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Abstract—Mobile edge computing provides a platform facil-
itating individual servers to pool their resources locally for
cooperative computation. One fundamental problem in this new
paradigm is how to effectively allocate crowdsourced edge re-
sources to users competing in a highly unpredicted environment.
This, apparently, cannot be realized without a truthful open
market. On the other hand, enforcing truthfulness potentially
incurs privacy problems. There have been efforts in differentially
private auctions, in which exponential mechanism, designed for
single-sided single-item auctions, is a common solution. However,
such an approach is not applicable in two-sided combinatorial
edge markets, further complicated by the extra migration cost on
energy-constrained users often imposed by online allocation. In
this paper, we propose OPTA, an online privacy-preserving truth-
ful double auction mechanism for dynamic resource cooperation at
the edge. Given uncertainties in future market behaviors, we har-
ness competitive analysis by decomposing the online optimization
into a series of single-round auctions such that their objectives
are iteratively adjusted to capture the temporally-coupled nature
of the problem. In each round, by jointly considering the features
of exponential mechanism and greedy heuristic, we design a
near-optimal allocation policy with efficiency and privacy guar-
antee. We further implement a critical-value pricing scheme for
winners, realizing the truthfulness in expectation. Building upon
the single-round results, our overall online algorithm achieves a
provable competitive ratio. We validate the desirable properties
of OPTA through theoretical analysis and extensive simulations.

I. INTRODUCTION

Mobile edge computing (MEC) has emerged as a new
computing paradigm that supports resource-intensive, or/and
delay-sensitive applications at the network edge, particularly
those that cannot be served efficiently by conventional cloud
computing platforms due to unpredictable latency and expen-
sive bandwidth [1]-[6]. One of the most appealing features of
this paradigm is availability of abundant computing resources
located in the proximity of users, which applications can
readily take advantage of. There have been attempts by cloud
service providers to establish computational capabilities at the
edge [7] (e.g., Amazon CloudFront [8]), but reaching its full
potential remains an elusive goal. This motivate us to design
an open platform [9], where individual servers (e.g., servers at
base stations [3], micro datacenters in enterprises [6], or PCs
in research labs [10]) can contribute their computing capacity.
By leveraging lightweight virtualization techniques [3], these
servers form a shared resource pool to offer flexible supply of
distributed resources at low cost and with low latency.
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Fig. 1. Illustration of the open edge market for dynamic resource cooperation.

One of the intrinsic problems in MEC is how to optimally
allocate the edge resources from the pool to satisfy diverse
user demands in a competitive environment. This apparently
cannot be materialized without the proper design of an efficient
market [10]-[12]. Such issues have been extensively examined
as a single-sided truthful auction market in cloud computing
[13]-[14]. However, it is drastically different in an open edge
platform, where both users and servers owned by different self-
interested entities are strategic and non-cooperative in nature
[15]. This forms a truthful double auction-based open edge
market where a set of users (buyers) compete for resources
from a set of edge servers (sellers) for computation offloading.
The open platform is authorized to manage servers’ payment
and allocate the edge resources to users. In this way, a large
number of potential edge servers can cooperatively provide
services while economizing their valuable resources.

There are two fundamental challenges in the design and
realization of an open edge market. The first comes from
system dynamics and uncertainties. Edge servers operate in
a dynamic and unpredictable environment. Different from
existing auction models that focus on an isolated round [10]-
[12], the unique dynamics in MEC systems call for new
designs of the market running repetitively over time [16]-
[19]. This raises the question of whether the connections
between users and servers may persist over multiple rounds. If
not, such cross-server migration would impose a considerable
extra migration cost on users, e.g., energy consumption for
connection establishment. In practice, most users are on a
pre-allocated energy budget within a given time period, which
makes the decisions across time intricately intertwined. Worse
yet, the decisions have to be made without foreseeing future
information, leading to sub-optimal allocation.

A Toy Example. We illustrate this problem using a toy
example shown in Fig. 1. Edge servers j1, j2, j3 cooperatively978-1-7281-6992-7/20/$31.00 ©2020 IEEE



serve users i1, i2, i3, i4 within their coverage. First, each user
submits a bid to compete for edge resources, and the auction
comes out as that (i1, j1), (i2, j2), (i3, j3) are winners. Given
user mobility, assume after a while, i1 moves to the coverage
of j3. If the task of this user is still offloaded to j1, there
may be allocation inefficiency or market failure. Thus, edge
resources should be dynamically re-allocated to follow the
market dynamics. That is, the market is expected to run
repeatedly over time for an optimized user experience of MEC.

The second challenge is on possible privacy leakage in
multiple rounds of truthful bidding. The desired market advo-
cates that agents truthfully report their demands or supplies,
which are private information. Although MEC platforms are
usually considered trusted, there could exist honest-but-curious
agents who follow the market mechanism strictly, but attempt
to gain additional information [20]. It is generally known
that the change in a single bid has the potential to alter the
overall auction outcomes [21]-[22]. By regulating its own bid
in multiple rounds and comparing the outcomes, a curious
agent could infer bid information about others. With these
information, one can learn the opponents’ network configura-
tions or business strategies for beneficial gain [23]. Therefore,
the bid privacy issue, if not properly addressed, will discourage
privacy-sensitive agents from participating in the market.

In this paper, for the first time, we develop an online
privacy-preserving truthful double auction mechanism to facil-
itate dynamic resource allocation at the edge. Given uncertain-
ties in future market behaviors, we harness competitive analy-
sis by decomposing the online allocation problem into a series
of single-round auctions. To address inter-round coupling, a
scaled benefit specified for each bid-ask pair is introduced and
iteratively adjusted based on user residual energy budget. We
reformulate the NP-hard single-round problem with a given
scaled benefit vector, and design a heuristic truthful double
auction via critical-value pricing. To alleviate bid privacy issue,
we incorporate the notion of differential privacy1 [25] such that
any change in a single bid will not incur a significant change to
the outcome. There have been efforts in differentially private
auctions, in which exponential mechanism is a common choice
[26]-[29]. Most existing solutions on pricing randomization
assume uniform clearing pricing, making it not applicable in
two-sided combinatorial edge markets. In contrast, we use
exponential mechanism to randomize the winner selection by
assigning a higher selection probability to the pair contributing
more to social welfare. Building upon single-round results, our
overall online algorithm achieves a provable competitive ratio.

Our main contributions are summarized as follows.
• We propose OPTA, an online privacy-preserving truthful

market mechanism that facilitates individual servers to
pool their resources locally for cooperative computation.

• We decompose the online optimization into a series of
single-round auctions such that their objectives are itera-
tively adjusted to capture the temporally-coupled nature

1Inference attacks fall into two major categories: membership inference
and attribute inference [24]. In this work, we employ differential privacy
techniques to protect bid privacy from membership inference attacks.

of the problem. In each round, we design an exponen-
tial based allocation policy by randomizing the winner
selection, combined with critical-value pricing to form
a differentially private truthful auction. We assign bid-
ask pairs contributing more to social welfare with higher
selection probabilities. This provides concrete guidelines
on how to select winners efficiently and privately.

