
Runtime Control of LoRa Spreading Factor for
Campus Shuttle Monitoring

Di Mu, Yitian Chen, Junyang Shi, Mo Sha
Department of Computer Science

State University of New York at Binghamton
{dmu1, cyitian1, jshi28, msha}@binghamton.edu

Abstract—Traditionally, satellite and cellular technologies have
been used in establishing the long-distance links that collect real-
time data from running vehicles to the base station. However, the
systems that implement those technologies are often too costly for
use in small communities, such as monitoring shuttles that circle
a university campus. Recently, LoRa has been used as a low-
cost alternative that provides the capability of long-range data
collection for low data rate applications. In this paper, we present
a low-cost LoRa-based wireless network that collects real-time
data from six shuttles circling our university campus and has
operated in the real world for more than a year. The selection
of the LoRa Spreading Factor (SF) poses a significant challenge
because of its effects on two conflicting network performance
metrics. A larger SF provides higher network reliability at
the cost of lower throughput. To address this challenge, we
develop a runtime SF control solution that employs the K-Nearest
Neighbors (KNN) algorithm to adapt the SF configuration based
on the current link condition. Experimental results show that our
approach significantly increases the data collection throughput
while meeting the application reliability requirement compared
to the state of the art.

Index Terms—LoRa, Spreading Factor Control, K-Nearest
Neighbors, Quality of Service, Campus Shuttle Monitoring

I. INTRODUCTION

Satellite and cellular technologies are traditionally used to
collect real-time data from running vehicles to the base station
through their long-distance links. For instance, LTE-based
communication systems have been integrated into the urban
transit systems [1], [2], while satellite links have been used to
support communication among emergency vehicles [3]. How-
ever, such systems are often costly because they use expensive
devices and licensed frequency bands, which prevents them
from being used in many applications. As an emerging Low-
Power Wide-Area Network (LPWAN) technology, LoRa is a
low-cost alternative that can support long-range data collection
for low data rate applications [4], [5]. For a small service
area, such as a university campus, LoRa offers a cost-effective
communication solution because one or a few base stations are
enough to cover the area and battery-powered LoRa modules
can inexpensively retrofit existing devices.

In this paper, we introduce the ShuttleNet, a LoRa-based
wireless networking solution that collects real-time data from
shuttles that circle a university campus using a fixed route.
Multiple types of data, such as vehicle speed, the vehicle’s
operating condition, and the number of passengers, are col-

lected to enhance the safety and efficiency of shuttle service
and improve rider experience. For instance, the vehicle speed
information is used to estimate the expected time of arrival
(ETA) at each shuttle stop. The number of passengers is used
to monitor the transit demand, which allows more shuttles to
be dispatched when needed. Warnings or alarms are gener-
ated if the vehicle’s operating condition degrades. The data
needed to be collected falls into one of two categories: time-
critical and non-time-critical. The time-critical data, such as
the current vehicle speed and the number of passengers, needs
to be collected in real time with high reliability because the
data may become useless if it fails to be delivered in time.
The non-time-critical data, such as the data reflecting the
vehicle’s operating condition (e.g., accelerating and braking
performance), can be delayed because the operating condition
of a vehicle does not change very frequently. Similar to the
tradeoff between network reliability and throughput in cellular
networks [6], the tradeoff also exists in LoRa networks, which
results in a significant challenge on the selection of the LoRa
Spreading Factor (SF). A larger SF provides higher reliability
at the cost of lower throughput and vice versa. The fluctuations
of low-power LoRa link quality resulting from the mobility of
vehicles significantly amplify the challenge. Therefore, there
exists a critical need for a new solution that makes good
tradeoffs between network reliability and throughput for LoRa-
based mobile wireless networks.

