furthermore,
SDN allows applications written by different languages and
platforms to cooperatively manage the network [17], [11].
Overall, SDN makes it easy to program the network and
facilitates network innovation.

Early SDN provides a few low-level APIs built into con-
trollers [14], [1], [2] for network administrators to program
the network. They have to write SDN applications by directly
manipulating the flow tables of underlying devices. This is
tedious and error-prone. To reduce the complexity of program-
ming, recent interests in SDN move to high-level programming
languages and frameworks [12], [35], [27]. Usually, they
provide a programming model to write applications and design
a runtime system for compiling network applications into
switch-level rules. However, this compiler system is unable
to check all policy misconfigurations (e.g. function conflict

and deployment inefficiency) that are introduced by network
administrators [34], [24]. Worse, the emerging compositional
SDN allows diverse policies to cooperatively manage the
same network traffic [11], [17], [13]. Composing rulesets from
different components in SDN will inevitably increase the risk
of errors.

Although a large amount of research effort has been de-
voted to detecting anomalies in access control polices (e.g.
firewall) [6], [36], [15], these solutions fail to detect poten-
tial misconfiguration in SDN policies. This is because they
focus on the rulesets with prefix-based patterns and simple
actions (e.g., drop and forward). However, SDN policy rules
support arbitrary bitmask patterns and complex behaviors [3].
Recently, some verification tools [21], [20], [33] have been
proposed for the purpose of detecting whether one policy will
violate their predefined network-wide invariants (e.g., black
hole). They are unable to detect the misconfigurations that do
not affect the states of network. Furthermore, compositional
SDN increases the possibility of misconfigurations.

This paper aims at addressing this gap by developing
a misconfiguration tool for accurate and fast checking of
both individual policy rulesets and the compositional rulesets.
This is indeed challenging. SDN policies reflect the intent
of network administrators, but it is difficult to surmise the
intent so as to identify the misconfigurations. To illustrate this,
consider two rules r1 and r2: r1 drops some packets that are
interested by r2. We cannot hastily conclude that this behavior
is a misconfiguration (a.k.a violating the intent of network
administrators). Rather, we need formal theoretical models
and methodologies for this purpose. Another challenge lies
in the fact that checking misconfigurations should introduce
relatively small overhead. Misconfiguration detection in SDN
policies will compute match patterns of rules. However, SDN
rules support arbitrary bitmask patterns that will add the
computation complexity. The complex action behavior of SDN
rules further increases the difficulty for accurate checking.

To address these challenges, we develop a Policy Miscon-
figuration Management tool (PMM) that works at the data
plane. It transforms arbitrary match patterns of SDN rules
into a set of intervals via numerical calculation, and uses a new
data structure—minimal interval set, to represent rulesets. This
numerical representation accelerates misconfiguration check-
ing. We develop compositional algebra and misconfiguration
checking theory that PMM leverages off to design accurate and
fast checking algorithms. PMM also adopts optimisations for978-1-7281-6992-7/20/$31.00 c©2020 IEEE



reduced overhead. We finally evaluate PMM with the imple-
mentation in a SDN compositional hypervisor ( CoVisor [17]).

To sum up, the contributions of this paper are three-fold:
• We present a new data structure—minimal interval set,

to represent the match patterns of individual and com-
positional SDN rulesets. This representation accelerates
misconfiguration checking.

• We formalize the misconfiguration checking problem
and propose two checking principles (Rule-Usefulness
and Rule-Minimalism). We develop methodologies and
theorems to implement these two rules for accurate
misconfiguration checking.

• We design a misconfiguration checking tool and imple-
ment it in CoVisor. The implementation adopts optimisa-
tions for reducing overhead. Experiments with synthetic
and random rulesets demonstrate its efficiency.

II. BACKGROUND AND MOTIVATION

SDN policies can be expressed as a set of rules to be
deployed to underlying network devices. These rules might be
defined through high-level SDN languages (e.g., Frenetic [12],
Pyretic [28] and PGA [30]), or low-level programming inter-
faces supported by controllers (e.g., NOX [14] and Onix [22]).
These rules classify packets into flows, and apply them to the
associated actions. As an example to illustrate our presenta-
tion, and without loss of generality, we will use OpenFlow [3]
in this section, and describe the general case in Section III.
We will assume that each SDN policy contains one flow table,
as a pipeline composed of a sequence flow tables is similar to
a sequential composition.

A rule in a flow table equates to a flow entry, a 3-tuple
r = (p,m, al), with r.p > 0 being the priority of r that defines
precedence of this rule; r.m represents the patterns to match
for packets in the flow; and r.al represents the action to apply
to the specified packets. The patterns r.m define a flow, and
consist of one or more matching patterns that are defined over
different fields. OpenFlow defines a few different fields that
can be used in defining flows. The matching patterns might be
Bitmask-based with wildcards (e.g., 0∗1∗ or 0∗10), or logical
(e.g., TCP.ACK = true). It is noteworthy that bitmasks have
not to be prefixed (to begin with a bit mask).The rule also
contains an action part that defines the set of predetermined
atomic actions, like drop, fwd, push/pop tag, etc., to apply
to packets in the flow. For example, adding a VLAN tag for
packets matching r.m, and then forwarding them to port 1.

The combination of matching patterns and action seman-
tics enables a large variety of policies that are leveraged
by most packet processing systems like firewalls, intrusion
detection systems, switches and routers. SDN introduces a new
dimension that increases flexibility: composition [11], [17].
Composition consists of combining several packet processing
components and their related policies into more complex
processing pipelines. SDN introduces an algebra of simple
composition operators [13]: the parallel operator (+), the
sequential operator (>>) and the override operator (.).
Parallel operator assumes that a copy of the input traffic is

forwarded to both components, and therefore rules relative
to each component are applied independently. For sequential
operator, the traffic is forwarded from the first to the second
stage, and rules of the second stage are applied on the output
of first stage that has been applied to traffic matching the first
stage’s rules. The override operator defines an intermediate
operation where both components are running but when a
packet matches the two components’ rule, only the first one
is applied.