• We develop a competitive online algorithm which uses
single-round auction as a building block towards an adap-
tive market mechanism dynamically allocating resources
upon system changes. We theoretically prove that OPTA
achieves a provable competitive ratio, differential privacy,
truthfulness, approximate social welfare, individual ratio-
nality, budget balance and computational efficiency.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Open Edge Market Model

Consider an online open edge market model consisting
of a platform, a set M = {1, · · · ,M} of users (sellers)
who pay for using edge resources for computation, and a set
N = {1, · · · , N} of servers (buyers) who have resources to
share for profit. We use an agent to refer to either a user or
a server. The time is discretized into slots, T = {1, · · · , T},
which is a much slower time scale than that of task execution
[15]. In each slot, one round of resource trading is carried out,
where the platform decides the allocation and price outcomes.
The terms “slot” and “round” are used interchangeably. There
may be other constraints (e.g., latency, geographic region) on
whether a server is permitted to serve a user request [3]. For
any slot t ∈ T , we view the market model as an instance of
bipartite graph Gt = {M,N , Et}, where (i, j) ∈ Et if server
j ∈ N is permitted to serve user i ∈ M. An illustration of a
small-scale open edge market is shown in Fig. 1.

The proposed model can be generally applicable in the
scenarios that require user interactions. For instance, in an
app offering interactive gaming [30] services, servers are
required to collect action information from the users, and then
allocate resources to compute and generate new game states
and videos for the users. Consider a MEC platform providing
video streaming services [31], servers need to retrieve and
process real-time camera frames from individual users, and
respond with the object detection result. In such examples,
users continuously generate requests, while servers receive
rewards by completing user requests. This can be naturally
represented by a market-based dynamic allocation.

B. Online Cooperative Resource Allocation Problem

In every slot, each user independently generates a task
to be offloaded to the edge. Each task demands a combi-
nation of multiple types of resources [13]. Depending on
the underlying MEC applications, these tasks may vary in
resource demands [32]. Suppose there are K types of resources
in set K = {1, · · · ,K}, e.g., CPU, memory, bandwidth,
etc. Let αti = 〈αti,1, · · · , αti,K〉 denote the desired resource
bundle of user i ∈ M in slot t, where αti,k ∈ [αmin, αmax]
is the amount of type-k resource required by the task. We



define the bid submitted by user i as bti = 〈αti, vti〉, where
valuation vti ∈ [vmin, vmax] is the maximum price it is willing
to pay. Meanwhile, servers submit asks to the platform. Let
βtj = 〈βtj,1, · · · , βtj,K〉 denote the idle resources that server
j ∈ N can share, where βtj,k ∈ [βmin, βmax]. The ask
submitted by server j can be specified as atj = 〈βtj , ctj〉,
where ctj = 〈ctj,1, · · · , ctj,K〉 with ctj,k ∈ [cmin, cmax] being the
minimum price at which it would sell per unit type-k resource.
For user i ∈ M, server j ∈ N has a bundle-specific cost
towards its desired resource bundle, i.e., ctij =

∑
k c

t
j,kα

t
i,k.

Given all submitted bids/asks, the platform makes allocation
decisions xt, the element of which is a binary variable, i.e,

xtij =

{
1, if i is allocated to j in slot t,
0, otherwise.

(1)

Here user i ∈ M being “allocated” to server j ∈ N means
(i, j) ∈ Et and the task of i is offloaded to j. Dynamic alloca-
tion can lead to the redistribution of user requests, which incurs
extra “migration cost”, in particular extra energy consumption.
Take an interactive gaming service as an example, in which
each server covers certain area by serving gaming requests.
When a user moves out of a service coverage area, the service
needs to be migrated or handed over to a different server.
This consumes energy and incurs migration cost due to the
connection re-establishment and etc. This can be troublesome
for mobile devices running on battery. In order to capture
the energy consumption, we propose to optimize the long-
term performance, i.e., to derive the optimal allocation in
multiple rounds instead of a single round by incorporating
the energy efficiency into our formulation. Assume every user
i has a total budget Bi, which is the upper bound imposed
on its overall migration cost. Given the allocation sequences
xi = (x1

i , · · · ,xTi ), the overall migration cost of i is captured
by
∑
t

∑
j si(1−x

t−1
ij xtij), where si is per-time migration cost.

We study a non-profit platform with the goal of maximizing
long-term social welfare. The online allocation problem can be
formulated as social welfare maximization problem (SWM):

max
∑
t∈T

∑
i∈M

∑
j∈N

ωtij · xtij (2)

s.t.
∑
j∈N

xtij ≤ 1,∀i ∈M, t ∈ T (2a)

∑
i∈M

αti,kx
t
ij ≤ βtj,k,∀k ∈ K, j ∈ N , t ∈ T (2b)

∑
t∈T

∑
j∈N

si(1− xt−1
ij xtij) ≤ Bi,∀i ∈M (2c)

xtij ∈ {0, 1}, ∀(i, j) ∈ Et, t ∈ T , (2d)

where ωtij = vti − ctij denotes the net benefit of offloading
the task of user i to server j; (2a) suggests a task should
be executed as a whole; (2b) implies the allocated resources
are constrained by server capacity; (2c) enforces the long-term
migration budget for i; (2d) shows any user can only be served
by permitted servers for guaranteed service quality.
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Fig. 2. General system workflow of the open edge market in round t.

C. Online Privacy-Preserving Truthful Double Auction

The optimal solution of SWM requires the full knowledge
of all bids/asks, which are usually private information of
agents. Even worse, if reported information are untruthful, the
achieved social welfare would be far from the true optimum.
In this scenario, online double auction becomes a desired
approach. However, there are several challenges in applying
online double auction: 1) system uncertainties require the
decisions to be made without future bids/asks knowledge,
often leading to sub-optimal allocation; 2) long-term energy
consumption budget imposed on users complicates the deci-
sions across slots; 3) multiple rounds of truthful bidding may
cause bid privacy leakage, and discourage agent participation.

To address these issues, we develop OPTA, an online double
auction mechanism to facilitate dynamic resource allocation
with near-optimal efficiency and privacy guarantee. Fig. 2
shows the system workflow of the two-sided open edge market
in each round. First, agents submit bids/asks to the platform,
which may be different from real ones. We use b̂ti = 〈α̂ti, v̂ti〉
and âtj = 〈β̂

t

j , ĉ
t
j〉 to denote the declarations of user i and

server j in slot t. After that, the platform determines the
winners Wt ⊆ Et and prices containing charge profile qt =
〈qt1, · · · , qtM 〉 for users and payment profile pt = 〈pt1, · · · , ptN 〉
for servers, where qti , p

t
j are upper-bounded by qmax, pmax.

(i, j) ∈ Wt suggests that the bid b̂ti and ask âtj win, and user i
is allocated to server j. According to the auction outcomes, the
platform requests resources from each winning server to serve
its allocated users, and pays/charges them. Several favored
properties of OPTA are expected to satisfy.

Definition 1 (Differential Privacy). (revised from [26]).
Denote the OPTA in slot t as a function Ψt(·) that maps
input bids bt and asks at to outcome (xt,pt, qt). Ψt(·) gives
(ε, δ)-differential privacy, if and only if for any two input sets,
(bt,at) and (b̃

t
, ãt) differing in only one bid or one ask, and

for any possible set of outcomes St ⊆ Range(Ψt), it satisfies

Pr[Ψ(bt,at) ∈ St] ≤ eε · Pr[Ψ(b̃
t
, ãt) ∈ St] + δ. (3)

Here privacy budget ε is to control privacy guarantee and δ is
residual probability. For better privacy performance, ε and δ
should be as close to 0 as possible. Differential privacy ensures
that for each bid/ask, any arbitrary change of a single element



would not greatly alter the outcome, making it hard for curious
agents to infer bid information of others from the outcomes.