In this paper, we present a low-cost LoRa-based networking
solution that employs a novel runtime SF control solution
to maximize the data collection throughput from running
vehicles while meeting the reliability requirement specified by
the application. Specifically, this paper makes the following
contributions:

• This paper presents a low-cost LoRa-based wireless net-
working solution that collects real-time data from six
shuttles circling our university campus;

• To our knowledge, this is the first paper to investigate
the SF selection for LoRa devices installed on running
vehicles, distinguished from previous work designed for
stationary devices. The study has been performed in the
real world for more than a year;

• This paper provides a practical runtime LoRa SF control
solution that employs the K-Nearest Neighbors (KNN)
algorithm and meets network performance requirements978-1-7281-6992-7/20/$31.00 ©2020 IEEE

with small computation overhead;
• Our experimental results show that our runtime LoRa SF

control solution significantly outperforms the state-of-the-
art methods.

The remainder of the paper is organized as below. Section II
introduces the background of LoRa. Section III presents our
design of ShuttleNet. Section IV describes our empirical study
of LoRa SF configurations. Section V presents the design of
our runtime SF control solution, and Section VI compares its
performance against three baselines. Section VII reviews the
related work. Section VIII concludes the paper.

II. BACKGROUND

Recently, LoRa has emerged as a popular LPWAN technol-
ogy that provides long-range communication. LoRa employs
the Chirp Spread Spectrum (CSS) modulation, where a LoRa
signal, namely a chirp, increases or decreases its operating
frequency linearly through time and circularly sweeps through
its predefined frequency band. The time duration of transmit-
ting a chirp depends on the selections of the LoRa physical-
layer parameters: SF and Bandwidth (BW). The reliability of
a LoRa link is measured by the Packet Delivery Ratio (PDR),
which depends on the Signal-to-Noise Ratio (SNR) and the
Received Signal Strength (RSS) at the receiver. A larger SF
allows the receiver to receive a packet with a lower RSS by
exponentially expanding the duration of each chirp, which
results in a lower data rate. A chirp that uses the SF value of
x can represent x bits of data and takes the time duration of
2x/BW to be transmitted [7]. With a fixed BW , the data rate
of a chirp is proportional to (x · 2−x), which decreases nearly
exponentially with x. There are six SF configurations available
in the sub-GHz ISM bands (from SF7 to SF12). The data
rates under SF8 to SF12 are 57.1%, 32.1%, 17.9%, 9.8%,
and 5.4% of the one under SF7, respectively. The selection
of SF decides the data rate and communication range of a
LoRa link. The LoRa signal that carries a packet consists of a
series of chirps, where the preamble chirps are followed by the
data chirps. The preamble chirps are used by the receiver to
identify the start of a LoRa packet. The data chirps contain up
to 255 bytes including the packet header and payload sections.
Both sections end with a Cyclic Redundancy Check (CRC)
code to verify the integrity of the received data. The payload
section contains the data bits with some inserted Hamming
Code redundant bits for error correction. The Coding Rate
(CR) of Hamming Code (e.g., “4/5”) is defined as a fraction
in which the numerator is the number of data bits and the
denominator is the total number of data bits and redundant
bit(s). The CR setting of a packet is stored in its header.

LoRaWAN is a Media Access Control (MAC) layer protocol
designed for LoRa and defines three classes: Class A (by
default), Class B, and Class C. The Class A communication
frame is initiated by an end device and consists of an uplink
window (time slot) followed by two downlink windows. To
send data, the end device initiates an uplink window, selects
a random channel, and transmits in pure ALOHA mode [8].
The first downlink window operates on the same channel

Fig. 1: Campus shuttle route.

as the last uplink window and the second downlink window
operates on a predefined channel [9]. Classes B and C allow
downlink data to be received in a timely fashion by increasing
the time that end devices listen to the channel. Class B uses
periodic beacons broadcasted by the base station to open extra
downlink windows at end devices while Class C keeps end
devices listening at all times. In many cases, the communi-
cation frames defined in LoRaWAN cannot provide optimal
performance, such as when an application only requires end
devices to upload data, leaving the downlink windows unused.
Moreover, theoretically speaking, the maximum throughput
that pure ALOHA can provide is only 18.4% of the channel
capacity [10], which limits the throughput performance of
LoRaWAN. To overcome the limitations, we design new time
frame and channel assignment methods for ShuttleNet (see
Section III-C). LoRaWAN specifies the Adaptive Data Rate
(ADR) algorithm that selects SF based on the link quality
measured on an end device [11]. Specifically, ADR first
estimates the link quality using the maximum SNR values
measured in the last 20 samples and then selects the SF based
on the required SNR level for each SF [12]. Similar to the
Class A frame, the ADR process is initiated by a request from
an end device followed by a response from the base station
with a new SF. If the response is not received by the end device
before it times out, the end device increases the SF because
the link is disconnected under the current SF. When an ADR
request is received, the base station reduces the current SF to
the most appropriate level if the estimated SNR is greater than
the required SNR plus a safety margin. ADR is designed for
stationary devices and does not work well on mobile devices
(see Section IV), which motivates us to design a new runtime
SF control solution for ShuttleNet.