Composition increases notably the flexibility of SDNs. In
particular, it enables to combine components developed by
different providers, and to deploy them together to address
complex network scenarios. However, this comes with a cost in
term of complexity, and in term of possible misconfiguration.
We illustrates this through one example shown in Fig. 1. We
consider three SDNs components: SP1, a NAT component
that is masquerading input IP address; SP2, a load balancer;
and SP3, a monitoring device. These three components are
composed through a sequential operator and a parallel oper-
ator: SP2 and SP3 being in parallel after the sequential SP1
component. SP1 implements three rules, while SP2 have four
rules and SP3 consists only of a single rule. Note that rules
in each component are ordered by decreasing precedence.

In SP1, r1 hides the source IP addresses of some packets
(srcip = 10.1.1.16) that also are interested by SP2. Un-
fortunately, due to the sequential composition, SP2 cannot
utilize its r1 to block the packets with srcip = 10.1.1.16
since their source IP addresses have already been translated
by SP1. Similarly, SP3 cannot monitor what it cares about.
Obviously, compositional operations are error-prone and easily
lead to function conflict. Furthermore, in SP2, r2 are logically
redundant because packets it cares about can be operated
by r4 equivalently. This redundancy that is very common in
individual components, is exacerbated by the composition that
will combine them with other rules. As resources are scarce
in the data plane it is important to detect these redundant rules
in order to optimize resource usage.

r1: srcip=A,  srcip IP1

r2: srcip=B,  srcip IP2

r3: srcip=*,   accept

r1: srcip=C,  drop

r2: srcip=A,  accept

r3: srcip=D,  drop

r4: srcip=*,   accept

r1: srcip=E,  count

A=10.1.1.0/24   
C=10.1.1.16 

E=20.2.2.20

>>

Goal: hide some private IPs, then block and monitor

specific traffics in parallel

+SP1 SP2 SP3

r2: srcip=*,  drop

IP1=69.64.216.1
D=30.2.2.0/24IP2=69.64.216.2

B=20.2.2.0/24

Fig. 1. Illustration of SDN policy anomalies.

The above example demonstrates different types of mis-
configurations that can happen in SDN with composition.
Some of misconfigurations have already been pointed out in
[32], [15]. The goal of this paper is to provide a global frame-
work for representing composed SDN rules. This framework
will enable the detection of existing misconfigurations and
help in optimizing SDN rules in a composition framework. The
framework works at the data plane for detecting misconfigura-
tions. This is because all relevant misconfigurations happening



in the SDN, whether resulting from composition (inter-policy)
or being only related to a single component (intra-policy), will
show up at the data plane and translates into abnormal behav-
iors in packet forwarding. Specially, our approach consists of i)
translating policies into a data plane representation that applies
to a composition algebra, ii) detecting misconfigurations over
the composed data plane representation.

III. DATA STRUCTURE FOR RULESET REPRESENTATION
AND COMPOSITION ALGEBRA

In this section, we will assume that we have a ruleset
R = {ri} consisting of rules ri ordered by their precedence.
Each rule ri consists of a matching patterns ri.m and an
action part ri.al. This ruleset might come from a single
SDN component or might result from composed components
through a composition algebra that we will describe later.
A. Minimal interval set representation of ruleset

Matching patterns are applied to classification fields. These
fields are bit-set of different lengths, e.g., 32 bits for IPv4
addresses, 16 bits for TCP port numbers, 1 bit for logical
values like TCP.ACK. The rule matching ignores the protocol-
specific meanings associated with each field and match them
with a flat bit pattern composed of 0,1 and *, e.g., 0*0*. These
patterns can be transformed into a set of non-overlapping inter-
vals of contiguous values, where all values in intervals match
the patterns. This results into a geometric representation of the
SDNs’ rules. For example, pattern 0*0* over a four bits field
translates into 2 intervals of size 2, [0000, 0001], [0100, 0101],
that are generally represented using a decimal representation
for the bit-fields, [0, 1], [4, 5]. We show in Fig. 2 one example
illustrating how the rule 0*0* is translated into intervals for a
4 bits field.

0

Match patterns

Intervals[0,  1] [4,  5]

1 0 1

0 1

r.m=0*0*

000* 010*

0000 0001 0100 0101

8*0+4*0+2*0+1*0 8*0+4*0+2*0+1*1 8*0+4*1+2*0+1*18*0+4*1+2*0+1*0

0
=

1

=

4

=

5

=

Fig. 2. Geometric representation of a SDN rule as interval

In most general terms, let’s consider a matching pattern
operating over a field with N bits, and with k of its bits being
set explicitly in the pattern and l ’*’ being used in the pattern,
e.g., for 1*01 that is defined over an IP address field with
N = 32, we have k = 3 and l = 1. The number of intervals
needed to represent this pattern depends on its suffix. If the
suffix is *, like in 1*0*, this interval will be represented with
L = 2k+l−1 intervals of length 2N−k. If the suffix is a bit
pattern of length m ≤ l, e.g., 1*10 has a suffix of size m = 2,
the pattern will be represented by L = 2k+l−m intervals of
length 1 each.

Therefore, the matching pattern used for a rule defines L
intervals that partition the whole range of field values into at

most 2L + 1 disjoint intervals. We can label the L intervals
matching the rule with the rule number or the rules actions. We
call these intervals the ”R1 matching intervals”. This results
in a geometrical representation of a rule R1 as a set of R1
matching intervals.

However, rules in a ruleset generate overlapping intervals.
We thus define a data structure named “minimal interval
representation of the ruleset”. The idea is to represent the
whole ruleset with a segment tree [10] containing all disjoint
intervals. Let’s illustrate this data structure with a concrete
example. In Fig. 3 nine overlapping intervals relative to a rule
set with 3 rules. These rules induce a partition into 16 intervals
of the fields over which the patterns are defined, e.g., [0,3],
[3,5], [5,9], etc. An interval is labelled with the rules that are
matched in it. In order to differentiate these intervals with rule
matching intervals defined above, we will call them, partition
intervals.

