
P4air: Increasing Fairness among Competing
Congestion Control Algorithms

Belma Turkovic and Fernando Kuipers
Delft University of Technology, the Netherlands
Email: {B.Turkovic-2, F.A.Kuipers}@tudelft.nl

Abstract—Congestion control algorithms are usually developed
in isolation without thoroughly investigating their co-existence
and interactions with other protocols and/or congestion control
algorithms. As a result, flows using different algorithms and/or
having different Round-Trip Times may overpower each other,
resulting in unfair resource distribution, with a subset of the
flows usually claiming most of the capacity.

To solve the aforementioned problem, we make use of pro-
grammable switches and the network programming language P4
to enforce fairness from within the network itself, instead of
from the congestion control algorithms ran at the end-points.
Our solution P4air continuously monitors the properties of all
flows that pass through a switch and groups them based on the
behavior of the congestion control algorithms used. Furthermore,
for each group, it applies appropriate measures to suppress
the aggressive flows and boost smaller flows. Our experiments,
using modern programmable hardware (Barefoot Tofino switch),
demonstrate significant performance gains for P4air in terms of
fairness compared to state-of-the-art solutions.

I. INTRODUCTION

The field of congestion control – a key component of
transport-layer protocols – continues to see innovation through
many novel proposals, each claiming superiority for specific
applications or scenarios [1], [2], [7], [13], [14], [20], [25],
[29], [30], [41], [42], [44], [51], [55], [59], [63], [65]–
[67]. Furthermore, new transport protocols, such as QUIC
and MPQUIC, facilitate quick development of new transport
features directly from the user space, enabling even more
customization and more diverse network protocols in the
future [12], [33], [62].

However, due to this abundance in new protocols and
algorithms, it has become almost impossible to take their
interactions with other protocols and algorithms into account.
Consequently, even for algorithms designed with good fairness
properties in mind, multiple fairness issues exist, especially
when the bottleneck links are shared between flows using
different congestion control algorithms or having different
Round-Trip Times (RTTs) [5], [6], [8], [24], [36], [40], [53],
[56], [60]. For example, classic TCP flows (using loss-based
algorithms) fill the bottleneck queues (resulting in high queu-
ing delay) and only react to the resulting packet loss. These
algorithms overpower newer congestion control algorithms
that also take delay measurements into account, nullifying
their inherent advantages (e.g., low queuing delay) and making

Part of this work has been supported by SURFnet.

them unusable in a typical network, where the majority of
flows still rely on loss-based algorithms. Furthermore, even
when only flows using newer algorithms are present at the
bottleneck, fairness can still be low, especially among flows
having different RTTs.

Active queue management (AQM) solutions [3], [17], [22],
[26], [45], [48], [49] have been proposed to improve fairness
by deploying different dropping policies at the bottleneck.
They detect congestion in the queue buildup phase, thereby
improving the end-to-end latency and forcing the most ag-
gressive flows to back off. However, by doing so, they only
target one of the many metrics congestion control algorithms
use to detect congestion (i.e., packet loss). In other words,
they treat all flows as loss-based and are oblivious to the
specific congestion control algorithms used. This has multiple
disadvantages. First, algorithms that do not use loss as a
metric (e.g., BBRv1) are never targeted by AQMs, potentially
allowing them to overpower traditional loss-based algorithms
(that would back-off upon detecting loss). Second, for al-
gorithms that use delay as their primary metric, instead of
targeting the more appropriate metric (increase in RTT) and
avoiding the unnecessary retransmissions, AQMs trigger a
more severe back-off mechanism by targeting packet loss.
Third, AQMs usually react too late, i.e., when the buffer is
already partially full and the back-off mechanism of the delay-
based algorithm was already triggered (due to the increase in
RTT). Additionally, most AQM solutions target the network
edge and are not well suited for the network core that processes
thousands of flows simultaneously. For example, state-of-the-
art algorithms have problems when operating with a large
number of flows and/or are too expensive to be implemented
in devices, especially due to the high number of queues needed
for ideal performance [10], [28], [54], [64], [68].

Contributions. In this paper, by taking advantage of the pos-
sibilities of switches with P4-programmable data-planes, we
develop P4air, a P4 application, run entirely in the data-plane,
that enforces fairness between all flows present on a switch.
We show that P4air, in addition to improved fairness, can
run on modern programmable hardware at line-rate (speeds
reaching Tbps) without any loss of accuracy or performance.

First, we analyze the inter-, intra-, and RTT-fairness proper-
ties of congestion control algorithms in Sec. II. We use this as
a base to classify the congestion control algorithms into four
groups with high inter-fairness properties and similar behavior.978-1-7281-6992-7/20/$31.00 c©2020 IEEE

H
S-

T
C

P

ST
C

P

H
T

C
P

B
IC

C
ub

ic

N
ew

R
en

o

H
yb

la

Y
eA

H

Il
lin

oi
s

V
en

o

W
es

tw
oo

d+

B
B

R

V
eg

as

L
oL

a

HS-TCP 0.98 0.75 0.92 0.95 0.88 0.94 0.72 0.73 0.76 0.66 0.70 0.60 0.53 0.58

STCP 0.75 0.99 0.80 0.83 0.83 0.81 0.77 0.78 0.83 0.71 0.70 0.58 0.53 0.57

HTCP 0.92 0.80 0.99 0.84 0.96 0.99 0.81 0.88 0.88 0.78 0.86 0.57 0.52 0.56

BIC 0.95 0.83 0.84 0.98 0.80 0.85 0.66 0.68 0.66 0.61 0.67 0.59 0.53 0.67

Cubic 0.88 0.83 0.96 0.80 0.99 0.97 0.87 0.89 0.88 0.82 0.88 0.58 0.53 0.56

New Reno 0.94 0.81 0.99 0.85 0.97 0.99 0.83 0.88 0.89 0.78 0.87 0.57 0.53 0.55

Hybla 0.72 0.77 0.81 0.66 0.87 0.83 0.99 0.96 0.98 0.92 0.97 0.58 0.52 0.56

YeAH 0.73 0.78 0.88 0.68 0.89 0.88 0.96 0.99 0.98 0.92 0.97 0.62 0.52 0.56

Illinois 0.76 0.83 0.88 0.66 0.88 0.89 0.98 0.98 0.99 0.92 0.95 0.58 0.52 0.54

Veno 0.66 0.71 0.78 0.61 0.82 0.78 0.92 0.92 0.92 0.98 0.93 0.60 0.52 0.54

Westwood+ 0.70 0.70 0.86 0.67 0.88 0.87 0.97 0.97 0.95 0.93 1.00 0.58 0.52 0.54

BBR 0.60 0.58 0.57 0.59 0.58 0.57 0.58 0.62 0.58 0.60 0.58 0.94 0.65 0.79

Vegas 0.53 0.53 0.52 0.53 0.53 0.53 0.52 0.52 0.52 0.52 0.52 0.65 1.00 0.67

LoLa 0.58 0.57 0.56 0.67 0.56 0.55 0.56 0.56 0.54 0.54 0.54 0.79 0.67 0.80

Purely loss-based
Metric: loss

Loss-delay
Metric: loss, delay

Model-
based

Delay-
based

Metric:
delay

(a) Inter- and Intra-fairness (100 Mbps, 100 ms).

H
S-

T
C

P

ST
C

P

H
T

C
P

B
IC

C
ub

ic

N
ew

R
en

o

H
yb

la

Y
eA

H

Il
lin

oi
s

V
en

o

W
es

tw
oo

d+

B
B

R

V
eg

as

L
oL

a

0 ms 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.98 1.00 0.94 1.00 0.80

20 ms 0.79 0.92 0.94 0.74 0.84 0.85 0.89 0.86 0.92 0.91 0.86 0.56 0.83 0.73

40 ms 0.70 0.83 0.89 0.68 0.80 0.74 0.89 0.78 0.82 0.85 0.77 0.54 0.82 0.59

60 ms 0.67 0.79 0.88 0.66 0.72 0.69 0.94 0.74 0.77 0.83 0.71 0.55 0.78 0.59

80 ms 0.62 0.73 0.87 0.63 0.75 0.67 0.95 0.74 0.74 0.80 0.69 0.56 0.82 0.59

100 ms 0.59 0.74 0.84 0.63 0.73 0.66 0.95 0.73 0.80 0.79 0.65 0.56 0.80 0.62

120 ms 0.59 0.68 0.82 0.60 0.82 0.60 0.96 0.74 0.82 0.78 0.63 0.58 0.82 0.56

140 ms 0.57 0.65 0.80 0.59 0.78 0.59 0.95 0.71 0.83 0.76 0.61 0.57 0.85 0.57

160 ms 0.56 0.64 0.79 0.58 0.76 0.60 0.95 0.69 0.83 0.75 0.59 0.58 0.72 0.55

180 ms 0.56 0.63 0.74 0.56 0.78 0.59 0.95 0.82 0.79 0.72 0.59 0.58 0.81 0.55

200 ms 0.54 0.61 0.70 0.55 0.73 0.58 0.95 0.90 0.78 0.74 0.57 0.59 0.77 0.54

220 ms 0.54 0.61 0.69 0.55 0.76 0.59 0.95 0.79 0.64 0.65 0.56 0.58 0.79 0.59

240 ms 0.56 0.55 0.70 0.56 0.71 0.58 0.94 0.82 0.68 0.65 0.55 0.58 0.8 0.59

260 ms 0.55 0.54 0.65 0.56 0.69 0.56 0.94 0.80 0.63 0.56 0.55 0.58 0.73 0.56

Purely loss-based
Metric: loss

Loss-delay
Metric: loss, delay

Model-
based

Delay-
based

Metric:
delay

(b) RTT-fairness (100 Mbps).