OPTA is also supposed to satisfy truthfulness, individual
rationality (IR) and budget balance. Exact truthfulness is often
too restrictive to be compatible with other desirable properties.
Inspired by approximate truthfulness [21], we turn to a weaker
but more practical concept of γ-truthfulness such that no agent
can gain more than γ utility by bidding untruthfully. As for
IR, it is expressed in terms of expected utility [33]. We first
present the formal definition of agent utility.

Definition 2 (Utility for a Bid or an Ask). For a user i ∈
M, the utility for bid bti is difference between true valuation
for its desired resource bundle and charge of the platform, i.e.,

uti =


∑
j∈N

vtix
t
ij − qti , if i is a winner,

0, otherwise.
(4)

For a server j ∈ N , the utility for ask atj is difference between
payment from the platform and its overall actual cost, i.e.,

utj =

 ptj −
∑
i∈M

ctijx
t
ij , if j is a winner,

0, otherwise.
(5)

Definition 3 (γ-Truthfulness). Let bti and atj denote the
truthful strategies for user i ∈ M and server j ∈ N . For
any small positive constant γ, OPTA achieves γ-truthfulness
in expectation, if and only if, for any strategy b̂ti 6= bti,

E[ui(b
t
i, b̂

t

−i, â
t)] ≥ E[ui(b̂

t
i, b̂

t

−i, â
t)]− γ, (6)

and for any strategy âtj 6= atj ,

E[uj(b̂
t
, atj , â

t
−j)] ≥ E[uj(b̂

t
, âtj , â

t
−j)]− γ, (7)

where b̂
t

−i =
〈
b̂
t

1, · · · , b̂
t

i−1, b̂
t

i+1 · · · , b̂
t

M

〉
is the bid profile

of users except i, and ât−j =
〈
ât1, · · · , â

t
j−1, â

t
j+1 · · · , â

t
N

〉
denotes the ask profile of servers except j.

Definition 4 (Individual Rationality). OPTA achieve IR
only if all agents have non-negative expected utilities, i.e.,
E[ui(b̂

t
, ât)] ≥ 0 for i ∈M and E[uj(b̂

t
, ât)] ≥ 0 for j ∈ N .

Definition 5 (Budget Balance). OPTA achieves budget
balance if the total charge from users is exactly sufficient to
cover overall payment for servers, i.e.,

∑
i q
t
i =

∑
j p

t
j .

III. SINGLE-ROUND DOUBLE AUCTION MECHANISM

This paper addresses a general situation where the market
model varies over time under system dynamics. We first
reformulate single-round SWM and design sPTA, a single-
round privacy-preserving truthful auction to determine the
winners and prices. This will be a key step repeatedly invoked
by the online auction mechanism we develop next, to derive
the optimal outcomes of all slots jointly.

A. Single-Round SWM Problem

The single-round SWM problem is formulated as follows,
which includes the same constraints related to the current slot

from SWM, excludes budget constraints (2c), and modifies ωtij
to a scaled benefit ω̂tij (the rationale is detailed in Section IV).

max
∑
i∈M

∑
j∈N

ω̂tij · xtij (8)

s.t.
∑
j∈N

xtij ≤ 1,∀i ∈M (8a)

∑
i∈M

αti,kx
t
ij ≤ βtj,k,∀k ∈ K, j ∈ N (8b)

xtij ∈ {0, 1}, ∀(i, j) ∈ Et. (8c)

Consider a special case of single-round SWM by letting N =
K = 1. The resulting problem is an instance of 0-1 knapsack
problem, which is known to be NP-hard [34]. Therefore, the
single-round SWM problem is NP-hard.

B. Exponential Mechanism

We first introduce the concept of exponential mechanism
[35]-[36], that has been widely adopted to develop differen-
tially private schemes. For any given outcome domain, the
exponential mechanism denoted by εεf (A) selects an outcome
through a score function f(A,B), which maps a pair of input
set A and possible outcome B to a real-valued score. This
score captures how good B is for A compared with the optimal
outcome. Let ∆ be the sensitivity of f , denoting the largest
change in scores on two input sets differing in only one
element. The mechanism εεf (A) gives 2ε∆-differential privacy,
if it randomly generates the outcome based on the probability

Pr
[
εεf (A) = B

]
∝ exp(εf(A,B)). (9)

Accordingly, the outcomes with higher scores will be selected
with exponentially larger probabilities, enabling the final out-
come close to the optimum with respect to f(A,B). Moreover,
the exponential mechanism leads to a highly near-optimal
outcome with exponentially low probability.

Lemma 1. The exponential mechanism εεf (A) yields 2ε∆-
differential privacy, when used to select an outcome B ∈ S .
Let S̃ be the subset of S achieving f(A,B) = max

B
f(A,B).

By Theorem 2.1 in [26], for any ϑ ≥ 0, εεf (A) ensures that

Pr
[
f
(
A, εεf (A)

)
< max

B
f(A,B)− 1

ε
· ln |S|
|S̃|
− ϑ

ε

]
≤ e−ϑ.

C. Design Detail

To enforce differential privacy and truthfulness, sPTA uti-
lizes exponential mechanism to randomize the allocation out-
comes, and then charge/pay winners via critical-value pricing.
To facilitate analysis, we first presume agents behave truthfully
and show truthfulness is satisfied later.

1) Differentially Private Allocation: We first define a list of
feasible bid-ask pairs in slot t, denoted by Lt = {(i, j)|ω̂tij ≥
0,∀(i, j) ∈ Et}. Given NP-hardness of single-round SWM,
we harness heuristic techniques to design an allocation policy
that approximates the optimal social welfare with computa-
tion efficiency. Intuitively, a more socially-efficient pair that
generates greater social welfare with less resources is more



Algorithm 1: Differentially Private Allocation Policy in t
Input: Gt, bt, at, ε, ∆, δ
Output: xt, Wt

1 Wt ← ∅, xt ← 0; ε̂← ε/(e∆ln(e/δ));
2 Lt ← {(i, j)|ω̂tij ≥ 0,∀(i, j) ∈ Et}; L̂t ← Lt;
3 while |L̂t| > 0 do
4 for each (i, j) ∈ L̂t do
5 if i ∈ Wt & ∃k ∈ K, βtj,k < αti,k then
6 L̂t ← L̂t \ {(i, j)};
7 Calculate allocation efficiency ρtij by (10);

8 Pr[Wt ←Wt ∪ {(i, j)}]← exp(ε̂ρtij)∑
(i′,j′)∈L̂t exp(ε̂ρt

i′j′ )
;

9 Randomly select (i, j) by Pr[Wt ←Wt ∪ {(i, j)}];
10 if (i, j) is selected then
11 xtij ← 1; L̂t ← L̂t \ (i, j); Wt ←Wt ∪ {(i, j)};
12 for each k ∈ K do
13 βkj ← βtj,k − αtj,k.

preferred. For any feasible pair, we introduce the allocation
efficiency metric to evaluate its contribution to social welfare:

ρtij =
ω̂tij∑

k f
t
j,kα

t
i,k

,∀(i, j) ∈ Lt. (10)