III. SHUTTLENET

In this section, we first present our hardware deployment
and software architecture of ShuttleNet and then introduce our
time frame and channel assignment designs.

(a) LoRa base station installed on a roof. (b) LoRa end device installed on a shuttle.

Fig. 2: Hardware deployment of ShuttleNet at the State University of New York (SUNY) at Binghamton.

TABLE I: Price List of Hardware Components

Device Name Price
(USD)

End De-
vice

Base
Station

Raspberry Pi 3 35 √ √

RN2903 Module 13 √

RPi Connection Bridge 8 √

iC980A Module 130 √

Power Adapter 5 √ √

Total (USD) 536 61 × 6 170

A. Hardware Deployment

ShuttleNet is designed to collect data from six shuttles
that circle our university campus (a 1280m × 990m area)
with a fixed route. Figure 1 shows the route. The distance
between a shuttle and our LoRa base station can be up to
860 meters. Figure 2 shows our hardware deployment. The
LoRa base station is placed in a weatherproof box on the roof
of a three-floor building (Figure 2a) and a LoRa end device
is installed in the glove compartment above the driver seat
on each of six shuttles (Figure 2b). The LoRa base station
and end devices are built by integrating commercial off-the-
shelf (COTS) devices. The LoRa base station is an embedded
computer (i.e., Raspberry Pi 3 Model B) integrated with
an iC980A module provided by IMST, while the LoRa end
device is a Raspberry Pi computer integrated with an RN2903
module operating in the 900/915 MHz band [13]. The iC980A
module is the enhanced version of iC880A [14] operating in
the 900/915 MHz band. We use iC980A to build our LoRa
base station because it is capable of receiving packets from
multiple end devices that use different SF configurations and
up to eight channels in parallel. To maximize throughput, we
configure different LoRa end devices to use distinct channels.
The RN2903 module can only operate on a single channel in
either transmitter or receiver mode at each time. Our goal
is to provide a low-cost networking solution; thus we use
the RN2903 module to build the LoRa end device. Table I
summarizes the costs of our devices. Please note that LoRa
operates in the free, unlicensed band. The total hardware cost
of ShuttleNet is $536.

Data
Buffer

TXRX

Application

LoRa Physical Layer

SF Selection
Engine

CH,
SF

LoRa Link

ShuttleNet Base Station ShuttleNet End Device

NM Packet
Generator

Packet
Collector

Transmission
Scheduler

Channel
Assignment

RSS,
SNR

Collected
Data

Reliability
Requirement

LoRa Physical Layer

Transmission
Controller

Command
Interpreter

Application

Time-Critical
Data

Non-Time-
Critical Data

TXRX

Payload

SF
HQ LQ

Fig. 3: Software architecture of ShuttleNet.

B. Software Architecture

Figure 3 plots the software architecture of ShuttleNet.
On the LoRa base station, the Packet Collector forwards
the received packets from the LoRa physical layer to the
application and collects the link characteristics including RSS
and SNR for the SF Selection Engine. The SF Selection
Engine employs our runtime SF control solution that selects
the best-suited SF configuration for each end device based on
the given link characteristics and the reliability requirement
specified by the application (see Section V). The NM Packet
Generator broadcasts the Network Management (NM) pack-
ets, which carry the selected SF configuration, the assigned
channel, and the transmission schedule for each end device
(see Section III-C). On each LoRa end device, the Com-
mand Interpreter extracts and interprets the NM commands
from the received NM packets. The Transmission Controller
transmits the data generated from the vehicle on the assigned
channel using the selected SF configuration. The Data Buffer
maintains two data queues for the data collected from the
vehicle: a high-priority queue (HQ) for time-critical data and
a low-priority queue (LQ) for non-time-critical data. The
transmission controller only transmits the data stored in the
LQ when the HQ is empty.