We build the minimal interval representation over all rule
matching interval set I. We first sort all endpoints of the
intervals in I. This generates the elementary intervals. Then,
a balanced binary tree is built on the elementary intervals,
where each node v represents an interval Int(v). The tree is
built by inserting interval in I one by one into the segment
tree. An interval [a, b] can be inserted into a subtree rooted at
node T , using the following procedure. If Int(T ) is contained
in [a, b], then we store [a, b] and T and finish. Otherwise, if
[a, b] intersects the interval in left (right resp.) child of T ,
then we move to the sub-tree on the left (right resp.) and
try recursively to insert the interval into it. The complete
construction operation takes O(nlogn) time, n being the
number of segments in I .

This partition is minimal as it is not possible to use less
partition intervals to represent the ruleset, and it is also max-
imal in the sense that adding any partition interval will result
in two contiguous interval with exactly the same rules in the
label. This partition is therefore equivalent to the ruleset. It can
easily be constructed by putting all extremities of all intervals
in the ruleset and by ordering them in increasing order. The
consecutive values in the resulting sorted list are intervals
boundary in the minimal interval representation. Thereafter
the interval can be labelled by finding all rules overlapping
with it.

0 255 30 55 60

R1

R2

R3

3 9 11 17 23 28 39 51

R3 R2

R3

R2

R1
13

R3

R1 R1 R1

R2

R1

R2

R1 R1 R1

R3

R1R2

34 37

Fig. 3. Example of a minimal interval representation for a ruleset

The minimal interval representation has a fundamental
property: only rules that are in the label set of an interval
are overlapping, and other rules are completely independent
of them.

Moreover, among all rules in the interval’s label there is one
that has the highest precedence. One can label the interval
only with this label, because the action that is going to be
applied to a packet in this interval will be the one with the



highest precedence among overlapping rules. This might make
possible to merge some intervals in order to maintain the min-
imal property. Applying this approach to the example shown
in Fig. 3 will result into 8 partition intervals for representing
the ruleset, as for example the intervals [39,51], [52,55] and
[56,60] will be merged into a single interval [39,60] that
will be labeled with R1. In the forthcoming we will use
this representation as the minimal interval representation of
a component ruleset.

One important issue is relative to the size of the minimal
interval representation. It is straightforward that adding a new
rule interval into a ruleset will at most add two new partition
intervals. Therefore the number of partition intervals cannot be
larger than 2 times the rule partition intervals. For cases where
the rules are prefix based, i.e., rules have a bit value prefix and
a * suffix like the rules used commonly as IP address mask,
the number of rule’s interval for each rule will be 1, and the
the number of partition interval is at most 2N , where N is the
number of rules. That said, the number of partition’s interval
will be O(N), but will depend precisely on the features of the
ruleset.

The minimal interval representation can be extended to
multiple fields (or dimensions) directly. Let’s suppose that a
ruleset is defined over multiple fields. By choosing one of the
fields we can build a minimal interval representation for this
dimension, with each partition interval I containing the list of
overlapping rules RI . Now we can choose another field and
build a new minimal interval representation over the second
field but only with rules in RI . This minimal representation
is attached the previous interval in place of the set RI . We
can continue this operation recursively for each interval, until
it remains in the partition interval only a single rule, or there
is no more fields to define partition over it. This results into a
nested interval representation, which can be represented by a
multidimensional tree of intervals. Following this approach,
a multiple fields ruleset is translated into a set of multi-
dimension partition interval, we will call in the forthcoming
d-intervals and note as (I1, I2, ..., IK) where the interval Ii

is relative to dimension (or field) i. Each d-interval is labeled
with a set of rules matching it. This set might be empty, or
contains only the rule with highest precedence matching it, or
contains all rule matching the partition interval. The overall
space complexity of the minimal interval partition will be
Ω
(
N logNK−1

)
, where N is the number of rules and K

is the number of fields used for the matching [9].
It is noteworthy that we can also use the minimal interval

representation to characterize a packet flow over a link by
assuming a rule that should match all packets on the link.
Let’s suppose that all packets crossing a link are following
some common characteristics, e.g., all packets coming out of
a web server share the same source IP address and source
port number 80, one can characterize the packets crossing
this link by a rule matching the source IP address and the
source port number. The minimal interval representation of this
rule can be used as the link minimal interval representation.
In order to separate the link minimal interval representation

from the ruleset’s representation, we will represent in the
forthcoming a link’s minimal interval representation as J,
and a ruleset’s representation as I. This enables us to define
the action of a packet processing device as a mapping from
the minimal interval representation of the ingress link (that
might contain all the field space) into the minimal interval
representation of the egress link opening the way for an
algebraic characterization of packet processing systems. This
is what we will be developing in the next section.

B. Composition algebra for minimal interval representation

Let’s suppose we have translated the rulesets relative to
different SDN components into minimal interval representa-
tions. The question is: how can we derive the final minimal
interval representations after composing these components.
For this purpose we will develop a composition algebra for
minimal interval representations. But we need to first introduce
3 operations: the restriction operator, the union operator and
the minimal interval representation mapping.

Restriction operator. Let’s assume a minimal interval repre-
sentation of the traffic on a link L to be JL and that this traffic
is processed by a ruleset with minimal interval representation
IR. We can define a restriction operator between JL and IR
that generate a new minimal interval representation, noted
IuJLR , that contains for each interval in IR the sub-intervals
where JL is set. It is therefore a restriction of the ruleset to the
specific traffic pattern in link L. The restriction operation is in
fact transforming the ruleset R acting on the traffic on link L
into an equivalent ruleset acting on a link without restriction.

Union operator Suppose we have two ruleset’s minimal
interval representation I1 and I2. The union minimal interval
representation I1∪2 is the minimal interval representation
resulting from the union of the rules in each ruleset, with
the restriction that attaching only the highest precedence rule
to each interval. We will attach the two rules relative to the
each of the initial rulesets to any resulting interval.