The denominator determines the weight of bundle αti by ho-
mogenizing resources via relevance factor f tj,k, which captures
scarcity of type-k resources for j. Intuitively, high f tj,k means
high resource scarcity, and low allocation efficiency. One sim-
ple measure of resource scarcity is f tj,k = 1/βtj,k. We employ
exponential mechanism to randomize the allocation outcomes.
To optimize social welfare, we associate the score function
with allocation efficiency, making a pair contributing more
assigned a higher selection probability. The platform chooses
winners iteratively and maintains the remaining feasible set L̂t.
In each iteration, the selection probability for each feasible pair
is proportional to the exponential of its score; and 0 otherwise.
By normalizing, the selection probability for each pair is

Pr[Wt ←Wt∪{(i, j)}] =


exp(ε̂ρtij)∑

(i′,j′)∈L̂t
exp(ε̂ρti′j′)

, if(i, j) ∈ L̂t,

0, otherwise,

where ε̂ = ε/(e∆ln(e/δ)). Here ∆ = αmax(vmax − 1)/βmin is
the sensitivity of ρtij , and ε, δ > 0 are parameters to balance
privacy leakage and social welfare. The detailed algorithm is
shown in Alg. 1. The platform constructs a list L̂t containing
all feasible bid-ask pairs (line 2), and then iteratively selects
winners (lines 3-13). In each iteration, redundant pairs are
eliminated (lines 5-6) while each remaining pair is assigned a
selection probability (lines 7-8). Afterwards, randomly select
one pair (line 9) and update server capacity, feasible pair set
and allocation outcome (lines 10-13). Repeat such randomized
allocation until no feasible pairs can be selected.

Algorithm 2: Critical-Value Pricing Policy in t
Input: xt, Wt, Lt, bt, at
Output: qt, pt

1 qt,pt ← ∅; Re-order Lt in decreasing order of ρtij ;
2 for each winning pair (i, j) ∈ Wt do
3 q̂c ← ∅; β̂

t

j ← βtj ; Lt−i ← {(̂i, j)|(̂i, j) ∈ Lt, î 6= i};
4 if |Lt−i| < 1 then
5 q̂c ← q̂c ∪ {ctij};
6 else
7 for each (̂i, j) ∈ Lt−i do
8 if î /∈ Wt & β̂tj,k ≥ αtî,k,∀k ∈ K then
9 q̂c ← q̂c ∪ {ctij + ρt

îj
·
∑
k α

t
i,k/β

t
j,k};

10 β̂tj,k ← β̂tj,k − αti,k,∀k ∈ K;

11 qti ← min(q̂c); qt ← qt ∪ {qti};
12 for each winning server j ∈ Wt do
13 ptj ←

∑
i x

t
ijq

t
i ; p

t ← pt ∪ {ptj}.

2) Critical-Value Pricing: To guarantee truthfulness, we
apply critical-value pricing to compute the charges/payments
for winners. Critical-value pricing charges the winner the
highest price of losing competitors [37]. If one bids higher than
critical value, it wins; otherwise it loses. Given combinatorial
nature of edge markets, we incorporate bundle-specific bidding
into pricing. Different from existing critical-value pricing
solutions, for any winning user, we need to recalculate the
prices of losing competitors for its desired bundle, and select
the smallest one. Alg. 2 is proposed to realize this goal.
The platform first sorts all feasible pairs in descending order
of allocation efficiency (line 1). For each winning user i,
initialize the set q̂c of minimum prices required to outbid
competitors and construct a new sorted list Lt−i containing
all initial feasible pairs, except for redundant ones with i (line
3). After searching for competitors among Lt−i, update the
minimum price set and ongoing resource capacity (line 10).
Repeat this process for all pairs in Lt−i. Given winning users’
charges, the payment for each winning server can be obtained
by accumulating the charges of associated users (lines 12-13).

D. Theoretical Analysis

Theorem 1. sPTA provides (ε̃, δ)-differential privacy for
both user valuation and server cost, where δ ≤ (0, 1/2] and
ε̃ = (e− 1)ε̂ln( eδ )βmax

αmin
·max{vmax − vmin, cmax − cmin}.

Proof. Let {bt,at} and {b̃
t
, ãt} be two input sets differing

in only one bid or one ask. We need to give an exponen-
tial upper-bound for Pr[Ψ(bt,at)=Wt]

Pr[Ψ(b̃
t
,ãt)=W̃t]

, where Wt = W̃t =

{w1, · · · , wg, · · · , wl} are two same ordered winner sets with
length l and wh is selected before wg for any g > h. We have

Pr[Ψ(bt,at)=Wt]

Pr[Ψ(b̃
t
,ãt)=W̃t]

= Pr[Wt←Wt=W1∪{w1}]···Pr[Wt←Wt=Wl∪{wl}]
Pr[W̃←W̃t=W1∪{w1}]···Pr[W̃t←W̃t=Wl∪{wl}]

=
l∏

g=1

exp(ε̂ρg)
exp(ε̂ρ̃g) ·

l∏
g=1

∑
wh∈L̂t\Wg

exp(ε̂ρ̃h)∑
wh∈L̂t\Wg

exp(ε̂ρh) .



• Privacy for users. Assume {bt,at} and {b̃
t
, ãt} only

differ in the valuation of user i′. Then

Pr[Ψ(bt,at)=Wt]

Pr[Ψ(b̃
t
,ãt)=W̃t]

=
l∏

g=1

∑
wh

exp

(
ε̂(ṽti−ctij)∑
k
αt
i,k

/βt
j,k

)
∑
wh

exp

(
ε̂(vti−ctij)∑
k
αt
i,k

/βt
j,k

)exp

(
ε̂(vti′−ṽ

t
i′)∑

k

αt
i′,k/β

t
j′,k

)
.

Case 1: ṽti′ < vti′ . Let ∆′ = vmax − vmin. The first term is
less than 1, and we have
Pr[Ψ(bt,at)=Wt]

Pr[Ψ(b̃
t
,ãt)=W̃t]

< exp
(

ε̂(vti′−ṽ
t
i′)∑

k α
t
i′,k/β

t
j′,k

)
< exp

(
ε̂∆′ βmax

αmin

)
.

Case 2: ṽti′ > vti′ . The second term is smaller than 1. Denote
σvi = ṽti − vti . For all ε̂ ≤ αmin/(∆

′βmax), we obtain

Pr[Ψ(bt,at)=Wt]

Pr[Ψ(b̃
t
,ãt)=W̃t]

<
l∏

g=1

∑
wh

exp
(

ε̂σvi∑
k
αt
i,k

/βt
j,k

)
exp

(
ε̂(vti−ctij)∑
k
αt
i,k

/βt
j,k

)
∑
wh

exp

(
ε̂(vti−ctij)∑
k
αt
i,k

/βt
j,k

)

≤
l∏

g=1
Ewh

[
1 + (e− 1)

ε̂σvi∑
k α

t
i,k/β

t
j,k

]
≤ exp

(
(e− 1)ε̂

l∑
g=1

Ewh
[

σvi∑
k α

t
i,k/β

t
j,k

])
.