Fig. 1: Fairness between two flows sharing a bottleneck that (a) use different algorithms, but have the same RTT, and (b) use
the same algorithm, but have different RTTs (the first column indicates the difference in RTTs). Red squares represent the
intra- and RTT-fairness properties of the four groups. The fairness index ranges from 0.5 (worst) to 1 (best). The results were
obtained using the Mininet emulation environment with a bandwidth limit of 100 Mbps.

Second, in Sec. III-A, we develop a “fingerprinting” solution
that can classify, directly in the data-plane, the algorithms into
the previously defined groups. Furthermore, for each group, we
allocate several queues. To adapt to the current network state,
we develop, in Sec. III-B, a queue reallocation algorithm (in
the data-plane) that favors groups with most flows by assigning
more queues to them. Next, in Sec. III-C, we complement our
fingerprinting solution by developing an AQM-like solution,
leveraging different metrics per group to detect congestion,
by applying custom actions to flows. In Sec. IV, we evaluate
our solution by comparing it to different queue management
techniques available on programmable hardware and/or im-
plementable in P4 and show that our solution can increase
fairness, while maintaining high utilization. Sec. V highlights
several deployment considerations. We present related work in
Sec. VI and conclude in Sec. VII.

II. CLASSIFICATION

A. Groups of congestion control algorithms

To determine the patterns P4air will track, we start by exam-
ining the inter- and intra-fairness properties of all algorithms
available in the Linux kernel, by generating two concurrent
TCP flows over a single bottleneck link (Fig. 1a, using the
same setup as [60]). For the fairness index, we choose Jain’s
index that reflects the fairness in resource distribution among
flows and which ranges from 1/n (worst) to 1 (best), where
n is the number of flows [27].

During the connection, end-hosts continuously probe for
resources by increasing their sending rate until congestion is
detected, e.g. in the form of packet loss or an increase in the
observed RTT. Upon detection, each algorithm employs its
back-off strategy, reducing the sending rate and starting the
same process anew. Therefore, depending on the metric used,
algorithms either back-off during the queue build-up phase (by
detecting an increase in the observed RTT) or when the queue
is full (by detecting packet loss). Depending on these metrics,

the fairness index is (1) high if flows use algorithms that rely
on the same metric, or (2) low if flows use algorithms that
rely on different metrics (Fig. 1a).

Next, we use these observations to divide the algorithms
into groups with good intra-fairness properties:

• Purely loss-based algorithms. The most commonly used
congestion control algorithms, such as Reno [50] and
Cubic [23] (default algorithm in the Linux kernel), fall
into this group. They only rely on packet loss to detect
congestion and are the most aggressive among all the
analyzed groups. Queues are filled periodically and the
sending rate is reduced only after detecting loss.

• Delay-based algorithms. Algorithms from this group are
proactive and among the least aggressive of the analyzed
algorithms. They try to detect the point at which the
queues start to fill and reduce their sending rate after
detecting an increase in RTT (or eventually packet loss).

• Loss-delay algorithms. Some of the best-known al-
gorithms from this group are TCP Compound (default
algorithm for Windows Server until 2019 [43]) and TCP
Illinois [37]. Since they incorporate delay measurements
in the congestion window calculation, they are less ag-
gressive than the purely loss-based group. However, they
still mostly use loss as their primary metric and only
reduce the sending rate upon detecting loss. Thus, queues
are still filled (albeit at a slower pace).

• Model-based hybrid algorithms. Algorithms from this
group try to build a model of the network, instead of
using the standard AIMD (additive increase/multiplica-
tive decrease) algorithm. The bottleneck bandwidth and
round-trip time (BBR) algorithm [7], with its periodic
pattern of increasing/decreasing the sending rate, is the
best-known example of this group. However, unlike other
protocols, it relies neither on packet loss or increase in
RTT to detect congestion.

2

Since model-based algorithms can employ very different
methods to estimate the available resources in the network,
further sub-groups with their distinct patterns could be formed.
Moreover, since the aggressiveness of the loss-delay and
purely-loss algorithms can vary, they also can be further
subdivided.

B. RTT fairness

Grouping flows based solely on the metric used to detect
congestion does not guarantee good fairness (Fig. 1b). On the
one hand, algorithms using the AIMD algorithm usually favor
the flow with a lower RTT. This flow has a faster update loop
and can, therefore, adjust its sending rate more often, claiming
more resources. On the other hand, model-based algorithms,
such as BBR, favor flows with higher RTTs, by allowing them
more time to probe for resources and to dominate the queues
in the process [39], [53], [61]. Consequently, when designing
P4air we take these differences into account.

III. P4AIR

To detect the patterns and features of different algorithm
groups, we decided to make use of switches with pro-
grammable data-planes. On the one hand, they offer the pos-
sibility to gather and export important packet meta-data (e.g.,
timestamps from different stages of processing, queue depth,
etc.) directly from the data-plane [31]. On the other hand,
they support stateful processing, which enables the switches
to track the way flows react to certain events, such as loss or
an increase in queue size. By leveraging these two features,
we have designed an algorithm, called P4air, that enforces
fairness among competing congestion control algorithms.

P4air consists of three modules split between the ingress
and egress blocks (Fig. 2): (1) Fingerprinting module that
groups flows based on their congestion control algorithm
(Sec. III-A); (2) Reallocation module that, when necessary,
redistributes the queues between groups (Sec. III-B); and (3)
Apply actions module that enforces fairness among flows
processed in the same queue by applying custom actions
(Sec. III-C).

A. Fingerprinting module

The fingerprinting algorithm tracks the way the flows react
to certain events, distinguishing between short-lived and long-
lived flows, as well as different groups of congestion control
algorithms (as discussed in Sec. II) used by long-lived flows.
Short-lived flows. Whenever P4air receives a packet belong-
ing to a new flow, it classifies it as a short-lived flow (Fig. 2).
It distinguishes between two groups of short-lived flows: (1)
ant flows, i.e., short, sparse flows that only transport a few,
but usually critical, packets (e.g., ARP, DNS, DHCP) and (2)
mice flows, i.e., TCP/QUIC flows still in the slow-start phase.
End of the slow-start phase. Mice flows typically transport
only a small amount of data and, consequently, do not send
enough to congest the switch on their own. However, if a long-
lived flow would reside in this queue, it could significantly
degrade their performance, causing unnecessary delays or even

dropped packets. Thus, P4air implements a mechanism to
detect the end of the slow-start phase, thereby distinguishing
between long- and short-lived flows.

To do so, P4air first uses the timestamps of packets involved
in the 3-way handshake, to estimate the flow’s RTT. To be
precise, it subtracts the timestamp of the first SYN from
the first packet sent after this SYN. Next, it estimates the
bandwidth-delay product (BDP) as the product between the
flow’s “fair” share – namely the output rate divided by the
number of long-lived connections – and the estimated RTT
of the flow. This value describes the number of packets
(bytes) that should be sent per RTT for the TCP connection
to fully utilize its share without filling the queues. Finally,
P4air will reclassify a flow into one of the long-lived groups
upon detecting either of the two following patterns: (1) a
decrease in the number of processed packets (bytes) per RTT
or (2) the number of processed packets (bytes) reaching the
BDP within an RTT interval. Additionally, upon detecting the
second pattern, P4air proactively drops a packet, forcing the
flow to enter the congestion-avoidance phase. This way, the
very aggressive slow-start phase is reduced to only the time
needed to reach the bandwidth share the flow should ideally
claim, avoiding the queue buildup for the mice queue.

Long-lived flows. Upon reclassifying a flow as a long-lived
flow, P4air continuously executes two actions: (1) tracking
of flow statistics, used to determine the group of the conges-
tion control algorithm; and (2) recalculating the group, upon
detecting specific patterns.

Tracking of flow statistics. For each processed packet P4air
updates the following two statistics: (1) the number of pro-
cessed packets (or bytes), and (2) the depth of the queue at
the moment before the packet is placed in (enqueue queue
length). In addition, as most congestion control algorithms
change their behavior each RTT to react to events (or lack
of them), we decided to aggregate these statistics per RTT.
Furthermore, due to constraints of P4 programs (imposed to
make sure that switches will run at line-rate), in particular, the
lack of division and floating-point operations needed to track
average values, we decided to store their maximum values.

Moreover, based on them, P4air tracks two additional
metrics, called aggressiveness and BwEst counter. Aggressive-
ness tracks how fast a queue is being filled, differentiating
between delay-, loss-delay, and purely loss-based algorithms.
Every time the maximum enqueue length increases by 1%,
aggressiveness is increased by 1. Otherwise, the aggressiveness
is reset to 0. The BwEst counter tracks the number of patterns
of increasing sending rate (by a factor of at least 1.125), which
is typically used while probing for more bandwidth.