Minimal interval representation mapping. A flow might be
transformed by going through a packet processing component.
For example, the TCP/IP header of a flow going through a
NAT components is changed by the masquerading process.
In a more general term, one can see the effect of a packet
processing component as a mapping between an input state
space into an output state space, where the state being the
fields that are used to represent the packet flow. As we
described early, the action of a packet processing component
is controlled by the minimal interval representation i.e., the
action relative to the rule with highest precedence is applied
to all packet fitting in a partition interval. This action maps
a given input partition interval into potentially several other
intervals defined over possibly other fields. For example,
a NAT component that takes a set of source IP addresses
identified by an IP mask like 192.168.*/16 and maps it over
a visible address like 12.34.45.78, is mapping an interval of
length 216 into an interval of size 1 both defined over the
source IP address field. However, more complex mapping



might also be possible. For example, a de-multiplexer will
map a single d-interval into several disjoint intervals. We thus
able to represent the action of a packet processing component
as a mapping Φ that takes a given ingress link minimal interval
representation Ji and mapping it into an egress link minimal
interval representation Jo = Φ(Ji). The mapping Φ depends
completely on the restricted ruleset minimal interval represen-
tation IuJi . Therefore one can represent a packet processing
component, e.g., a SDN components, with its restricted ruleset
minimal interval representation IuJi .

With the above 3 basic operators, we then develop a
composition algebra (sequential operator, parallel operator and
override operator) for minimal interval representation.
Sequential Operator. As explained in Sec. II, the sequential
operator � is one operator enabling sequential SDN com-
position. Let’s assume that two SDN components C1 and
C2, with unrestricted minimal representation I1 and I2, and
mapping function Φ1 and Φ2, are sequentially composed. This
composed component is equivalent to a SDN component with
restricted ruleset minimal interval representation IuΦ1(Ji)

2 .
Parallel Operator. A second composition operator in SDN
is the parallel operator +. A parallel SDN component is
equivalent to a SDN component with ruleset minimal interval
representation defined as the union of the two components
minimal interval representation.
Override operator. The last composition operator in SDN
is the override operator. The minimal representation of an
overridden SDN component can easily be derived by looking
at interval in minimal interval representation that have not
any rules assigned to it, and to check if by default a rule
is applicable to a subset of this interval.

IV. MISCONFIGURATION CHECKING THEORY

A. Definition of Misconfigurations
To restate, our aim is to detect misconfigurations in com-

positional SDNs. However, we need to clarify which type
of misconfiguration we are checking. In this paper, we are
mainly interested in functional misconfigurations arising be-
cause of SDN composition. This means that we are not
validating the functions of each individual component, but
rather seeing how these components interact. In this context
the misconfigurations we target are the cases that will make
any individual component not working as expected because of
being composed with another component. We call these mis-
configurations functions conflict. In addition, we also consider
redundancy in each individual component. This is because one
component redundant rule may lead to exponential redundant
rules after it is composed with other components. We call these
misconfigurations deployment inefficiency. It is noteworthy
that we are not aiming at detecting implementation related mis-
configuration like memory or CPU races, or to detect logical
and semantic errors that might be caused by misconfiguration
of individual components, e.g, missing to cover a port number
range in a firewall component. In the forthcoming, we will
describe in more details both misconfigurations.

Deployment inefficiency. In compositional SDN [28], [17],
[11], multiple policies can cooperatively manage network
traffic. These policies are compiled into a single one and then
deployed to the underlying devices. The compilation operation
is the Cartesian product of policy rules. Let us take two poli-
cies spa = {ra1, ra2, ..., ram} and spb = {rb1, rb2, ..., rbn}
as an example. spa × spb = {ra1 ⊕ rb1, ra1 ⊕ rb2, ..., ra1 ⊕
rbn, ..., ram ⊕ rbn}, where operator ⊕ is used to compute the
match patterns of two operands (rules) and decide whether to
build a new composed rule or not. Thus, if there is a redundant
rule rak in spa (rbk in spb resp.), it will generate n (m resp.)
redundant rules, {rak ⊕ rb1, rak ⊕ rb2, ..., rak ⊕ rbn}, in the
worst case for the composed policy. We say a rule is redundant
if the packets that it cares about can be operated by other rules
equivalently. For instance, r2 in SP2 in Fig. 1 is redundant be-
cause r4 can operate the packets r2 interested in equivalently.
Through a sequential operator, r2 in SP2 combines r2 and
r4 in SP1 to generate composed but redundant rules because
these rules can be completely replaced by the composed rules
generated from r4 in SP1. Redundant rules, hence, can lead
to exponential redundancy in compositional SDN, which is
unacceptable for the scarce resources in underlying devices at
the data plane.

Function conflict. Network policies are volatile due to traffic
load shifting, customer demand changes or network topology
upgrading. SDN provides an opportunity for network admin-
istrators to deploy and update their customized policies[34],
[19], [24]. However, frequent update by network administra-
tors is error-prone [31] and easily leads to function conflict.
There are two possible cases of function conflict. The first
case is relevant to scenarios where two rules in a policy
or two parallel component policies care about same packets
(due to either match patterns overlap or containment1) but
operate them differently (due to different actions). The second
case is relevant to the sequential operator in compositional
SDNs, where the rules in the earlier stages change the packet
fields that the rules in the following stages will match. For
instance, in Fig. 1, SP1 masquerades input IP addresses but a
following SP2 wants to monitor traffic based on their original
IP addresses. Thus such a configuration makes SP2 function
failure. In addition, r4 in SP2 and r2 in SP3 operate default
traffic in parallel. However, their behaviors are contradictory.
Thus function conflicts may violate the intents of network
administrators.

B. Misconfiguration checking principles

Indeed, misconfiguration is prone to happen among the rules
whose match patterns are overlapped. This is because the
overlapped rules naturally have common interest in the same
packet sets. We thus having the first principle on the usefulness
of any rule in a policy.

Principle 1. (Rule-Usefulness). Each rule in a SDN policy
should match and process packets. That said, for a SDN policy

1In this case, the match patterns of one rule (e.g. ri) is included in another’s
(e.g. rj ) entirely. In other words, ri.m ⊆ rjm.



sp = {r1, r2, ..., rn} where r1.p ≥ r2.p ≥ ... ≥ rn.p, ∀ri ∈
sp, {PS − (r1.m ∪ r2.m ∪ ... ∪ ri−1.m)} ∩ ri.m 6= ∅, where
PS refers to the header space of packets.