We call a winner set q-good if
∑
g Ewh

[
σvi∑

k α
t
i,k/β

t
j,k

]
is

upper-bounded by q ·∆′ βmax
αmin

, and q-bad otherwise. According
to [25], the probability that Wt is q-bad is bounded by
e1−q . For any possible outcome set, St, we can split it into
Ŝt = {Wt ∈ St :Wt is (ln( eδ ))-good} and S̃t = St\Ŝt. Then

Pr[Ψ(bt,at) ∈ St]
=

∑
Wt∈Ŝt

Pr[Ψ(bt,at) =Wt] +
∑
Wt∈S̃t

Pr[Ψ(bt,at) =Wt]

≤
∑
Wt∈Ŝt

exp
(

(e− 1)ε̂∆′ln( eδ )βmax
αmin

)
Pr[Ψ(b̃

t
, ãt) =Wt] + δ

= exp
(

(e− 1)ε̂∆′ln( eδ )βmax
αmin

)
Pr[Ψ(b̃

t
, ãt) ∈ St] + δ.

Hence, Pr[Ψ(bt,at) ∈ St] ≤ exp (ε̃) Pr[Ψ(b̃
t
, ãt) ∈ St] + δ

for both cases. sPTA is (ε̃, δ)-differentially private for users.
• Privacy for servers. The proof is similar to the proof for

user privacy. We thus omit it due to space limit.

Theorem 2. sPTA is γ-truthful for both agents, where γ =
(ε̂+ δe−ε̂) · max {vmax − cmin, pmax − cmin}.

Proof. To facilitate analysis, we denote bti < b̂ti for user i ∈M
if i reports a higher valuation and requests fewer resources, i.e.,
vti ≥ v̂ti and

∑
k α

t
i,kf

t
j,k ≤

∑
k α̂

t
i,kf

t
j,k,∀(i, j). Similarly,

atj < âtj if
∑
k β

t
j,k ≥

∑
k β̂

t
j,k and ctij ≤ ĉtij ,∀(i, j).

• Truthfulness for users. For user i ∈ M, it
gains utility E[ui(b

t
i, b̂

t

−i, â
t)] when bidding truthfully and

E[ui(b̂
t
i, b̂

t

−i, â
t)] otherwise. We prove E[ui(b

t
i, b̂

t

−i, â
t)] ≥

E[ui(b̂
t
i, b̂

t

−i, â
t)]− γ, which can be separated into two cases.

Case 1: b̂ti < bti, i.e.,
∑
k α̂

t
i,kf

t
j,k ≤

∑
k α

t
i,kf

t
j,k or v̂ti ≥ vti .

If i only receives a subset of αti, v
t
i = 0 and uti = vti−qti ≤ 0.

It holds. We next consider v̂ti ≥ vti . Given winner set Wt,
v̂ti ≥ vti for (i, j) corresponds to three cases: (1) ctij > v̂ti ≥ vti .
Since vti−ctij < v̂ti−ctij < 0, i loses with bti and b̂ti, and uti = 0;
(2) v̂ti ≥ ctij > vti . i loses with bti and is randomly selected
with b̂ti. If selected, uti < 0 since qti ≥ ctij ; (3) v̂ti ≥ vti ≥ ctij . i

is randomly selected with both bids. If selected, uti ≥ 0 when
vti ≥ qti , and uti ≤ 0 otherwise. Hence, EWt [ui(b

t
i, b̂

t

−i, â
t)] =

EWt [ui(b̂
t
i, b̂

t

−i, â
t)] when vti ≥ qti . We have

E[ui(b
t
i, b̂

t

−i, â
t)]

=
∑
Wt∈St

EWt [ui(b
t
i, b̂

t

−i, â
t)]Pr[Ψ(bti, b̂

t

−i, â
t) =Wt]

≥
∑

Wt∈St∧qti<vti
EWt [ui(b

t
i, b̂

t

−i, â
t)]Pr[Ψ(bti, b̂

t

−i, â
t) =Wt]

≥ E[ui(b̂
t
i, b̂

t

−i, â
t)].

Case 2: bti < b̂ti, i.e.,
∑
k α̂

t
i,kf

t
j,k ≥

∑
k α

t
i,kf

t
j,k or v̂ti ≤ vti .

i loses the incentive to submit a larger bundle, which may
decrease the selection probability. We focus on v̂ti ≤ vti . There
are three cases: (1) ctij > vti ≥ v̂ti . Similarly, i loses with for
both bids and uti = 0; (2) vti ≥ ctij > v̂ti . i loses with b̂ti and is
randomly selected with bti. If selected, uti > 0 when vti > qti ≥
ctij , and uti ≤ 0 otherwise; (3) vti ≥ v̂ti ≥ ctij . i is randomly
selected with both bids, where the selection probability with
bti is larger than that with b̂ti. If selected, uti > 0 when vti >

qti ≥ ctij , and uti ≤ 0 otherwise. Hence, EWt [ui(b
t
i, b̂

t

−i, â
t)] ≥

EWt [ui(b̂
t
i, b̂

t

−i, â
t)]. Since uti ≤ uImax = vmax− cmin, we have

E[ui(b
t
i, b̂

t

−i, â
t)]

≥ 1
eε̂

∑
Wt∈St

EWt [ui(b̂
t
i, b̂

t

−i, â
t)](Pr[Ψ(b̂ti, b̂

t

−i, â
t) =Wt]− δ)

≥ (1− ε̂)E[ui(b̂
t
i, b̂

t

−i, â
t)]− δe−ε̂uImax

≥ E[ui(b̂
t
i, b̂

t

−i, â
t)]− (ε̂+ δe−ε̂) · (vmax − cmin).

Above all, we conclude that sPTA is γ-truthful for users.
• Truthfulness for servers. The proof is similar to the proof

for user truthfulness. We thus omit it due to space limit.

Remark. Theorem 2 claims that no agent can gain in its
expected utility with γ by bidding untruthfully. Hence, it is
reasonable to consider agents in sPTA submit true bids/asks.

Theorem 3. sPTA is of IR and budget balance.

Proof. To verify IR, we show all agents receive non-negative
expected utilities. Any loser is free of charge and here we
only consider winners. For any user i with winning bid b̂ti,
E[uti] = E[vti−qti ] under truthful bidding. By Alg. 2, qti = ctij+

ρt
î∗j

∑
k α

t
i,k/β

t
j,k, where î∗ = arg minj{ρti′j}. Since (i, j) is

more competitive than (̂i∗, j) with a larger probability, E[ρtij−
ρt
î∗j

] ≥ 0. Thus E[ui] ≥
∑
k

αti,k
βtj,k

E[ρtij − ρtî∗j ] ≥ 0. For any
server j with winning ask âtj , u

t
j = ptj −

∑
i x

t
ijc

t
ij . Then,

E[utj ] = E
[∑

i x
t
ij(q

t
i − ctij)

]
= E

[∑
i x

t
ijρ

t
î∗j

∑
k

αti,k
βtj,k

]
≥ 0,

i.e., IR holds. By Alg. 2,
∑
j p

t
j =

∑
j

∑
i x

t
ijq

t
i =

∑
i q
t
i .

Thus, budget balance is guaranteed.

Theorem 4. With the probability of at least 1 − 1/LO(1),
sPTA can compute an outcome with a minimum social welfare

1
MK

αmin
βmax

Rt,∗s −O(lnL). Here Rt,∗s is the optimal social welfare
of single-round SWM, and L is number of feasible pairs in Lt.