As illustrated in Fig. 2, the fingerprinting module is split
between the ingress and egress blocks. To account for all
packets belonging to a flow, including the ones dropped due
to congestion, we decided to track the number of packets,
as well as BwEst (calculated using (BwEst), in the ingress
block. Similarly, since queuing statistics are not available in
the ingress block (as the packet was not yet processed in

3

P4air algorithm (ingress) P4air algorithm (egress)
Fingerprinting

UPDATE(num pkts, id)
if rtt = 0 then

group← mice
CALCULATERTT

else if t− start > rtt then
if group = mice and

SLOWSTARTEND then
group← delay
ASSIGNQUEUE(id)

end if
UPDATEBWEST(stats, id)
UPDATEGROUP(stats, id)
RESET(num pkts, id)

end if

1
Reallocation

if recirculated then
UPDATE(group, id)
REALLOCATION(groups)

end if

2

3 Apply actions
switch group do

case delay
DELAYPACKET

case loss, loss− delay
DROPPACKET

case model
ADJUSTWINDOW

end switch

Fingerprinting
UPDATE(enq len, id)
if t− start > rtt then

UPDATEAGGR(stats, id)
UPDATEGROUP(stats, id)
RESET(enq len, id)
start← t

end if

4

5 Reallocation
if group is changed then

id← LAST(old group)
UPDATELAST(group)
RECIRCULATE

end if

Packet queuing and scheduling
(Round robin)

Ants
Mice
Delay-based
Delay-based
Loss-delay
Loss-delay
Purely loss-based
Purely loss-based
Model-based

Fig. 2: P4air algorithm. Every incoming packet is processed through three modules: (1) Fingerprinting module that determines
the group (or sub-group) of the flow the packet belongs to (Sec. III-A); (2) Reallocation module that processes the groups’
updates, as well as the allocation of queues between groups (Sec. III-B); and (3) Apply actions module that executes custom
actions on packets to enforce fairness between flows being processed in the same queue (Sec. III-C).

the queue), the enqueue length, as well as aggressiveness, are
tracked in the egress block.

Recalculating the group. We decided to, initially, classify
all long-lived flows into the most conservative group (delay-
based). Only upon detecting a more aggressive behavior, we
reclassify them into more aggressive groups: at first loss-delay
and, finally, the purely loss-based group. This way, for delay-
based flows, a queue build-up is avoided, preventing them from
sharing the queue with more aggressive flows (and triggering
their back-off mechanism in the process). To do so, at the end
of each RTT interval, P4air uses the flow’s statistics (as well
as the statistics from the previous RTT interval) to tracks the
following patterns:

• A continuous increase in the maximum enqueue depth
for at least mLD RTT intervals, without any reduction in
the sending rate, causes the newest flow assigned to the
delay-based group to be reclassified as loss-delay.

• A continuous increase in the maximum depth of the queue
for mPL (mPL > mLD) subsequent RTT intervals,
causes the newest flow assigned to the loss-delay group to
be reclassified as purely loss-based. This way, algorithms
that use delay as their secondary metric (loss-delay) are
differentiated from purely loss-based algorithms.

• A periodic pattern of increasing/decreasing the sending
rate (tracked using the BwEst metric and parameter mM),
causes the flow to be classified as model-based (BBR),
exploiting the fact that in each probe (drain) bandwidth
phase, a BBR flow deliberately increases (decreases)
the sending rate by 1.25 (0.75) times the measured
bandwidth-delay product.

Parameters mLD, mPL, and mM , are configurable and de-
fine the sensitivity of the Fingerprinting module. By lowering
these values, we decrease the time needed to detect each group.
However, the probability of misclassification might increase,

especially for the more conservative groups. By increasing
these values, more aggressive classes (e.g., the loss-based
group) might never be detected, which reduces the accuracy.

Fig. 3 illustrates the fingerprinting process for the repre-
sentatives of the four groups: Cubic for purely loss-based,
Illinois for loss-delay, Vegas for delay-based, and BBR for
model-based algorithms. First, P4air classifies all four flows as
mice flows. After they reach their BDP, P4air drops a packet,
forcing all four flows to enter the congestion-avoidance phase,
and classifies them into the delay-based group. However,
Cubic, Illinois, and BBR start filling the queues, without
backing off and are reclassified into the loss-delay group. Next,
due to Cubic’s very aggressive approach, the queues and the
aggressiveness continue to increase, causing P4air to classify
it into its correct group: purely loss-based. Similarly, after
P4air detects the periodic increase in BBR’s sending rate, it
reclassifies it into the model-based group. In this scenario, this
occurs after this pattern is recognized twice.

Location vs. accuracy. As Fig. 3 illustrates, to correctly detect
the more aggressive flows, P4air needs to be deployed on
the bottleneck switch, i.e. a switch at which the queues are
formed. Otherwise, due to no increase in the queuing delay,
the Fingerprinting module would classify these algorithms as
delay-based algorithms. However, when loss and loss-delay
algorithms are not filling the queues, they would also not
interfere with the present delay-based algorithms. In other
words, if there would not be a bottleneck, there would also not
be a problem that P4air needs to solve. In contrast, algorithms
like BBR (that do not rely on the queuing metrics) can always
be detected due to their periodic pattern.

B. Reallocation module

Every time the Fingerprinting module reclassifies a flow, the
Reallocation module executes two actions: (1) it stores and
updates the flow’s group, and (2) it runs the queue reallocation

4

Statistics tracked by the P4 switch: Detected group of algorithms:
num pkts [#pkts] enq len [#pkts] mice delay-based loss-delay

BwEst Counter Aggressivness purely loss-based model-based

0 15 30 45 60 75 90

0

25

50

75

100

125

150

t/RTT

(a) Purley loss-based (Cubic)

0

20

40

60

80

100

0

4

8

12

16

20

0 15 30 45 60 75 90
t/RTT

(b) Loss-delay (Illinois)

0

4

8

12

16

20

0 15 30 45 60 75 90

0

25

50

75

100

125

150

t/RTT

(c) Delay-based (Vegas)

0

20

40

60

80

100

0

4

8

12

16

20

0 15 30 45 60 75 90
t/RTT

(d) Model-based (BBR)

0

4

8

12

16

20

Fig. 3: Fingerprinting module. Illustration of the P4air data-plane fingerprinting algorithm for the representatives of the four
groups of congestion control algorithms. The lines represent flow statistics and different background colors represent the
outcome of the fingerprinting algorithm as measured by the switch. The following configuration was used: the maximum
queue size was 100 packets, the output rate 1000 pps, RTT 100 ms, mLD = 4, mPL = 10, mM = 2, nflows = 1.

algorithm, making sure that long-lived flows are distributed
evenly across all available queues.

Updating and storing of the group. For most flows, group
recalculation can only be done in the egress block, i.e., after
the egress statistics (e.g., aggressiveness, enqueue depth) are
known. However, to ensure that the packet is queued correctly,
the flow’s group needs to be known in the ingress block.
Consequently, the register (stateful memory array) storing the
estimated group must be allocated in the ingress block and
is, as such, not accessible from the egress block. To solve the
abovementioned problem, P4air recirculates all packets that
trigger a reclassification (Fig. 2).

Queue reallocation algorithm. To leverage standard schedul-
ing mechanisms, such as Round Robin (RR) or FQ (Fair
Queuing), we designed a queue reallocation algorithm. More-
over, to be able to deploy this algorithm on the hardware
switches running at line-rate, we avoided operations that would
introduce significant computational overhead (e.g., loops and
floating-point operations). Our algorithm makes sure that
groups that have more flows are also assigned more queues,
thereby distributing all the flows evenly across all the available
queues. First, to ensure that packets belonging to the same flow
are processed in the same queue, P4air uses an additional
register array to store the queue information. Furthermore, for
every recirculated packet, P4air updates this register to make
sure that flows belonging to the same group are processed
together, by assigning a new queue using a sequential index
(one per-group). As the next step, it updates the boundaries of
each group (parameters li) according to Fig. 4a. For every
other packet (not recirculated), P4air checks if the stored

queue is outside of the corresponding li values (that might
have been updated) and, if so, assigns a new queue using the
sequential index (Fig. 4b). This way, whenever reallocation
occurs, P4air reassigns all flows processed in the queue that
was assigned to a different group uniformly among the other
remaining queues belonging to the group. Similarly, it assigns
the first fpq−1 flows (and the flow that triggered the li update)
belonging to the group that gained a queue to the new queue.