This principle can be easily implemented by our previously
proposed minimal interval representation. It can be used for
checking the above misconfigurations. In particular, it directly
means that each rule in a SDN policy should not be redundant,
tackling the deployment inefficiency. It deals with the function
conflict within a policy by checking the existence of match
patterns overlap and containment of rules. For the possible
function conflict due to sequential composition, we can first
compose the policies and then check for the composed policy
the existence of match patterns overlap and containment

Another possible case of rule redundancy is not covered
by the above principle—two rules “close” enough in a rule-
set having equivalent action lists and with mergeable match
pattern. We define it formally in the following principle.

Principle 2. (Rule-Minimalism). Consider a SDN policy sp =
{r1, r2, ..., rn}. If the following three conditions are hold for ri
and rj , then they can be merged into one rule rg: i) ri.m and
rj .m are mergeable (see Theorem 1); ii) the minimal distance
between ri and rj is 1 (see Definition 1); iii) ri.al ≡ rj .al
(see Theorem 2).

This principle focuses on the compactness and minimised
quantity of rules. Indeed, the number of rules supported by
underlying devices are limited given the cost and power
consumption [18], [7]. In view of this, any rule that violates
this principle can lead to deployment inefficiency. Next, we
elaborate the details of the three conditions of this principle.

1) Mergeable match patterns: Mergeable match patterns
means they can be merged into one single match pattern.
Theorem 1 shows how to decide whether two match patterns
are mergeable or not.

Theorem 1. (Match Pattern Mergeable Theorem). For two
rules ri and rj , their match patterns are mergeable as long
as they satisfy one of the below three conditions: i) C1

m :
ri.m ⊆ rj .m; ii) C2

m : rj .m ⊆ ri.m; iii) C3
m : ri.m and rj .m

are identical except only one non-wildcard bit2.

Proof. We prove this by enumeration that Cm = C1
m ∨

C2
m ∨ C1

m covers all the cases, which enable ri.m and rj .m
mergeable: (1) If the relationship between ri.m and rj .m are
containment, it leads to ri.m∪rj .m = ri.m or rj .m, which is
evidently mergeable. Thus both C1

m and C2
m are the sufficient

conditions that enable ri.m and rj .m to be mergeable. (2) If
ri.m and rj .m are intersecting, at least two bits are different.
This is because if their only one bit is diverse, we can assume
that this bit can be * for ri.m and 0/1 for rj .m. As a result,
rj .m ⊂ ri.m. Obviously, if ri.m and rj .m contain more than
one different bit, they cannot be merged into one single rule.
(3) If ri.m and rj .m are disjoint, we say they are mergeable
when they contain only one different non-wildcard bit (e.g.
ri.m=*0*0 and rj .m=*1*0). This is because if this bit of ri.m

2This bit in both ri.m and rj .m must be non-wildcard.

(rj .m, resp.) is wildcard, it leads to rj .m (ri.m, resp.) ⊂ ri.m
(rj .m, resp.). In addition, bit 0 and 1 can be merged into *.
Therefore, C3

m is another sufficient condition that makes ri.m
and rj .m mergeable.

It is noteworthy that we can easily check whether the three
conditions in Theorem 1 hold or not with the minimal interval
set representation described in Section III.

2) Rule distance computation: Next we discuss the rule
distance, which is a measure of the closeness between two
rules (see Definition 1).

Definition 1. (Rule Distance). Consider a policy sp =

{r(1)
1 , r

(2)
2 , ..., r

(n)
n }, where r

(1)
1 .p ≥ r

(2)
2 .p ≥ ... ≥ r

(n)
n .p.

The superscripts of the rules refer to their locations in
sp, such as r

(j)
i locates the j-th position in sp. For rule

r
(k)
g ∈ sp, r

(t)
h ∈ sp, we define the distance between them

as dist(r(k)
g , r

(t)
h )=‖k − t‖.

Note that we can minimize the distance of two rules because
of the commutativity property in rules: if there is no overlap
between rules, they can exchange their position. For example,
in the left sub figure of Fig. 4, because r(3)

3 .m∩r(4)
4 .m = ∅, we

can exchange them. As a result, r(3)
3 becomes r

(4)
3 while r

(4)
4

is changed to r
(3)
4 (see the middle sub figure). Similarly, we

exchange r
(3)
4 and r

(2)
2 . Finally, sp1 becomes sp2 (see the right

sub figure). sp1 and sp2 are equivalent as the traffic each rule
can process is identical. Through this commutativity property,
the distance between r1 and r4 has been reduced to 1.

Rule r4 moves up

r4.m r3.m = 

Distance (r1, r4) = 3

r4.m r2.m = 

Rule r4 moves up

Distance (r1, r4) = 1

Fig. 4. An example of the commutativity property of rules.

Then, we define the minimal distance of two rules: we
unitize the rule commutativity property to exchange the rule
positions to reduce their distance until the commutativity
property does not hold any more or their distance becomes
1. At this moment, the distance is their minimal distance. We
say two rules are “close” enough if their minimum distance is
one. In other words, they can become adjacent rules.

3) Action Equivalence Theory: The actions defined in
OpenFlow [3] can be categorized into three categories: modi-
fication actions, output actions and miscellaneous actions. The
modification actions are to change packet headers (e.g.set field
actions). The goal of output actions is to forward packets
to some specific ports (e.g. fwd and drop actions). Miscel-
laneous actions do not operate packets directly. Instead, they
either generate some statistics (e.g. count) or facilitate packet
processing (e.g. clear action). Different types of actions can
introduce different “effects”, making it possible to constitute
a complex action list.



For a rule r, we view its action list r.al as a black box.
Logically, when one input packet, denoted by pin, enters
this black box, it will generate one or more output packets
(denoted respectively by {pout1, ..., poutn}) to specific switch
ports. Note that the headers of the output packets may be
different due to modification actions. As a result, these output
packets and ports together form a set of tuples, each of which
can be denoted as PP=〈pout, port〉, where the packet PP.pout
is transmitted via PP.port. We use r.alPP to refer to the
set of tuples. In addition, r.al may generate a few statistics
and modifies the status of flow tables, denoted as r.ald. The
“effects” of the action list of r is then constituted by r.alPP and
r.ald. Fig. 5 shows an example. This action list will generate
two PP tuples (〈p1

out, 3〉, 〈p2
out, 4〉) with once counter update.