Proof. LetWt,∗ be the optimal winner set with the maximum
social welfare Rt,∗s . For sPTA, consider an arbitrary winner



Algorithm 3: Online Auction Algorithm
Input: Gt, bt,at,∀t, si, Bi,∀i, ε, ∆, δ
Output: xt,pt, qt,∀t

1 κtij ← 0, J ti ← 0,∀i, j, t; η̂ ← maxi siBi ; η ← (1 + η̂)
1
η̂ ;

2 for each slot t ∈ T do
3 for each bid-ask pair (i, j) ∈ Et do
4 stij ← si · 1{j 6=Jt−1

i };
5 if κt−1

ij ≥ 1 ∪ ωtij ≥ stij then
6 ω̂tij ← 0;
7 else
8 ω̂tij ← ωtij − stijκ

t−1
ij ;

9 Run sPTA to obtain auction outcome (xt,pt, qt);
10 for each user i ∈M do
11 if ∃j ∈ N , xtij = 1 then
12 if j = J t−1

i then
13 κtij ← κt−1

ij ;
14 else
15 κtij ← κt−1

ij (1 +
stij
Bi

) +
ωtij

Bi(η−1) ;
16 J ti ← j;
17 else
18 J ti ← 0;

set Wt = {w1, · · · , wh, · · · , w|Wt|} with social welfare Rts,
where winners are numbered in order of being selected. For
any wh ∈ Wt, define set Dh such that if wg ∈ Dh, wh is
selected before wg and wg ∈ Wt,∗ but wg /∈ Wt because
of wh, i.e., wh blocks pairs in Dh from being selected. Any
winner wg ∈ Dh associated with (i′, j′) is selected after wh.
By Lemma 1 and taking ϑ = O(lnL), vtj − cti′j′ ≤ (vti −
ctij)

∑
k α

t
i′,k/β

t
j′,k∑

k α
t
i,k/β

t
j,k

+O(lnL) with a probability of at least 1−
1/LO(1). Summing over wg ∈ Dh yields

∑
wg
vtj − cti′j′ ≤∑

wg

∑
k

αti,k
βtj,k

[
vti−c

t
ij∑

k

αti,k/β
t
j,k

+O(lnL)

]
≤ MK(vti−c

t
ij)∑

k

αti,k/β
t
j,k

+ O(lnL)

with a probability of at least 1 − 1/LO(1). Since
∑
k

αti,k
βtj,k
≥

αmin
βmax

∑
wg

(vtj − cti′j′) ≤ (vti − ctij)
MKβmax
αmin

+O(lnL), we have

Rt,∗s =
∑

wg∈Wt,∗

(
vtj − cti′j′

)
≤

∑
wg∈∪wh∈WtDh

(
vtj − cti′j′

)
≤

∑
wh∈Wt

(
vti − ctij

)
·MK βmax

αmin
+O(lnL).

Hence, the theorem follows.

IV. THE ONLINE AUCTION MECHANISM DESIGN

We develop OPTA, an online double auction mechanism to
solve SWM. The major challenge is lack of future knowledge.
Competitive analysis is a desired approach, where neither exact
values nor distribution of future input is known in advance
[38]. Moreover, the long-term budget constraint (2c) affects
the allocation decision over time, and also leads to the changes
of social welfare in different slots. If a user’s budget runs out,
some previously feasible pairs become invalid immediately.

In this case, it can only be served by the current server, and
cannot be switched to other more cost-effective ones. This
negatively impacts the social welfare. An ideal situation is
that the budget of each user is sufficient for all slots, and the
platform can select the best decisions from all feasible pairs.

Towards these goals, we design a competitive online algo-
rithm shown in Alg. 3, whose competitive ratio [18] is defined
as the upper-bound ratio of the offline optimal social welfare
derived by solving (2) exactly to the social welfare achieved
by Alg. 3. Specifically, we introduce a regulation factor κtij for
each feasible pair (i, j) ∈ Et to adjust its net benefit ωtij in slot
t. Since the residual budget of user i initialized to Bi decreases
over time, we scale up κtij if the task of i is migrated to another
server, such that its value starts at 0 (line 1), increases with
the decrease of residual budget and reaches 1 when the budget
is exhausted (line 6). For ease of presentation, we use variable
J ti ∈ {0} ∪ N to store which server that user i is allocated
in t, where 0 means i loses the auction (line 18). The new
scaled benefit ω̂tij will be fed as input to sPTA to determine
the winners and prices (line 9). Note that ω̂tij = 0 if ωtij ≥ stij
and κt−1

ij ≥ 1 to guarantee allocation feasibility and budget
constraint (see proof of Lemma 2). In this way, the bid from a
user with a smaller residual budget will be assigned a smaller
scaled benefit, reducing its chance to win. For each winner,
κtij is updated if there exists a migration (lines 14-15), and
remains unchanged otherwise (lines 12-13).

A. Theoretical Analysis

Lemma 2. Alg. 3 gives a feasible solution to SWM in (2).

Proof. sPTA computes a feasible solution to single-round
SWM under constraints (2a), (2b), (2d). To show the long-term
migration budget constraint (2c) is satisfied, we first prove

κtij ≥
1

η − 1

(
η

∑t
τ=1

∑
(i,j)∈Wτ s

τ
ij

Bi − 1

)
,∀t ∈ T (11)

by induction. It is clear that (11) holds for t = 0. Suppose it
holds for t− 1. By Alg. 3, κtij = κt−1

ij (1 +
stij
Bi

) +
ωτij

Bi(η−1) ≥

1
η−1

(
η

∑t−1
τ=1

∑
(i,j)∈Wτ s

τ
ij

Bi

(
1 +

stij
Bi

)
− 1

)
. We only need to

prove 1 +
stij
Bi
≥ ηs

t
ij/Bi . It holds since

stij
Bi
≤ η̂, using the fact

that ln(1+x)
x ≥ ln(1+y)

y ,∀0 ≤ x ≤ y ≤ 1. For any user i, let t′

denote the first time such that
∑t′

τ=1

∑
(i,j)∈Wτ sτij ≥ Bi. By

(11), κt
′

ij ≥ 1. From lines 5-6 in Alg. 3, (i, j) will never be
selected and constraint (2c) holds. Hence, Alg. 3 respects all
constraints of SWM and produces a feasible solution.

Theorem 5. OPTA is a truthful, differentially private,
IR and budget-balanced online double auction that gives a
η
η−1

βmax
αmin

MK-competitive solution to SWM in polynomial time.

Proof. • Competitiveness. Define ∆Rt = Rt −Rt−1, where
Rt is the objective value of SWM yielded by Alg. 3 after t
slots. For any slot t ∈ T , we have



∆Rt =
∑

(i,j)∈Et
ωtijx

t
ij =

∑
(i,j)∈Wt

(
ω̂tij + stijκ

t−1
ij

)
=

∑
(i,j)∈Wt

ω̂tij +
∑

(i,j)∈Wt

(
Bi(κ

t
ij − κ

t−1
ij )− ωtij

η−1

)
≥ 1

µR
t,∗
s +

∑
(i,j)∈Wt

Bi(κ
t
ij − κ

t−1
ij )− ∆Rt

η−1 ,

where µ is the approximation ratio of sPTA,
∑

(i,j) ω̂
t
ij is the

objective value of single-round SWM derived by sPTA, and
Rt,∗s is its optimal solution. Summing both sides over t ∈ T ,
rearranging the terms and using the fact that κtij ≥ κ

t−1
ij yield

η
η−1R

T ≥ η
η−1R

T −
∑
t

∑
(i,j)Bi(κ

t
ij − κt−1

ij ) ≥ 1
µR

T,∗,
where RT is the objective value of SWM achieved by Alg. 3,
and RT,∗ is its optimal solution. We have RT,∗

RT
≤ ηµ

η−1 . By
Theorem 4, the competitive ratio of Alg. 3 is η

η−1
βmax
αmin
·MK.