C. Apply actions module

Traditional AQMs can only probabilistically drop packets or
use ECN marking to trigger the senders to back off. However,
as mentioned earlier, for some congestion control algorithms,
less severe actions, such as delaying a packet, might be more
appropriate. Furthermore, newer congestion control algorithms
might not react to these indicators and require new actions to
be designed. Hence, to target each group’s specifics, P4air
uses the custom actions listed below.
Dropping a packet. This action targets the algorithms that use
loss as the primary metric (purely loss-based and loss-delay
algorithms), similar to standard AQMs.
Delaying a packet. This action targets delay-based algorithms.
By delaying (instead of dropping) a packet, they will back
off, reducing the need for retransmissions and improving the
average end-to-end delay in the process. Just delaying a packet
is not possible in P4, thus, we implemented this action by
recirculating a packet back to the ingress.
Changing the receiver window. A flow’s sending rate is
determined by the minimum of the receiver and congestion
windows. Thus, by reducing the receiver window, the sender is

5

#pkt (n, recirculated) #pkt (n+j, recirculated) t

if c1 = 0 and c2 > fpq then
l1 ← l1 + 1
c1 ← fpq
c2 ← c2 − fpq

end if

if c2 = 0 and c1 > fpq then
l1 ← l1 − 1
c1 ← c1 − fpq
c2 ← fpq

end if

c1 ← c1 − 1 c1 ← c1 − 1
c2 ← c2 + 1

Previous group: (mice)
New group: (delay-based)

Previous group: (delay-based)
New group: (loss-delay)

l1
l1

(a) Simplified representation of the mechanism for recalculating li (boundaries
between groups) for two groups. Every time a packet is recirculated, a set
of counters ci, which track the number of flows that need to be added to
the group i for l1 to change, is either incremented (counter belonging to the
previous group) or decremented (counter belonging to the new group). If any
of the counters reaches zero, while the other one is higher than fpq (flows
per queue), l1 is recalculated. Every time fpq is increased, values ci are
increased by the number of queues assigned per class (2 in this example).

l2=5

l1=2 l1=2 l1=2 l1=2 l1=2

l2=4 l2=4 l2=4 l2=4

l3=6 l3=6 l3=6 l3=6 l3=6

#pkt (n) t
(recirculated)

#pkt (n+i1) #pkt (n+i2) #pkt (n+i3) #pkt (n+i4)
(recirculated)

Update l2
Change queue

from 4 to 2
Change queue

from 4 to 3
Change queue

from 4 to 2 Assign queue
4

Queues: Delay-based Loss-basedLoss-delay Model-based

(b) Reassigning flows. Packet n, a recirculated loss-delay packet that is
reclassified to the purely-loss group, updates l2 (the boundary between loss-
delay and loss algorithm). After loss-delay packets (n+ i1, n+ i2, n+ i3,
shown in yellow) belonging to flows that were previously processed in queue
4 are received, their queue is reassigned using a sequential index. Similarly,
new purely-loss based flows (packet n+ i4) are assigned to queue 4.

Fig. 4: Reallocation algorithm.

forced to back off. However, to do so, the window in the ACK
packets, sent from receiver to sender, needs to be modified.
For this action to work, packet transfers in both directions have
to cross the same bottleneck.

Sensitivity. The sensitivity of the Apply actions module, i.e.,
how often P4air applies actions to the flows, determines the
link utilization, as well as the distribution of resources among
flows. If the sensitivity is set too high, back-off mechanisms
are triggered before the flows even started congesting the
network, leading to low utilization. In contrast, if configured
too low, they are triggered too late (or at all), allowing
aggressive flows to claim more resources and leading to
unfairness. Consequently, to keep the utilization high, while
still targeting aggressive flows, we decided to execute this
module only when the flow the packet belongs to is sending
above its BDP.

D. Overhead & Limitations.

Memory overhead. Contrary to standard AQM solu-
tions, such as Codel, the memory overhead of P4air
scales linearly on both the number of flows it wishes to
track (127b per flow), as well as the number of out-
put ports ((5 + nqueues) log2(nflows) + 3 log2(nqueues) +
8 log2(nflows/nqueues) bits per output port). However, as

TABLE I: Memory consumption on a 24-port switch. β is the
memory used to track the current group and queue and α the
memory used to track the RTT and flow statistics.

nflows
Total Fingerprinting Reallocation
[kB] α [%] β [%] [%]

210 17.53 86.89 5.84 7.27
211 33.92 89.81 6.04 4.16
212 66.57 91.53 6.15 2.32
213 131.73 92.51 6.22 1.28

Table I illustrates, memory is mostly consumed by the Fin-
gerprinting module to track the current RTT interval and
current flow statistics (parameter α). Since flows from the loss-
and model-based groups should not be reclassified (except
if mM and mPL are misconfigured, see Fig. 6c), memory
consumption can be significantly reduced by only keeping
track of their group and queue (parameter β) and not their
RTT and flow statistics (parameter α).
Recirculations. Recirculated packets compete for resources
with incoming packets, causing potential drops in throughput.
However, while updating the group, their amount per flow
is at most 4 (maximum number of re-classifications per-
flow). Furthermore, due to the lack of other ways to delay
a packet, recirculations are used in the Apply actions module
to target the delay-based algorithms. However, due to the very
conservative nature of these algorithms, we did not experience
any noticeable negative effect on the switch’s performance.
Collisions. As one of the main building blocks of P4air,
we use hash tables, since they are supported on all pro-
grammable hardware. To generate an index to access them,
P4air calculates a hash based on the flow identifier (5-tuple
consisting of source and destination IP, layer 4 protocol,
source and destination ports). However, when the number of
concurrent unique flows increases, so does the probability of
hash collisions. When two flows collide, P4air will see them
as one, potentially misclassifying them and reducing fairness.
Packet reordering. During reallocation, flows might be pro-
cessed by two queues at the same time, potentially leading to
packet reordering. However, we did not experience any related
noticeable issues in our experiments.
BDP calculation. Due to the lack of support for floating-
point operations on hardware switches, the sensitivity of
the Apply actions module must be approximated using the
estimated RTT, i.e. RTTEst >> s, where s is calculated to
be close to the BDP of the flow, e.g. d(log2(num flows) +
log2(packet length · Throughput))e. Consequently, to keep
the utilization high, we decided to slightly postpone the
actions, allowing flows to partially fill the queues.

IV. EVALUATION

A. Experiment setup

Performance metrics. To evaluate P4air, we used the follow-
ing metrics: (1) detection delay as the number of RTT intervals
needed to recognize the correct congestion control group; (2)
detection accuracy as the percentage of correctly classified

6

1
P4air

C1

Cn

2
Sn

S1

.
RTTn

RTT1

Bottelneck (limited output rate to 1000 pkts/s)
& limited queue length (100 pkts)

Clients Servers

(a) Simulation topology (using the bmv2 switch and Mininet).

1
P4air

C1

C4

C2

C3

SBottelneck

RTT2

RTT3

RTT1

RTT4

(b) Experiment topology (using the Tofino switch [58]). All links are 10 Gbps.

Fig. 5: Topologies.

flows; (3) utilization as the percentage of the total available
bandwidth used by all the connections, (4) RTT increase (due
to queuing), (5) the fraction of throughput each flow received,
and (6) fairness index.

Comparison baselines. We compared our solution against
(1) a simple switch without an algorithm to improve fairness
(No AQM) and (2) an algorithm that provides flow separation
based on the hash of the 5-tuple (as commonly used in vendor
implementations [15]) by enqueuing packets into different
queues (Different Queues). Furthermore, we tested two ver-
sions of P4air: (1) Idle P4air (Fingerprinting + Reallocation)
and (2) P4air (Fingerprinting + Reallocation + Apply actions).

Topology. We have used the topologies shown in Fig. 5.
Given that the performance of congestion control algorithms
is affected by the bottleneck link on the path, such simple
topologies suffice for our purposes. We performed the exper-
iments using (1) the Mininet emulation environment with the
P4 software switch (bmv2 [47], Fig. 5a) and (2) a testbed
with a Barefoot Tofino switch [58] (Fig. 5b). To perform
measurements, we relied on tcpdump, iperf3, socket statistics,
and P4 statistics exported directly from the switch.

B. Tuning of the fingerprinting algorithm

P4air has multiple tunable parameters (mLD, mPL, and
mM) that provide a trade-off between detection accuracy and
detection delay. Fig. 6a - 6f show the impact of changing the
mLD, mLD, and mLD on the detection of each group.

Choosing mLD = 4. As all flows are, by default, assigned
into the delay-based group, the choice of mLD should ensure
that only delay-based flows remain, while all the others are
reclassified into the loss-delay group. By analyzing the detec-
tion time and accuracy for different values of mLD (Fig. 6a
- 6b), we find that for mLD = 4, the probability of false
positives for the delay-based algorithms is low enough.

Choosing mPL = 12. By increasing mPL, the probabil-
ity of misclassifying a loss-delay algorithm decreases, even
for the aggressive algorithms from this group (e.g., Illinois,
Fig. 6c). However, in addition to the increase in detection
delay (Fig. 6d), the accuracy of the fingerprinting module for
the least aggressive purely loss-based algorithms, such as New

Reno, decreases as well (Fig. 6c). Thus, we choose mPL = 12,
as the best compromise between accuracy and detection delay.
Choosing mM = 4. Finally, we evaluated the influence of mM

on the detection accuracy of the model-based algorithms. All
algorithms probe for bandwidth in their slow-start phase and,
depending on their classification into the delay-based group
(when the tracking for aggressiveness and BWEst starts), they
can cross the threshold mM . However, only BBR does so
periodically, every 10 seconds, and will always be correctly
identified if mM is set high enough.

C. P4air performance

Resource utilization. Our Tofino implementation, when track-
ing a maximum of 216 flows, used less than 14% of the avail-
able header and metadata memory, less than 18% of the total
register memory and less than 5% of hash generators available
on the switch (shared between forwarding and P4air).
The RTT-estimation algorithm. First, we evaluated the ac-
curacy of the RTT estimation by varying the link delay and
external traffic. In all the scenarios without external traffic,
the difference between the configured and estimated RTT was
less than 0.52ms (≤ 1.5% of RTTconf , Fig. 7a). As this value
was nearly constant in our experiments, we conclude that this
overhead is the processing delay on both the servers and the
switch. Furthermore, as Fig. 7b illustrates, by processing the
new flows in a separate queue (as in P4air), the effect of
long-lived connections on the RTT accuracy is not significant.
Sensitivity. If the sensitivity of the Apply actions module (s)
is set too high, all flows are punished too aggressively and
the overall utilization drops significantly, reaching as little as
50%. In contrast, if s is set too low, aggressive flows are never
punished and the fairness will remain low (Fig. 7c).
Different actions. The action to change the receiver window
offered the biggest performance boost (Fig. 7e, Fig. 7d).