, 3>< , 4><

Fig. 5. Example of an action list. p1out and p2out represent two output packets.

Thus, we conclude that if two action lists can generate the
same “effects” for any input packet, we say they are equivalent.
We formalize this conclusion as Theorem 2.

Theorem 2. (Action List Equivalence). Consider two rules,
r1 and r2, their action lists are equivalent if and only if both
r1.al

PP ≡ r2.al
PP and r1.al

d ≡ r2.al
d hold with the same

input packet pin.

Proof. We prove this by analogy. For any action list r.al, it can
be viewed as a function, whose input is packets that hit rule
r and output is its generated effects (r.alPP and r.ald). Based
on function equivalence, we can say two functions (r1.al and
r2.al) are equivalent as long as their output (r1.al

PP ≡ r2.al
PP

and r1.al
d ≡ r2.al

d) are identical for any same input.

This theorem leads to a simple checking about whether
two action lists are equivalent or not. The core idea of this
algorithm is to compare the PP tuples and statistics generated
by two action lists. Note that we do not need to check all
possible input packets. Instead, we only need one special
packet whose packet header consists of only wildcards, use
two action lists to operate on it and check whether their outputs
(e.g. r.alpp and r.ald) are identical or not. The computation
complexity of this algorithm is O(n2), where n is the number
of the tuples. However, n is very small in practice, usually
no more than 5. Therefore, the overhead of this algorithm is
acceptable in practice.

V. DESIGN AND IMPLEMENTATION OF PMM

This section presents the design and implementation of
PMM , a tool for checking misconfiguration in compositional
SDN polices based on the ruleset representation (see Sec-
tion III) and misconfiguration checking theory foundation (see
Section IV). To simplify our description, we first show how
to check misconfiguration in a single policy, and then discuss
the misconfiguration in compositional policies.

A. Intra-policy Misconfiguration Checking

Checking intra-policy misconfiguration consists of three
steps as follows.
• Rule transformation. A native SDN policy is repre-

sented as a list of prioritized rules where the match pattern
of each rule is bitmask-based with wildcards. The target
of the rule transformation is to transform each rule match
pattern into the interval representation.

• Minimal interval set generation. After the rule trans-
formation for a policy ruleset, we group these intervals
and generate an interval set and minimize it. An interval
may associate with multiple rules.

• Misconfiguration checking. Based on the interval sets,
we check whether there are cases that violate the princi-
ples described in section IV.

This section focuses on the third step about how to check
misconfiguration for a given ruleset. Rules in the ruleset
are ordered by their priorities. We begin with the rule of
the highest priority, and then add one rule each round from
the second highest-priority rule to the lowest. The checking
process described below is applied for each round until some
misconfigurations are identified or we reach the lowest-priority
rule.

Let us suppose a minimal interval set mis corresponding
a set of rules R with no misconfigurations is generated after
k rounds. Each interval (e.g. iv) in mis associates with a list
of rules ranked by their priority. We use iv.L to denote iv’s
associated list of rules. We now need to add r at the (k+1)-th
round into R and check whether there will be misconfiguration
after adding r. To this end, the match patterns of r, r.m,
will be transformed into a set of intervals. Let us denote the
intervals in mis that is overlapped with r’s intervals as r.iv.
We then check whether misconfigurations raise following the
two principles described in Section IV.

R1

R2

R3

0 1 3 4 5 6 7
R1
R2
R3

R2 R1

Priority

High

Low

Fig. 6. Example of the redundant rules checking.

Checking against Principle 1 . We scan r.iv to identify
whether there are intervals whose associated rule list contains
only r. If there are no such intervals, adding r will result
in violation of Principle 1. Otherwise, we continue checking
against Principle 2. Figure 6 shows an example, where R3
with the lowest priority needs to be added. R3.iv contains
only the interval [0, 1], which already has two associated rules
and thus violates emphPrinciple 1. Indeed, the interval [0, 1]
will associate with three rules after adding R3, but R3 is with
the lowest priority and thus not useful.

Checking against Principle 2 . For each interval in r.iv,
we identify its adjacent intervals, and then assemble the
adjacent intervals of all intervals in r.iv into a set, denoted



as r.iv(aj). We then check whether there is a rule s ∈ R
that is mergeable with r. Following Theory 1, s and r can be
merged into one rule if the following three conditions are hold:
(1) s.iv ⊆ r.iv(aj); (2) ∀iv ∈ s.iv, s is the lowest-priority
rule in the list associated with iv; (3) s.al = r.al (i.e. the
two action lists are equivalent. ). If the conditions hold, s and
r can be merged into one rule, and this violates Principle 2.
Otherwise, no misconfiguration will raise when adding r into
R. We show in Figure 7 an example to illustrate the above
checking process. For the new rule R3 , its corresponding
adjacent intervals set R3.iv(aj) = {[0, 1], [4, 5]}. We can also
see that R2.iv ⊆ R3.iv(aj) and R2 is the lowest priority rules
in the associated lists of R2.iv. If R2.al = R3.al (see Theory
2), R2 and R3 can be merged into one rule. That said, adding
R3 will raise misconfigurations.

R1

R2

R3

0 1 3 4 5 6 7
R1

R2

R3 R2

Priority

High

Low
2

R3

Mergeable

Fig. 7. Example of the mergeable rules checking.

Finally, if adding r does not incur misconfiguration, we
update R by adding r and compute the updated mis with
the minimal interval set representation of R (see Section III).
We then continue to the next round of checking if needed.

The pseudo code of the above misconfiguration checking
process within individual policies is listed in Algorithm 1.