• Time complexity. In Alg. 1, while loop terminates after
at most MN iterations. In each iteration, select a pair in
O(MNK) steps and perform updating in O(K) steps. The
complexity of Alg. 1 is O(M2N2K). For Alg. 2, the sorting
needs O(MN log(MN)). The first for loop for charging users
runs |Wt| ≤M iterations. In each iteration, it verifies at most
MN pairs and traverses competitive price set in O(M2N)
steps. The second for loop for paying servers takes O(N)
time. The complexity of Alg. 2 is O(MN(log(MN) +M)).
In Alg. 3, the outer for loop runs T slots. In each slot, besides
running Alg. 1 and Alg. 2 to determine the winners and prices,
there are two inner for loops. The former calculates scaled
benefit in O(MN) steps and the latter updates variables in
O(MN) steps. Thus, the complexity of outer for loop is
O(max{MNK, log(MN) + M}TMN). Overall, the com-
plexity of Alg. 3 is O(max{MNK, log(MN) +M}TMN).
• Differential privacy. It requires the following lemma.
Lemma 3. Let Ψt(·) be an (εt, δt)-differentially private

mechanism. If ΨT (·) = (Ψ1(·), · · · ,ΨT (·)), then by Theorem
3.16 in [26], ΨT (·) is (

∑
t ε
t,
∑
t δ
t)-differentially private.

According to Theorem 1, in each slot t, sPTA is (ε̃, δ)-
differentially private for user valuation and server cost. By
Lemma 3, OPTA satisfies (ε̃T, δT )-differential privacy.
• Truthfulness, IR, budget balance. By Theorem 2, sPTA

is γ-truthful for both agents with given scaled benefit, which is
determined based on bids/asks in Alg. 3 and only known to the
platform, making OPTA with single-round sPTA truthful under
solution feasibility [38]. Similarly, IR and budget balance are
also guaranteed by Theorem 2, Theorem 3 and Lemma 2.

B. Implementation Considerations

We next discuss how OPTA can be implemented. We use
a representative example, BOINC [39], which is a volun-
teering platform facilitating individual servers to contribute
idle resources for compute-intensive applications. Consider a
gaming app provider using BOINC to assign user requests to
servers. Given the proximity and capacity constraints, OPTA
can be applied to find a near-optimal solution that dynamically
partitions and allocates edge resources on demand without any
future information, e.g., market dynamics. Users and servers
participate in the auction as buyers and sellers by submitting
asks and bids in terms of 〈resource demands, valuation〉 and

〈available capacities, cost〉. The provider iteratively choose
winners from a set of feasible pairs based on the computed se-
lection probability, and charges/pays winners via critical-value
pricing. The gaming service follows the auction outcome,
including computing new game states and generating game
videos to stream to users. Finally, providers update market
model for the next slot and then repeat the auction process.

There are other practical concerns that are worth further in-
vestigation. First, agents are endowed with ability to infer their
valuations/costs from historical prices. Second, verifiability of
service offerings is needed to ensure quality of service. Third,
latencies incurred by dynamic resource adjustment are ex-
pected to be reduced through the hotplug technique [18], [40],
which dynamically changes the amount of CPU/RAM/disk in
use to produce customized resource bundles upon user request.

V. PERFORMANCE EVALUATION

We envision an open market for MEC system consisting
of M = 150 users and N = 40 servers as default. We
simulate a 500m × 500m area with 40 servers distributed
by homogeneous Poisson Point Process [15], whose coverage
radius is set to 40m. The user trajectory is generated by a
random walk process [41]: in any slot, each user determiners
its location for the next slot by randomly choosing a direction
and a velocity uniformly distributed in [0, 2π] and [0, 1.5]
m/s. Assume the market allows for trading K = 3 types of
resources, e.g., CPU, RAM and bandwidth. Each server asks
for the supplied sources, which are extracted from Amazon
EC2 M5 instance types [42], while the resource cost ctj,k
uniformly distributes in [0.1, 1]. Since there are no real user
request data publicly released by cloud providers, we artifi-
cially generate some user requests in the simulations, each of
which has a limited resource demand αti,k and a valuation vti
randomly generated in [0.1, 12]. For online auction, we set
the length of each slot to 15 minutes and the time horizon to
28 slots, which is commonly used in previous studies [16].
The migration budget Bi is randomly valued in [5, 20] unless
otherwise specified, and per-time migration cost si uniformly
distributes in [3, 5]. Additionally, privacy budget ε is set to 1
as default, and residual probability δ is set to 0.1.

A. Performance of Single-Round Auction sPTA

We implement the sPTA and compare it with three bench-
marks: (1) OPTimal allocation (OPT) [37]: the optimal solu-
tion is obtained by solving (8) using an efficient MIP solver
[43]; (2) Greedy allocation with maximum Social Welfare
(Greedy-SW) [11]: users are allocated to servers to pursue
maximum social welfare via greedy heuristic; (3) Greedy
allocation with maximum Allocated pair number (Greedy-A)
[3]: a greedy algorithm is performed to allocate as many users
as possible. We conduct all simulations for 200 times and plot
the mean values and standard deviations.

Social Welfare. Fig. 3 and Fig. 4 show the performance
comparison of normalized social welfare. We observe all social
welfare increases with the number of users or servers. Given
fixed resources, we can allocate them more efficiently if there
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TABLE I
AVERAGE COMPUTATION TIME FOR SPTA VS. BENCHMARKS

Algorithms Average Computation Time
sPTA 1.7338 sec

Greedy-SW 1.5877 sec
Greedy-A 1.6861 sec

OPT 1546.146 sec

are more users, while with the increase of server number,
more requests are satisfied. That’s why we design a privacy-
preserving double auction to attract more agents. Compared to
Greedy-A, the social welfare that sPTA and Greedy-SW yield
is much closer to the optimum since the curves of sPTA and
Greedy-SW are much closer to that of OPT. sPTA and Greedy-
SW jointly consider agent utility and demand-supply balance,
which facilitates producing social-welfare maximizing sorting
criterion. As for Greedy-A, failure to capture agent utility may
lead to less efficient allocation. sPTA is inferior to Greedy-SW
since the latter selects winners to pursue the maximal social
welfare, while to enforce differential privacy, winners in sPTA
are chosen by the selection probability.

User Satisfaction. We capture user satisfaction by the ratio
of number of allocated requests and number of total requests.
From Fig. 5, with increase of user number, user satisfaction
decreases in all cases. The intuitive is that, given fixed edge
resources, the available resources can’t meet demands grad-
ually as user number increases, leading to decrease of user
satisfaction. Greedy-A greedily selects winners for maximum
number of allocated pairs, yielding a satisfaction-maximizing
sorting order. That’s why user satisfaction in Greedy-A is the
highest. Fig. 6 shows user satisfaction increases with server
number. Given user set, larger server number means more
resources to allocate. Thus, more pairs will be selected. As
expected, Greedy-A achieves the highest user satisfaction.