D. Inter- and Intra-Fairness: P4air vs. existing solutions

Effect of fingerprinting. Distributing flows to queues based
on their congestion control group significantly improves fair-
ness (Fig. 7f), especially when the number of flows increases
and their interactions become more detrimental. As Fig. 7j
illustrates, P4air (and Idle P4air) leverage the good intra-
fairness properties of most algorithms and flows, consequently,
rarely overpower each other, i.e. their throughput is clustered
around the ideal throughput. In contrast, by queuing flows
without taking into account their group (Different Queues),
two distinct clusters are present: (1) overpowered flows at
6 − 7% of the ideal throughput and (2) aggressive flows at
multiples of the ideal throughput.
Effect of the Apply actions module. Fingerprinting flows im-
proves fairness, but does not prevent queue buildup. However,
the Apply actions module targets the aggressive flows, forcing
them to back off and, consequently, lowers the increase in RTT
due to queuing (Fig. 7h). Furthermore, when the number of
flows per queue increases, the Apply actions module makes
sure that they remain fair to each other (Fig. 7e, 7f).

7

mLD HS-T
CP

STCP
HTCP

BIC Cub
ic

New
Ren

o

Hyb
la

YeA
H

Ill
ino

is

Ven
o

W
est

woo
d+

BBR
Veg

as
LoL

a

1 100 100 100 100 100 100 100 100 100 100 100 100 100 100

2 100 100 100 100 100 100 100 100 100 100 100 100 100 35

3 100 99 100 100 100 100 99 99 100 100 100 97 8 1

4 100 100 100 100 100 100 99 99 100 100 100 95 0 0

5 100 100 100 100 100 100 100 100 100 100 100 98 0 0

6 100 100 100 100 100 100 100 97 100 70 100 99 0 0

(a) Percentage of flows classified as belonging to the loss-delay group
depending on mLD .

mLD HS-T
CP

STCP
HTCP

BIC Cub
ic

New
Ren

o

Hyb
la

YeA
H

Ill
ino

is

Ven
o

W
est

woo
d+

BBR
Veg

as
LoL

a

1 5.8 5.8 5.8 6.0 5.8 6.0 4.7 5.8 5.8 5.8 5.9 5.8 5.7 9.9

2 7.2 7.2 7.2 7.2 19.0 7.2 9.0 7.2 7.2 7.3 7.2 7.3 7.2 62.1

3 14.2 20.5 16.9 16.7 16.6 18.4 15.8 36.1 182.7 128.1 121.8 19.7 7.8 21.0

4 15.5 23.3 19.2 19.5 17.3 38.7 17.8 37.7 192.5 135.3 123.9 22.3 - -
5 18.5 26.8 21.6 23.1 19.6 63.8 18.9 40.6 189.7 133.2 126.0 24.2 - -
6 20.4 28.9 23.4 44.5 19.6 96.3 19.4 61.5 199.0 134.7 133.8 25.9 - -

(b) Average RTT interval in which the flow was classified as belonging to
the loss-delay group depending on mLD .

mPL HS-T
CP

STCP
HTCP

BIC Cub
ic

New
Ren

o

Hyb
la

YeA
H

Ill
ino

is

Ven
o

W
est

woo
d+

BBR
Veg

as
LoL

a

6 100 100 100 100 100 100 100 93 96 33 100 100 0 0

8 100 100 100 100 100 90 100 55 60 0 89 33 0 0

10 100 100 100 100 100 87 89 36 38 0 34 0 0 0

12 99 100 100 80 100 30 100 0 0 0 0 0 0 0

14 100 100 100 37 100 0 100 0 0 0 0 0 0 0

16 100 100 100 0 100 0 100 0 0 0 0 0 0 0

18 100 92 100 0 100 0 100 0 0 0 0 0 0 0

(c) Percentage of flows classified as belonging to the purley loss-based group
depending on mPL.

mPL HS-T
CP

STCP
HTCP

BIC Cub
ic

New
Ren

o

Hyb
la

YeA
H

Ill
ino

is

Ven
o

W
est

woo
d+

BBR
Veg

as
LoL

a

6 29.7 42.4 27.8 26.8 51.5 159.4 21.2 197.4 324.4 265.1 136.9 32.0 - -
8 35.4 46.2 30.3 69.1 51.9 219.8 24.4 224.2 386.7 - 264.3 245.8 - -

10 41.1 56.4 33.3 168.8 55.5 261.5 56.1 351.0 377.4 - 300.4 - - -
12 60.3 75.4 52.0 257.9 60.5 296.7 25.3 - - - - - - -
14 163.1 105.3 59.5 329.3 63.5 0 41.6 - - - - - - -
16 163.9 149.7 66.4 0 64.9 0 49.7 - - - - - - -
18 250.9 189.7 122.2 0 71.9 0 49.9 - - - - - - -

(d) Average RTT interval in which the flow was classified as belonging to
the purely loss-based group depending on mPL.

mM HS-T
CP

STCP
HTCP

BIC Cub
ic

New
Ren

o

Hyb
la

YeA
H

Ill
ino

is

Ven
o

W
est

woo
d+

BBR
Veg

as
LoL

a

1 19 47 39 77 17 14 62 49 22 15 14 100 18 19

2 21 24 8 9 2 0 37 21 2 0 0 100 0 0

3 0 11 1 0 0 0 9 19 1 0 0 100 0 0

4 0 0 0 0 0 0 0 0 0 0 0 100 0 0

5 0 0 0 0 0 0 0 0 0 0 0 100 0 0

6 0 0 0 0 0 0 0 0 0 0 0 100 0 0

(e) Percentage of flows classified as belonging to the model-based group
depending on mM .

mM HS-T
CP

STCP
HTCP

BIC Cub
ic

New
Ren

o

Hyb
la

YeA
H

Ill
ino

is

Ven
o

W
est

woo
d+

BBR
Veg

as
LoL

a

1 22.3 11.4 25.2 9.5 19.9 10.0 11.9 11.2 74.3 10.4 10.2 18.1 10.2 6.7

2 51.3 15.4 31.8 106.8 29.0 - 30.4 13.2 244.5 - - 24.4 - -
3 - 17.0 - 28.0 - - 17.4 13.1 556.0 - - 40.1 - -
4 - - - - - - - - - - - 47.7 - -
5 - - - - - - - - - - - 58.2 - -
6 - - - - - - - - - - - 71.8 - -

(f) Average RTT interval in which the flow was classified as belonging to
the model-based group depending on mM .

Fig. 6: Tuning of the fingerprinting module (bmv2 switch). The algorithms that should be classified as such are shown in blue.
Misclassified algorithms are shown in red. Algorithms that use different metrics (model-based group) are shown in yellow.
Each scenario is run 10 times for 10 different RTTs ranging from 50ms to 150ms with a step of 10ms (100 in total).

Idle P4air vs. P4air. When a small number of flows compete
per queue (nflows < 128), the Fingerprinting and the Reallo-
cation modules are enough to achieve good fairness properties
(Fig. 7f). However, to reduce the queuing delay and to target a
higher number of flows, the Apply actions module is needed.

Utilization. As Fig. 7h illustrates, both versions of P4air were
able to maintain a high link utilization (≥ 91%), similarly to
the results achieved by the comparison baselines (Different
Queues and NoAQM).

Inter-Fairness. Both P4air versions were able to significantly
outperform the comparison baselines and realize a fair distribu-
tion of resources (Fig. 7f). Therefore, our results show that by
using more information about the flow, such as the group of the
congestion control algorithm, the switch can target the flow’s
specifics, thereby enabling a fairer distribution of resources.

E. RTT fairness: P4air vs. existing solutions

Effect of fingerprinting. While distributing flows to different
queues, Idle P4air does not take into account the flows’ RTT
(but only the group), causing the flows with different RTTs
to compete inside the same queue. However, in comparison to
Different Queues, the Reallocation module makes sure that
flows are more uniformly distributed between the queues.
Consequently, the fairness index is higher (Fig. 7g, 7k).

Effect of the Apply actions module. To increase the fairness,

the Apply actions module is needed, especially when the RTT
differences between the flows increase. As Fig. 7k illustrates,
P4air merges the two groups, the very aggressive flows at the
right side and the overpowered flows at the left side, into one.

Utilization. As a consequence of the Apply actions module,
i.e. the actions applied to the most aggressive flows, P4air
had the lowest utilization compared to all the other solutions
(although still ≥ 90%).

Large ∆RTT . P4air was able to maintain a high fairness
index, especially for lower ∆RTT values. However, as we
increased ∆RTT , the fairness index reduced, although it was
still higher than the comparison baselines.

V. DEPLOYMENT CONSIDERATIONS

While our evaluation demonstrates performance gains, es-
pecially in terms of fairness, a more extensive evaluation
in more complex scenarios (involving multiple switches) is
recommended. Furthermore, several limitations of the current
implementation, listed below, should be considered.

Weighted queuing algorithms. If an algorithm that supports
dynamic weights per queue is supported by the switch, flows
belonging to the same group can be assigned into one queue
with a weight set to the number of flows present, ensuring that
all groups get their fair share of resources, simplifying P4air
by making the queue reallocation algorithm obsolete.