Algorithm 1: CHECKINGPOLICY(sp)
Input: sp, a policy ruleset.
Output: Return 0 if there is no misconfiguration in sp, or the index

of the first rule that causes misconfiguration.
1 mis← ∅ and num← 0;
2 foreach R ∈ sp do
3 num← num+ 1 and is redundancy ← true;
4 mis ← computeMinSet(R, mis);
5 foreach iv ∈ R.iv do
6 if iv.L.head ≡ R then
7 is redundancy ← false;
8 break;

9 if is redundancy then
10 return num;

11 R.iv(aj) ← computeAdjset(R.iv) and AdjRule← ∅;
12 foreach iv

′ ∈ R.iv(aj) do
13 AjdRule.insert(iv

′
.tail);

14 foreach R
′ ∈ AjdRule do

15 if R
′
.iv ⊆ R.iv(aj) && ActionEquivalent(R

′
.al, R.al)

then
16 return num;

17 return 0;

B. Misconfiguration Checking for Compositional Policies

Compositional SDN [28], [17], [11] defines operators that
enable multiple polices cooperatively operate same traffic.

However, different cooperative operations may introduce di-
verse types of misconfiguration. To this end, we utilize the
composition algebra defined in Section III to obtain the min-
imal interval set representation, and then apply the detection
theories and algorithms check the identify misconfigurations.

In what follows, we consider two policy sp1={r1, r2,..., rn}
and sp2={r′

1, r
′

2,..., r
′

n} that are composed by compositional
operations. We assume that there is no intra-policy miscon-
figuration in sp1 and sp2. That said, both have passed the
checking with Algorithm 1.

Parallel operation. In parallel operation, sp1 and sp2 operate
the same traffic in parallel. We use mis1 and mis2 to
respectively represent the minimal interval sets of sp1 and sp2.
If mis1 ≡ mis2, this parallel operation is misconfiguration-
free. Otherwise, it means that one packet can be processed
in sp1 (sp2, resp.), but there is no rule in sp2 (sp1, resp.)
to operate this packet. It violates the semantic of the parallel
operation that enables sp1 and sp2 process the same traffic.

Sequential operation. In this operation, sp1 and sp2 process
packets sequentially. We assume that packets are processed by
sp1 first, and then are operated by sp2. Thus sp1 can affect
the packet proceeding of sp2. In this case, we can use the
compiling algorithm [17] to compose sp1 and sp2 into one
ruleset sp3 at first. And then, we use the approach of intra-
policy misconfiguration checking (Algorithm 1) to check sp3.

Override operation. The override operation makes one policy
being the default policy for the other policy. We assume that
sp2 is assigned to the default policy for sp1. As a result,
packets will be processed by sp1. If there is no rule in sp1 that
can operate packets, they will be processed by sp2. We merge
sp1 and sp2 into one single policy sp3 by stacking sp1 on top
of sp2 with higher priority. Next we detect whether there is
misconfiguration in sp3 with the intra-policy misconfiguration
checking algorithm (Algorithm 1).

C. Optimisation

The match patterns of each rule will be converted into a set
of intervals so that they can perform interval operations for
misconfiguration detection. The performance of the misconfig-
uration checking is dependent on the number of intervals. As
mentioned before, the wildcard bit in a rule r affects the num-
ber of intervals it can generates. For example, if r.m = 001∗,
its corresponding interval set is {[2, 3]}. However, if r.m is
00 ∗ 1, its interval set becomes {[1, 1] , [3, 3]}.

For a match pattern, we use w to refer to the number of
wildcard bits and sw to refer to the length of the longest suffix
with wildcard. We compute the interval indicator as {w−sw}.
Then the number of intervals is 2n, where n is the interval
indicator. For example, for a match pattern r.m = 0∗∗0∗, the
number of wildcard bits is 3 while the length of the longest
suffix with wildcard is one. Therefore, the number of intervals
is 23−1 = 22 = 4: {[0, 1] , [4, 5] , [8, 9] , [12, 13]}.

We propose an optimisation mechanism to reduce the com-
plexity of set operations by decreasing n. Specifically, for a set
of rules, we simultaneously move the wildcard bits of all rules



at the same locations backward by one 1 bit (see Figure 8).
Through such a movement, R becomes R

′
, where the number

of intervals in R
′

is much less than that in R.

01*0

0**0

r1.m

r2.m

[4, 4] [6, 6]

[0, 0] [2, 2] [4, 4] [6, 6]

010*

0*0*

001*

00**

r'1.m

r'2.m

[2, 3]

[0, 3]

R R'

Fig. 8. Reducing the number of wildcard bits proceeding the first non-
wildcard bit from the tail.

Note that such a simultaneous movement will not affect the
misconfiguration checking results. This is because although
simultaneously moving the wildcard bits will result in the
change of the minimal interval set representation of individual
rules, the relationship between the two sets for two rules
remain unchanged. Here the set relationship includes intersec-
tion, containment and equivalence. Let us consider two rules
r1 and r2. If we simultaneously exchange arbitrarily bits for
r1 and r2, they become r

′

1 and r
′

2. Next we perform a set
operation between r1.m (r

′

1.m) and r2.m (r
′

2.m), generating
a result t (t

′
). Finally, if we restore the positions of the

exchanged bits for t
′
, the result will be equal to t. For example,

we assume r1.m = 0 ∗ 1∗ and r2.m = ∗0 ∗ 1. We exchange
the second bit and the third bit so that r1.m

′
= 01 ∗ ∗ and

r2.m
′

= ∗ ∗ 01. Next t = r1.m− r2.m = {0010, 0110, 0111}
and t

′
= r

′

1.m − r
′

2.m = {0100, 0110, 0111}. Finally, if
we exchange the second bit and the third bit for t

′
(a.k.a

restore the positions), the result is {0010, 0110, 0111} which
is identical to t. Thus, we can use this optimisation to reduce
the complexity of set operations.

VI. EXPERIMENTS

A. Experimental Setup
We have implemented our PMM based on CoVisor [17], a

compositional SDN hypervisor. We deployed the implemen-
tation on Intel R©Core(TM) i7-8700CPU, clocked at 3.20GHz.
In the experiments, we used two types of rules:

1) D1 (synthetic rulesets): we use ClassBench3 [4], to
generate synthetic rulesets. D1 contains all available
types of rules, including Firewall, Access Control List
and IP Chain with respectively 5, 5 and 2 seeds.