Computation Efficiency. Table I shows all algorithms have
different average computation time. As expected, OPT is very
slow due to NP-hardness of single-round SWM. Compared
to two heuristics, sPTA is slightly slower because a random
process is introduced to winner selection to enforce differential
privacy. Taking Fig. 3 and Fig. 4 together, we find sPTA
provides a good trade-off between performance and efficiency.

B. Performance of Online Auction OPTA

Offline/Online Ratio. We capture the competitiveness of
OPTA by offline/online ratio defined as the ratio between
offline optimal social welfare of (2) calculated by the MIP
solver [43] and overall social welfare achieved by OPTA. The
simulations are repeated for 20 times and the plots show the
mean values and standard deviations. From Fig. 7, we observe
that the ratio declines as server number increases. This is
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reasonable since the platform can choose more cost-effective
pairs. When more users compete for resources, the reduced se-
lection probability degrades social welfare performance. That’s
why the ratio increases with user number. Fig. 8 illustrates
the effect of round number and maximum user budget B
on the ratio. For any given budget, the ratio always remains
at similar levels. That is, OPTA can maintain performance
stability regardless of the number of rounds it is applied.
The budget increase makes users more likely to be switched
to cheaper servers, increasing social welfare. Without future
knowledge, OPTA is more sensitive to budget than offline
solution. Thus, the ratio decreases as budget increases.

IR and Truthfulness. We only present the analysis results
of valuation/cost, and that of demand/supply are similar.
Assume users report truthful valuations. We conduct OPTA,
and compare valuation and charge of each user. From Fig. 9,
each user is charged no more than valuation. Hence, IR holds
for users. We randomly pick a user and allow it to submit a
bid whose valuation differs from the true one. Conduct OPTA
on the untruthful dataset and present user utility and charge
with varying reported valuations in Fig. 10. The utility and
charge are zero when reporting a lower valuation, and remain
unchanged when the reported valuation is no less than the
true one. Thus, the user has no incentive to report a false
valuation, i.e., OPTA is truthful for users. Suppose servers
truthfully report costs. Implement OPTA, and compare server
total cost and payment. Fig. 11 shows each server is paid no
less than its cost. Thus, IR holds. We randomly pick a server
and allow it to report false cost. We only consider one type
of resource. Implement OPTA on this untruthful dataset, and
illustrate its utility and payment with varying reported costs
in Fig. 12. Similar to Fig. 10, OPTA is truthful for servers.

Privacy Preservation. We next illustrate the privacy per-
formance of OPTA. Given a mechanism Ψt(·), let (bt,at)

and (b̃
t
, ãt) be two input bid-ask profiles differing in only

one element, Ψ(bt,at) and Ψ(b̃
t
, ãt) be the outcomes. By

the definition of differential privacy, a good privacy-preserving
scheme should keep the changes in outcomes as small as possi-
ble under a minor input change. To evaluate outcome changes,



Fig. 9. IR for users. Fig. 10. User truthfulness. Fig. 11. IR for edge servers. Fig. 12. Edge server truthfulness.
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Fig. 13. Impact of privacy budget ε on social welfare and privacy leakage.

we’re inspired by [29] to define the privacy leakage caused
by OPTA as the Kullback-Leibler divergence of two outcome
probability distributions based on (bt,at) and (b̃

t
, ãt), i.e.,

πt =
∑
Wt∈St

Pr
[
Ψ(bt,at) =Wt

]
ln

(
Pr[Ψ(bt,at) =Wt]

Pr[Ψ(b̃
t
, ãt) =Wt]

)
.

Intuitively, the smaller πt, the harder to distinguish the two
inputs, i.e., a better privacy performance is achieved. Fig. 13
illustrates the social welfare and privacy leakage of OPTA with
respect to privacy budget ε. We observe the social welfare
increases with ε basically. This is due to the property of
exponential based allocation: as ε increases, a pair with larger
allocation efficiency is more likely to be selected, yielding
higher social welfare. However, such increase in social welfare
comes at a cost of large privacy leakage. The larger ε,
the worse privacy performance, and thus the larger privacy
leakage. Hence, there exists a trade-off between social welfare
and privacy leakage. By carefully selecting ε, the system can
achieve high social welfare with good differential privacy.

VI. RELATED WORK

In the field of edge computing, various methods of im-
proving its computing capacity have been proposed. A tradi-
tional approach is establishing facilities in proximity to users
[7], but it may cause high construction costs and resource
wastes. Instead, Zavodovski et al. [6] proposed open infras-
tructure for MEC, enabling individual servers to pool their
resources locally for cooperative computation. There were
similar works in the past [44]. For example, Vectordash is
a commercial platform allowing GPU owners to rent out GPU
instances [45]. The main question in this approach is how
to efficiently allocate edge resources to users. Zavodovski et
al. [9] present a truthful open market by bringing sharing
economy to MEC. Given strategic behaviors of both agents,
there has been growing interest in designing double auction
schemes for MEC [9], [12]. Gao et al. [11] proposed a
double auction-based allocation scheme, where users compete
for resources from servers. These schemes focus on single-
round auctions, making them simple and easy to implement.
But in practice, the decisions must be made in real-time
[15], because of: 1) continuously generated requests to be
processed promptly; 2) market dynamics due to user mobility

and random arrival/departure, time-varying bids/asks. Online
auction [19] represents a natural solution for dynamic resource
allocation. Chen et al. [16] designed an online auction market
to incentivize cloudlets for edge emergency demand response.
A closely related work [18] present an online auction frame-
work for cloud resource provisioning. Our work differs from
[18] in that: 1) they focus on VM trading under capacity
constraints, while we consider a more complicated market
under energy, proximity, capacity constraints; 2) they only
address truthfulness, while we consider truthfulness, as well
as system uncertainty and bid privacy.

Another line of prior work related to this paper is a series of
differential privacy mechanisms [26]-[29] recently developed
for privacy-preserving data analysis, which can be divided into
two categories. The first is to add noise to the output [20], but
which might not be feasible after adding noise. The second
is to introduce randomization to the output via exponential
mechanism [37]. There have been attempts in exponential
based auction for differential privacy. Compared to pricing
randomization [29] based on uniform pricing, randomizing
the allocation [38] would be more applicable in combinatorial
edge markets. Zhu et al. [35] designed a privacy-preserving
spectrum market by using exponential method in winner
selection. Lin et al. [36] randomized winner selection for
privacy-preserving crowdsensing incentive mechanism. With
respect to the differential privacy, our work is different from
the existing exponential mechanisms in that: 1) they consider
single-sided markets, while we address a double-side bidding
market, ensuring privacy guarantee for both agents; 2) they
only achieve single-round differential privacy, while we pro-
vide real-time privacy protection across multiple rounds.

VII. CONCLUSION

This paper presents an online privacy-preserving truthful
double auction mechanism facilitating dynamic and collab-
orative resource allocation at the edge. We first design a
differentially private truthful single-round auction, comprising
of an exponential based allocation policy to select winners
with efficiency and privacy guarantee, and a critical-value
pricing policy to charge or pay winners. Building upon the
single-round results, we propose a competitive online algo-
rithm with a proven competitive ratio. Rigorous theoretical
analysis and extensive simulations are performed, which verify
the efficiency of the proposed method.
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