8

25 50 75 100 125 150
0

0.2

0.4

0.6

0.8

1

RTTconf. [ms]

∆
R
T
T

[m
s
]

Tofino ([ms])

0.0

0.5

1.0

1.5

2.0

2.5

∆
R
T
T

[%
]Tofino ([%])

(a) Average error in the RTT estimation for different RTTs. Each scenario
is run 10 times.

1 2 4 6 8 10 12 14

103

104

105

106

5.7 5.9 5.8 5.7 5.7 5.8

13.1 12.8

5.1 5.4
6

7.3 7 7.1 7.1 7.2

Additional traffic [Gbps]

∆
R
T
T

[µ
s
] same queue different queue

(b) Average error in the RTT estimation for different levels of congestion.
Each scenario is run 10 times.

0.83 0.9
70

80

90

100 13 13
14

14

15

15

Jain’s index

U
til

iz
at

io
n

[%
]

(c) Sensitivity. Cubic is shown in red, Illinois in orange, and the value s
inside the circles. Each scenario is run 4 times.

∆RTT = 1ms ∆RTT = 10ms
Cubic Illinois BBR Vegas Cubic Illinois BBR Vegas

P4air 0.92 0.81 0.90 0.91 0.73 0.55 0.83 0.55

Idle P4Air 0.93 0.51 0.69 0.91 0.66 0.49 0.38 0.48

Diff. Queues 0.68 0.50 0.58 0.60 0.39 0.31 0.19 0.52

No AQM 0.88 0.35 0.24 0.88 0.34 0.32 0.18 0.49

(d) RTT Fairnes for 256 different flows running the same congestion control
algorithm for two different values of ∆RTT . Each scenario is run 4 times.

Cubic [%] 100 75 75 75 50 50 50 50 50 50 25 25 25 25 25 25 25 25 25 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Illinois [%] 0 25 0 0 50 0 0 25 25 0 0 0 75 50 0 25 50 25 0 25 100 0 0 75 75 0 25 25 0 50 50 0 50 25 25

BBR [%] 0 0 25 0 0 50 0 25 0 25 0 75 0 25 50 0 0 50 25 25 0 100 0 0 25 75 75 0 25 50 0 50 25 50 25
Vegas [%] 0 0 0 25 0 0 50 0 25 25 75 0 0 0 25 50 25 0 50 25 0 0 100 25 0 25 0 75 75 0 50 50 25 25 50

P4Air 0.92 0.89 0.93 0.92 0.89 0.94 0.92 0.90 0.89 0.91 0.89 0.96 0.88 0.86 0.92 0.89 0.87 0.90 0.89 0.88 0.87 1.00 0.94 0.84 0.87 0.96 0.93 0.86 0.88 0.86 0.88 0.77 0.88 0.89 0.87

Idle P4Air 0.91 0.75 0.82 0.93 0.61 0.92 0.76 0.78 0.75 0.69 0.55 0.68 0.95 0.63 0.58 0.76 0.64 0.78 0.75 0.69 0.48 0.69 0.94 0.55 0.53 0.71 0.59 0.76 0.81 0.76 0.57 0.64 0.60 0.70 0.62

Diff. Queues 0.85 0.42 0.23 0.89 0.40 0.83 0.38 0.22 0.43 0.28 0.43 0.55 0.87 0.40 0.26 0.38 0.43 0.22 0.49 0.24 0.49 0.74 0.91 0.46 0.26 0.59 0.58 0.38 0.25 0.36 0.41 0.39 0.24 0.21 0.36

No AQM 0.94 0.29 0.19 0.94 0.32 0.95 0.20 0.18 0.43 0.18 0.34 0.22 0.95 0.29 0.17 0.17 0.19 0.15 0.60 0.18 0.39 0.16 0.96 0.32 0.17 0.18 0.22 0.39 0.18 0.19 0.17 0.31 0.19 0.15 0.18

(e) Average inter- and intra- fairness for 128 flows. The share of flows per group is varied between 0% and 100% with a step of 25%. Each ratio is run 4
times.

4 8 16 32 64 128 256
0.004

0.498

1.000

nflows (num of flows)

Ja
in

’s
in

de
x

P4Air Idle P4Air Diff. Queues No AQM

(f) Average Inter- and intra- fairness. The share of flows per group was varied
between 0% and 100% with a step of 25% (as in Fig. 7e). All flows had
the same RTT. For each nflows, each combination (35 different) is run 4
times (140 in total). Theoretical minimum is shown as a dashed black line.

0 1 3 5 7 10
0.031

0.484

1.000

∆RTT

Ja
in

’s
in

de
x

P4Air Idle P4Air Diff. Queues No AQM

(g) Average RTT Fairness for 256 different flows. Each link delay was
configured to a multiple of ∆RTT . All flows used the same congestion
control algorithm (one of the four groups, as in Fig. 7d). For each ∆RTT ,
each group (4 different) is run 4 times (16 in total).

1 1.2 1.4 1.6 1.8 2 2.2 2.4
90

92

94

96

98

100

RTT - RTTconf [ms]

U
til

iz
at

io
n

[%
]

P4Air Idle P4Air Diff. Queues No AQM

(h) Average delay vs. average utilization for scenarios shown in Fig. 7e.
Ideal operating point (0, 100%).

1 1.2 1.4 1.6 1.8 2 2.2 2.4
90

92

94

96

98

100

RTT - RTTconf [ms]

U
til

iz
at

io
n

[%
]

P4Air Idle P4Air Diff. Queues No AQM

(i) Average delay vs. average utilization for scenarios shown in Fig. 7d. Ideal
operating point is (0, 100%).

0 1 2 3 4 5 6 7
0

2

4

Throughput / Ideal Throughput

R
T

T
-

R
T

T
c
o
n
f

[m
s
] P4Air Idle P4Air Diff. Queues No AQM

(j) Average RTT vs. throughput per flow for a scenario with 128 flows,
with each group having 25% of the flows (zoomed-in version of one of the
scenarios shown in Fig. 7e). Ideal operating point is (1, 0).

0 1 2 3 4 5 6 7
0

2

4

Throughput / Ideal Throughput

R
T

T
-

R
T

T
c
o
n
f

[m
s
] P4Air Idle P4Air Diff. Queues No AQM

(k) Average RTT vs. throughput per flow for a scenario with 256 BBR flows
with ∆RTT = 1ms (zoomed-in version of one of the scenarios shown in
Fig. 7d). Ideal operating point is (1, 0).

Fig. 7: Evaluation of the P4air algorithm on a Barefoot Tofino switch.

9

RTT-estimation algorithm. In our current implementation,
to ensure an accurate RTT estimate, packets involved in the
3-way handshake should not be delayed at any other switch
in the network, nor should the connection’s RTT change.
An inaccurate RTT estimate has the biggest effect on the
sensitivity of the Apply actions module, as actions on flows
with an overestimated RTT are applied later, allowing them to
claim more bandwidth. Consequently, P4air’s fairness prop-
erties might decrease, but should remain as high as those of
Idle P4air. There are three possible solutions to this problem:
(1) the RTT-estimation algorithm can be extended to make
use of the other switches (or at least all the bottlenecks) in
the path to periodically summarize the total queuing delay
(similar to [31]); (2) the RTT algorithm can be replaced with
the one presented in [9]; (3) the Apply actions module could be
modified to avoid the metrics that depend on the RTT estimate
(e.g., queuing delay instead of BDP).

Queue-assignment imbalance. In the current implementation,
we assume that flows complete uniformly across all queues.
Otherwise, an imbalance in the queue assignment might occur,
leading to more flows competing inside the same queue and
receiving a lower share of the resources. To remove this
assumption, P4air can be modified to keep track of the number
of flows processed by each queue, as well as the identifiers of
the queues (per group) having ≤ fpq flows. This way, by sacri-
ficing more memory (nqueueslog2(nflows) + 4log2(nqueues)),
we can make sure that all queues process a similar amount
of flows by enqueuing new flows into the saved queue (with
≤ fpq flows). Note that such an imbalance is also possible
with all AQMs, which usually assign flows to queues based
on the hash of a flow identifier.

Traffic shaping mechanisms & Multiple bottlenecks. Traffic
shaping mechanisms (e.g., other AQMs, P4air) deployed at
other switches on the path and/or the presence of multiple bot-
tlenecks might impact the patterns tracked by P4air and lead
to misclassification. As (some) flows are shaped already and
thus perform fair, this may not be an issue (or they could form
a separate “marked” group). Nonetheless, a more extensive
evaluation of the impact of different shaping mechanisms and
multiple bottlenecks on the fingerprinting accuracy is needed.

P4air placement in complex topologies. With only a few
strategically placed P4air switches, overall network behavior
might benefit greatly. Developing a placement algorithm to
determine the locations and amount of P4air switches in
complex topologies has been beyond the scope of this work,
but is important to consider when implementing P4air.

VI. RELATED WORK

Many AQM algorithms (RED [22], ARED [21], SRED [46],
FRED [35], REM [3], CHOKe [49], BLUE [17], AVQ [32],
AN-AQM [57], DC-AQM [52], CoDel [45], PIE [48],
SFB [17], SBQ) [34], SFQRED [16], FQ CODEL [26]) were
designed to detect and overcome static queues, reducing the
queuing delay in the process. Classic AQMs, like RED,
probabilistically drop packets based on the average number

of packets inside a queue. However, studies have shown that
their optimal configurations vary depending on parameters,
such as capacity and number of flows, which causes network
instabilities and traffic disruptions [18], [19], [35], [38].