CH i

: Time-critical packets

: Non-time-critical packets

: NM packets

: Idle time

time

frame n frame n+1

CH j

CHctl

: Guard time

Fig. 4: An example timeline of transmissions on different
channels within two consecutive time frames in ShuttleNet.

C. Time Frame and Channel Assignment

In ShuttleNet, the LoRa base station and end devices are
time synchronized and share the notion of a time frame that
repeats over time. At the beginning of each frame, the LoRa
base station broadcasts a NM packet that synchronizes the
clocks of all end devices. Each NM packet carries a unique
frame ID and the network management information for this
frame (e.g., the SF and channel assigned to each end device).
ShuttleNet uses a fixed channel CHctl for downlinks (from the
base station to shuttles) and assigns channels for uplinks (from
shuttles to the base station) based on the number of shuttles in
the network Ns. Assuming the LoRa base station can receive
packets from N channels (CH1 to CHN) in parallel, the LoRa
base station assigns a unique channel CHi (1 ≤ i ≤ N) to
each end device if Ns ≤ N . Otherwise, the LoRa end devices
share the N channels in a TDMA fashion. The NM packets
carry the commands indicating which devices should transmit
in each time frame. The LoRa base station always uses the
physical layer parameters (SF = 12, CR = 4/8, and CRC
enabled) to transmit the NM packets because the deliveries of
NM packets are critical for maintaining the time frame.

Before a LoRa end device starts to transmit, it first listens
to the downlink channel CHctl and waits for the NM packet.
After receiving the NM packet, the LoRa end device searches
for its ID to decide whether it can transmit in this frame. If
the LoRa end device is allowed to transmit, it calculates the
number of packets that can be transmitted in the current frame
using the assigned SF configuration. A small guard time is
reserved at the end of each frame to compensate for local clock
drifting. The transmission starts with the time-critical packets
followed by the non-time-critical packets using the assigned
channel. After the LoRa end device finishes the transmissions
in the current frame, it listens to CHctl and waits for the
NW packet again. Figure 4 shows an example timeline of
transmissions on different channels within two consecutive
time frames. In the example, two LoRa end devices are
assigned to use CHi and CHj , respectively. In frame n, both
LoRa end devices transmit using the same SF configuration.
In frame n + 1, the LoRa end device using CHi is assigned
with a smaller SF while the other using CHj is assigned with
a larger SF. As discussed in Section II, a smaller SF provides

(a) Box plot of link reliability. Central mark in box indicates median;
bottom and top of box represent the 25th percentile (q1) and 75th
percentile (q2); crosses indicate outliers (x > q2 +1.5 ∗ (q2 − q1) or
x < q1−1.5∗(q2−q1)); whiskers indicate range excluding outliers.

(b) Box plot of link throughput.

Fig. 5: Link performance when the LoRa transmitters use
different SF configurations.

higher throughput and allows more packets to be transmitted
in a frame. In our implementation, we set the payload size
of an uplink packet to 36 bytes, that of a NM packet to 12
bytes, the frame length to 5 seconds, and the guard time to
0.25 seconds.

IV. AN EMPIRICAL STUDY ON SF CONFIGURATION

To investigate the impact of SF configuration on network
performance, we have performed a 14-month empirical study
from March 2018 to May 2019. We configure the LoRa end
devices installed on the shuttles to use all six SFs (SF7
to SF12) for packet transmissions in a round-robin fashion.
In other words, a LoRa end device switches to the next
SF after transmitting a packet using the current SF. The
LoRa base station has collected 3.18 million uplink packets
generated by six shuttles during their real-world operations
(3931 loops in total). We have identified all lost packets and
their corresponding SFs by checking the sequence IDs carried
by all received packets and discarded all corrupted packets
with CRC errors.