2) D2 (random rulesets): rules are randomly generated
associated with different types of actions (e.g., modi-
fication, forwarding and miscellaneous actions).

Each rule in D1 is associated with one action, while in D2,
each rule contains a sophisticate action list with different types
of actions. Its action list can generate multiple tuples, which
include both PP s (Packet port tuples) and statistics. Note that
the detection accuracy of PMM is guaranteed by the theories
in Section IV. Thus we focus on its overhead in terms of
time for each step: rule transformation, minimal interval set
generation and misconfiguration checking. We also evaluate
the benefit of our optimisation.

3ClassBench has been widely used to evaluate SDNs mechanisms. Further-
more, it can generate complex rules to evaluate our approach.

B. Experimental Results
We first evaluate the overhead of rule transformation that

converts rule match patterns into a set of intervals. To this
end, we select different sizes (from 100 to 5K) of synthetic
rules from D1 and random rules from D2 respectively, and
evaluate the rule transformation completion time. Figure 9
shows the results. The cost of the rule transformation in D2
is always larger than that in D1 when tackling the same
scale of rules. This is because the match patterns in D1 are
prefix-based while those in D2 are random. Consequently, the
number of the generated intervals in D2 is much larger, which
results in longer time for rule transformation. Nevertheless,
the time overhead is reasonable as for 5,000 D2 rules, the
transformation time is only 380ms.
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Fig. 9. The average cost of the rule transformation.

Next we measure the overhead introduced by the minimal
interval set generation. Likewise, we use the synthetic rules
and random rules to generate rulesets of different sizes,
ranging from 100 to 5,000. We generate the minimal interval
sets for each ruleset based on the intervals of each rule’s match
patterns. Figure 10 reports the time cost. Though the cost of
the set generation in D2 is also larger than that D1, their
performance gap is very small. For 5,000 D2 rules, the cost
is only 36ms, showing the efficiency of the set generation.
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Fig. 10. The average cost of the minimal interval set generation.

Third, we evaluate the overhead introduced by the miscon-
figuration checking. We vary the sizes of rules, which are
from D1 and D2 respectively. Note that the checking process
will stop once it detects a misconfiguration. In this set of
experiments, each rule associates with one different action for
simplifying the action computation (the action computation
overhead is examined in the next set of experiments). Figure 11
report this overhead, which is indeed very low (less then
15ms for 5,000 rules). This is because the minimal interval
set representation enables fast checking.

We then evaluate the overhead of the equivalence computa-
tion for action lists. To this end, we select different sizes (from
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checking.
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1,000 to 10,000) of random rules from D2 and vary the number
of tuples (from 4 to 14) generated by each rule action list.
Then we record the overhead due to the action equivalence
computation for different sizes of rules under various tuple
configurations. Figure 12 reports the results. As expected, a
larger number of tuples introduces longer computation time.
But even the number of tuples reaches 14, the computation
overhead for 10,000 rulesets is within 36ms.

Next we consider the overhead of checking the composi-
tional policies with two experiments. Note that we assume
that each component policy is misconfiguration-free. For the
first set of experiments, we build a compositional policy with
four components: Monitor >> [Route, Load− balance] .
Elephant flow, which is very common in compositional
SDN [17]. Each component is padding with several rules from
D1. We run 5 rounds of experiments and the average time cost
is only 2.45ms

In the second set of experiments, we evaluate the cost for
checking compositional policies with dozens of components.
Each component contains 50 or 100 rules from D1 and D2.
We select randomly the three types of compositional operators.
Figure 13 shows the overhead of misconfiguration checking
for compositional policies. The checking overhead for com-
position of rules from D2 is much larger than that for rules
from D1. This is because rules in D2 generate more intervals.
Nevertheless, checking 50 compositional components requires
less than 2 seconds.

Finally, we measure the benefit of the optimisation solution.
Specifically, we randomly select 1,000 rules from D2, and
count the number of generated intervals. We find that applying
the optimisation can reduce the number of intervals by as many
as 80%, which in turn greatly saves the time overhead for
misconfiguration checking.

In summary, as our theoretical analysis has proved the de-
tection accuracy and coverage, we conclude PMM is practical
and efficient in misconfiguration checking for SDN policies.

VII. RELATED WORK

SDN controllers such as NOX [14], Beacon [1] and Flood-
light [12] provide low-level interfaces to write bitmask-based
rules with complex action lists. High-level programming lan-
guages (e.g., Frenetic [12] and Pyretic [28]) and composi-
tional hypervisor (e.g., CoVisor [17] and FlowBricks [11])
enable multiple policies manage the network cooperatively.

However, both low-level APIs and high-level languages may
introduce potential anomaly because of misconfigurations or
error-updates.

Anomaly detection in access control polices have been
studied in [6], [15], [36]. Some works [16], [5] present
a set of algorithms to discover pairwise misconfiguration in
Firewall. However, these work do not support bitmask-based
rule detection, and the associated action is relatively simple.

Nice [8] adopts symbolic execution and model checking to
explore the state space of an OpenFlow network. HSA [20]
statically checks network configurations to verify network
properties (e.g. reachability and forwarding loops). Never-
theless, it does not target at misconfiguration checking for
compositional SDN, and thus cannot apply to this context.
Veriflow [21] is able to verify network-wide invariant viola-
tions in real time. It considers the entire network, but cannot
detect the misconfigurations that only affect the functions of
one policy. The authors in [32] introduce a method to generate
anomaly-free compositional SDN policies, but it does not
support update.

VIII. CONCLUSION

SDN policies use bitmask-based match patterns and com-
plex action behaviors to enable network administrators to build
network applications. However, these features come at a cost:
SDN programming are prone to error, regardless using low-
level APIs or high-level programming languages. In this paper,
we propose to represent rulesets using minimal interval sets
for fast and accurate misconfiguration checking. We develop
compositional algebra and misconfiguration checking theory
using this representation. We further design a miconfiguration
tool based on the algebra and theories. Experiments using the
implementation in CoVisor with synthetic rulesets and random
rulesets demonstrate the efficiency of our tool in checking
misconfigurations for SDNs.
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