Newer AQMs, like CoDel and PIE, were designed to
overcome these issues and are, consequently, easier to manage
and configure [45]. Moreover, when combined with scheduling
algorithms providing isolation, such as FQ, they ensure high
fairness at a wide range of bandwidths and flows. However,
as a reaction to queue build-up, they can only drop a packet.
Hence, they (1) cannot target newer congestion control algo-
rithms that do not use loss as a metric, (2) lead to (potentially
unnecessary) retransmissions, (3) usually require many queues,
which are scare resources in hardware switches, and (4) do not
take advantage of the inherently good intra-fairness properties
that most congestion control algorithms have.

In contrast, solutions such as Virtualized Congestion Control
create a translation layer in a hypervisor, enabling an easy up-
grade of legacy algorithms and offering a data-center operator
the ability to implement a single fair algorithm [11]. However,
multiple issues might occur: (1) tenants might expect more
isolation, (2) it is unusable in cases when flows are originating
from multiple data-centers (using different “fair” algorithms),
and (3) the solution can only implement certain TCP flavors by
violating the TCP end-to-end semantics (i.e., acknowledging
the packets not yet received).

VII. CONCLUSION & FUTURE WORK

In this paper, we first developed a fingerprinting algorithm
that harnesses the power of programmable data-planes to
detect the congestion control algorithms used by flows. By
instructing the bottleneck switch to track very simple metrics,
such as queuing delay and sending rate, our algorithm is able
to track the way the flows react to specific events (e.g., queue
buildup), allowing it to classify the flows into one of the
delay-, loss-, delay-loss, and model-based groups. Second, we
used this knowledge, and the fact that most algorithms have
very good intra-fairness properties, to enqueue flows using
similar algorithms into the same queue. Third, for each of
these groups, we developed custom actions, able to target their
specifics, which we used to punish the most aggressive flows.
P4air incorporates the aforementioned three elements, thereby
enabling a switch to target each flow specifically and ensure
a fair distribution of resources among all flows in the process.
Future directions. As future work, we plan to investigate (1)
if the queue reallocation algorithm can be extended to take
into account the flows’ RTTs, to improve the RTT fairness for
very large ∆RTT, (2) the placement of multiple P4air switches
in a network, (3) the influence of other AQMs or traffic
shaping mechanisms on the Fingerprinting module, and (4)
the possibilities of real-time inference for the Fingerprinting
module (e.g. [4]). Furthermore, we plan to add support for
newer congestion control protocols (e.g., PCC [13], PCC-
Vivace [14], Remy [65], Tao [55], and Sprout [66]), as
well as Coupled, a.k.a. multipath, algorithms (e.g., LIA [51],
OLIA [30], BALIA [63], and WVegas [67]).

10

REFERENCES

[1] ARASHLOO, M. T., GHOBADI, M., REXFORD, J., AND WALKER, D.
Hotcocoa: Hardware congestion control abstractions. In Proceedings of
the 16th ACM Workshop on Hot Topics in Networks (2017), pp. 108–
114.

[2] ARASHLOO, M. T., LAVROV, A., GHOBADI, M., REXFORD, J.,
WALKER, D., AND WENTZLAFF, D. Enabling programmable transport
protocols in high-speed nics. In 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20) (2020),
pp. 93–109.

[3] ATHURALIYA, S., LOW, S. H., LI, V. H., AND YIN, Q. Rem: Active
queue management. IEEE network 15, 3 (2001), 48–53.

[4] BUSSE-GRAWITZ, C., MEIER, R., DIETMÜLLER, A., BÜHLER, T.,
AND VANBEVER, L. pforest: In-network inference with random forests.
arXiv preprint arXiv:1909.05680 (2019).

[5] CAINI, C., AND FIRRINCIELI, R. TCP Hybla: a TCP enhancement for
heterogeneous networks. International journal of satellite communica-
tions and networking 22, 5 (2004), 547–566.

[6] CAO, Y., JAIN, A., SHARMA, K., BALASUBRAMANIAN, A., AND
GANDHI, A. When to use and when not to use bbr: An empirical anal-
ysis and evaluation study. In Proceedings of the Internet Measurement
Conference (2019), pp. 130–136.

[7] CARDWELL, N., CHENG, Y., GUNN, C. S., YEGANEH, S. H., AND
JACOBSON, V. Bbr: Congestion-based congestion control. Queue 14, 5
(2016), 20–53.

[8] CARDWELL, N., CHENG, Y., YEGANEH, S. H., AND JACOBSON, V.
BBR congestion control. Working Draft, IETF Secretariat, Internet-
Draft draft-card-well-iccrg-bbr-congestion-control-00 (2017).

[9] CHEN, X., KIM, H., AMAN, J. M., CHANG, W., LEE, M., AND
REXFORD, J. Measuring tcp round-trip time in the data plane. In
Proceedings of the Workshop on Secure Programmable Network Infras-
tructure (2020), pp. 35–41.

[10] COMMUNITY, T. B. Feature Rich Flow Monitoring with.
P4. Available at https://www.netronome.com/media/documents/
WBN-2017-11-1-Penn-Feature-Rich-Flow-Monitoring-OpenNFP\ .
pdf.

[11] CRONKITE-RATCLIFF, B., BERGMAN, A., VARGAFTIK, S., RAVI, M.,
MCKEOWN, N., ABRAHAM, I., AND KESLASSY, I. Virtualized conges-
tion control. In Proceedings of the 2016 ACM SIGCOMM Conference
(2016), pp. 230–243.

[12] DE CONINCK, Q., MICHEL, F., PIRAUX, M., ROCHET, F., GIVEN-
WILSON, T., LEGAY, A., PEREIRA, O., AND BONAVENTURE, O.
Pluginizing quic. In Proceedings of the ACM Special Interest Group
on Data Communication (New York, NY, USA, 2019), SIGCOMM ’19,
Association for Computing Machinery, p. 5974.

[13] DONG, M., LI, Q., ZARCHY, D., GODFREY, P. B., AND SCHAPIRA,
M. {PCC}: Re-architecting congestion control for consistent high
performance. In 12th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 15) (2015), pp. 395–408.

[14] DONG, M., MENG, T., ZARCHY, D., ARSLAN, E., GILAD, Y., GOD-
FREY, B., AND SCHAPIRA, M. {PCC} vivace: Online-learning con-
gestion control. In 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18) (2018), pp. 343–356.

[15] DOOLEY, K., AND BROWN, I. Cisco IOS cookbook: Field-tested
solutions to Cisco router problems. ” O’Reilly Media, Inc.”, 2006.

[16] DUMAZET, E. net sched: sfq: Optional RED on top of SFQ. https:
//www.spinics.net/lists/netdev/msg185147.html, 2012. [Online; accessed
15-August-2019].

[17] FENG, W.-C., KANDLUR, D., SAHA, D., AND SHIN, K. Blue: A new
class of active queue management algorithms. Tech. rep., Technical
Report CSE-TR-387-99, University of Michigan, 1999.

[18] FENG, W.-C., KANDLUR, D. D., SAHA, D., AND SHIN, K. G. A
self-configuring red gateway. In IEEE INFOCOM’99. Conference
on Computer Communications. Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. The
Future is Now (Cat. No. 99CH36320) (1999), vol. 3, IEEE, pp. 1320–
1328.

[19] FIROIU, V., AND BORDEN, M. A study of active queue manage-
ment for congestion control. In Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat.
No. 00CH37064) (2000), vol. 3, IEEE, pp. 1435–1444.

[20] FLACH, T., DUKKIPATI, N., TERZIS, A., RAGHAVAN, B., CARDWELL,
N., CHENG, Y., JAIN, A., HAO, S., KATZ-BASSETT, E., AND GOVIN-
DAN, R. Reducing web latency: the virtue of gentle aggression. In ACM
SIGCOMM Computer Communication Review (2013), vol. 43, ACM,
pp. 159–170.

[21] FLOYD, S., GUMMADI, R., SHENKER, S., ET AL. Adaptive red: An al-
gorithm for increasing the robustness of reds active queue management,
2001.

[22] FLOYD, S., AND JACOBSON, V. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on networking, 4 (1993),
397–413.

[23] HA, S., RHEE, I., AND XU, L. Cubic: a new tcp-friendly high-speed tcp
variant. ACM SIGOPS operating systems review 42, 5 (2008), 64–74.

[24] HASEGAWA, G., KURATA, K., AND MURATA, M. Analysis and
improvement of fairness between tcp reno and vegas for deployment of
tcp vegas to the internet. In Proceedings 2000 International Conference
on Network Protocols (2000), IEEE, pp. 177–186.

[25] HOCK, M., NEUMEISTER, F., ZITTERBART, M., AND BLESS, R. TCP
LoLa: Congestion Control for Low Latencies and High Throughput.
In 2017 IEEE 42nd Conference on Local Computer Networks (LCN)
(2017), pp. 215–218.

[26] HOEILAND-JOERGENSEN, T., MCKENNEY, P., TAHT, D., GETTYS,
J., AND DUMAZET, E. The flow queue codel packet scheduler and
active queue management algorithm. RFC8290 [Online]. Available:
https://tools. ietf. org/html/rfc8290 (2018).

[27] JAIN, R. K., CHIU, D.-M. W., AND HAWE, W. R. A Quantitative
Measure of Fairness and Discrimination. Eastern Research Laboratory,
Digital Equipment Corporation, Hudson, MA (1984).

[28] JÄRVINEN, I., AND KOJO, M. Evaluating codel, pie, and hred aqm
techniques with load transients. In 39th Annual IEEE Conference on
Local Computer Networks (2014), IEEE, pp. 159–167.

[29] JIANG, J., AND ZHANG, Y. An accurate congestion control mechanism
in programmable network. In 2019 IEEE 9th Annual Computing
and Communication Workshop and Conference (CCWC) (2019), IEEE,
pp. 0673–0677.

[30] KHALILI, R., GAST, N., POPOVIC, M., AND YVES LE BOUDEC, J.
Opportunistic linked-increases congestion control algorithm for mptcp,
2013.

[31] KIM, C., BHIDE, P., DOE, E., HOLBROOK, H., GHANWANI, A., DALY,
D., HIRA, M., AND DAVIE, B. Inband network telemetry (int). http:
//.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf, June 2016.

[32] KUNNIYUR, S. S., AND SRIKANT, R. An adaptive virtual queue (avq)
algorithm for active queue management. IEEE/ACM Transactions on
Networking (ToN) 12, 2 (2004), 286–299.

[33] LANGLEY, A., RIDDOCH, A., WILK, A., VICENTE, A., KRASIC,
C., ZHANG, D., YANG, F., KOURANOV, F., SWETT, I., IYENGAR,
J., ET AL. The quic transport protocol: Design and internet-scale
deployment. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (2017), pp. 183–196.

[34] LI, M., AND WANG, H. Study of active queue management
algorithms—-towards stabilize and high link utilization.

[35] LIN, D., AND MORRIS, R. Dynamics of random early detection.
SIGCOMM Comput. Commun. Rev. 27, 4 (Oct. 1997), 127137.

[36] LIN, J., CUI, L., ZHANG, Y., TSO, F. P., AND GUAN, Q. Extensive
evaluation on the performance and behaviour of tcp congestion control
protocols under varied network scenarios. Computer Networks 163 (Nov
2019), 106872.

[37] LIU, S., BAŞAR, T., AND SRIKANT, R. TCP-Illinois: A loss-and delay-
based congestion control algorithm for high-speed networks. Perfor-
mance Evaluation 65, 6-7 (2008), 417–440.

[38] LOW, S. H., PAGANINI, F., AND DOYLE, J. C. Internet congestion
control. IEEE control systems magazine 22, 1 (2002), 28–43.

[39] MA, S., JIANG, J., WANG, W., AND LI, B. Fairness of congestion-
based congestion control: Experimental evaluation and analysis. arXiv
preprint arXiv:1706.09115 (2017).

[40] MA, S., JIANG, J., WANG, W., AND LI, B. Towards rtt fairness of
congestion-based congestion control. CoRR (2017).

[41] MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM, E., WASSEL, H.,
GHOBADI, M., VAHDAT, A., WANG, Y., WETHERALL, D., AND ZATS,
D. TIMELY: RTT-based Congestion Control for the Datacenter, 2015.

[42] MITTAL, R., SHERRY, J., RATNASAMY, S., AND SHENKER, S. Recur-
sively cautious congestion control. In 11th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 14) (2014),
pp. 373–385.

11

[43] MONTENEGRO, G., AND HAVEY, D. Top 10 net-
working features in windows server 2019. https:
//techcommunity.microsoft.com/t5/networking-blog/
top-10-networking-features-in-windows-server-2019-8-a-faster/ba-p/
339749. Accessed: 23-3-2020.

[44] NARAYAN, A., CANGIALOSI, F., GOYAL, P., NARAYANA, S., AL-
IZADEH, M., AND BALAKRISHNAN, H. The case for moving congestion
control out of the datapath. In Proceedings of the 16th ACM Workshop
on Hot Topics in Networks (2017), ACM, pp. 101–107.

[45] NICHOLS, K., AND JACOBSON, V. Controlling queue delay. Queue 10,
5 (2012), 20.

[46] OTT, T. J., LAKSHMAN, T., AND WONG, L. H. Sred: stabilized
red. In IEEE INFOCOM’99. Conference on Computer Communica-
tions. Proceedings. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. The Future is Now (Cat. No.
99CH36320) (1999), vol. 3, IEEE, pp. 1346–1355.

[47] P4 behavioral model. https://github.com/p4lang/behavioral-model. [On-
line; accessed 01-April-2020].

[48] PAN, R., NATARAJAN, P., PIGLIONE, C., PRABHU, M. S., SUBRA-
MANIAN, V., BAKER, F., AND VERSTEEG, B. Pie: A lightweight
control scheme to address the bufferbloat problem. In 2013 IEEE 14th
International Conference on High Performance Switching and Routing
(HPSR) (2013), IEEE, pp. 148–155.

[49] PAN, R., PRABHAKAR, B., AND PSOUNIS, K. Choke-a stateless
active queue management scheme for approximating fair bandwidth
allocation. In Proceedings IEEE INFOCOM 2000. Conference on
Computer Communications. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies (Cat. No. 00CH37064)
(2000), vol. 2, IEEE, pp. 942–951.

[50] POSTEL, J., GARLICK, L., AND ROM, R. Transmission control protocol
specification. DARPA Internet Request for Comments 793 (1981).

[51] RAICIU, C., HANDLEY, M., AND WISCHIK, D. Coupled congestion
control for multipath transport protocols. Tech. rep., IETF RFC 6356,
Oct, 2011.

[52] REN, F., LIN, C., AND WEI, B. A robust active queue management
algorithm in large delay networks. Computer communications 28, 5
(2005), 485–493.

[53] SCHOLZ, D., JAEGER, B., SCHWAIGHOFER, L., RAUMER, D., GEYER,
F., AND CARLE, G. Towards a deeper understanding of tcp bbr conges-
tion control. In 2018 IFIP Networking Conference (IFIP Networking)
and Workshops (2018), IEEE, pp. 1–9.

[54] SCHWARZKOPF, F., VEITH, S., AND MENTH, M. Performance analysis
of codel and pie for saturated tcp sources. In 2016 28th International
Teletraffic Congress (ITC 28) (2016), vol. 1, IEEE, pp. 175–183.

[55] SIVARAMAN, A., WINSTEIN, K., THAKER, P., AND BALAKRISHNAN,
H. An experimental study of the learnability of congestion control. ACM
SIGCOMM Computer Communication Review 44, 4 (2014), 479–490.

[56] SRIJITH, K., JACOB, L., AND ANANDA, A. L. Tcp vegas-a: Improving
the performance of tcp vegas. Computer communications 28, 4 (2005),
429–440.

[57] SUN, J., AND ZUKERMAN, M. An adaptive neuron aqm for a stable
internet. In International conference on research in networking (2007),
Springer, pp. 844–854.

[58] Tofino: World’s fastest P4-programmable Ethernet switch ASICs. https:
//barefootnetworks.com/products/brief-tofino/. [Online; accessed 16-
January-2020].

[59] TURKOVIC, B., KUIPERS, F., VAN ADRICHEM, N., AND LANGEN-
DOEN, K. Fast network congestion detection and avoidance using p4.
In Proceedings of the 2018 Workshop on Networking for Emerging
Applications and Technologies (2018), ACM, pp. 45–51.

[60] TURKOVIC, B., KUIPERS, F. A., AND UHLIG, S. Fifty Shades of
Congestion Control: A Performance and Interactions Evaluation. ArXiv
(March 2019).

[61] TURKOVIC, B., KUIPERS, F. A., AND UHLIG, S. Interactions between
congestion control algorithms. In 2019 Network Traffic Measurement
and Analysis Conference (TMA) (2019), IEEE, pp. 161–168.

[62] VIERNICKEL, T., FROEMMGEN, A., RIZK, A., KOLDEHOFE, B., AND
STEINMETZ, R. Multipath quic: A deployable multipath transport
protocol. In 2018 IEEE International Conference on Communications
(ICC) (2018), pp. 1–7.

[63] WALID, A., PENG, Q., HWANG, J., AND LOW, S. Balanced linked
adaptation congestion control algorithm for mptcp. Working Draft,
IETF Secretariat, Internet-Draft draft-walid-mptcp-congestion-control-
04 (2016).

[64] WHITE, G., AND RICE, D. Active queue management in docsis 3. x
cable modems. Technical report, CableLabs (2014).

[65] WINSTEIN, K., AND BALAKRISHNAN, H. Tcp ex machina: Computer-
generated congestion control. ACM SIGCOMM Computer Communica-
tion Review 43, 4 (2013), 123–134.

[66] WINSTEIN, K., SIVARAMAN, A., AND BALAKRISHNAN, H. Stochastic
forecasts achieve high throughput and low delay over cellular networks.
In Presented as part of the 10th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 13) (2013), pp. 459–471.

[67] XU, M., CAO, Y., AND DONG, E. Delay-based congestion control for
mptcp. IETF, work in progress, Internet-draft draft-xu-mptcpcongestion-
control-01 (2015).

[68] YAMANAKA, N. High-Performance Backbone Network Technology.
CRC Press, 2004.

12