Leveraging our data trace, we first relate SF configuration
to network performance. Figure 5 plots the box plots of
the link reliability and throughput when the LoRa transmit-
ters use different SF configurations. The link reliability in
terms of PDR and the link throughput is computed every
25 minutes. Figure 5a and 5b clearly present the tradeoff
between link reliability and throughput when the LoRa trans-
mitters use different SF configurations. The PDR increases
and the throughput decreases when the LoRa transmitters
use a larger SF. Specifically, the median PDRs are 0.38,
0.43, 0.49, 0.56, 0.80, and 0.94, while the median throughput
values are 1.05 kbps, 0.72 kbps, 0.48 kbps, 0.31 kbps, 0.23
kbps, and 0.14 kbps when the LoRa transmitters use SF7,
SF8, SF9, SF10, SF11, and SF12, respectively. More
importantly, the link reliability increases more significantly
when the LoRa transmitters use large SFs (SF11 and SF12),
while the link throughput decreases dramatically at small SFs.
This indicates that increasing SF when the current SF is large
may significantly enhance the link reliability at the cost of
slightly reducing the link throughput, while slightly decreasing
SF when the current SF is small may significantly improve
the throughput without introducing too much damage on the
link reliability. Those observations motivate our designs in
Section V.

As discussed in Section II, ADR specified in LoRaWAN
is designed to select SF based on the measured link quality.
Unfortunately, our empirical study shows that ADR is ineffec-
tive when the LoRa end devices are in motion. For instance,
Figure 6 shows the PDR changes when a shuttle circles around
the campus twice. To understand the ineffectiveness of ADR,
we install a GPS device onto that shuttle. Figure 6a plots the
distance and the SNR of the link between the shuttle and the
LoRa base station and Figure 6b plots the SF configurations
selected by ADR and the resulting PDR over time. The
shuttle made five stops around 0s, 500s, 950s, 1450s, and
1950s during that 2000s measurement. From the link distances
plotted in Figure 6a, we can observe that the first, third, and
fifth stops are close to the LoRa base station, while the second
and fourth stops are far away. As Figure 6b shows, ADR
provides very good link reliability (almost 1) by selecting
appropriate SFs when the shuttle was not in motion. However,
the link reliability decreases significantly when the shuttle
begins to move. For example, the link reliability drops to
0.21 at 255s and 0.24 at 1195s. From Figure 6b, we can
observe that the SF configurations selected by ADR fluctuate
when the shuttle moves, resulting in unstable link reliability.
There are two main reasons that cause the ADR’s failure
to maintain good link reliability when the LoRa end device
moves quickly. First, ADR uses the maximum SNR of the last
20 SNR samples to estimate the link quality. Although it works
well on stationary devices, it fails on those devices in motion
because the SNR changes very fast, as Figure 6a shows. This
motivates us to consider the most recent link characteristics
when selecting SF (see Section V). Second, ADR uses a set
of theoretical SNR thresholds for SF selection rather than
using the actual link reliability measured by the device. A

(a) Link distance and SNR.

(b) SF selected by ADR and resulting PDR.

Fig. 6: The link reliability changes under ADR (window =
20,margin = 10dB) when a shuttle circles the campus twice.
The grey areas indicate the time when the shuttle stopped.

recent study shows that the best-suited SNR thresholds for SF
selection should be selected based on the specific physical-
layer configurations of the LoRa device (e.g., packet payload
length and coding rate) [15]. Moreover, we observe that using
SNR measurements alone is insufficient to accurately predict
the packet receptions because the receiver sensitivity of a LoRa
device also depends on the RSS [16]. This motivates us to
use both SNR and RSS measurements when selecting SF (see
Section V).

V. RUNTIME SF CONTROL

In this section, we present the design of our runtime SF con-
trol solution that runs on the LoRa base station and selects the
SF configuration for each LoRa end device to meet network
performance requirements. The design goal of our solution is
to maximize the data collection throughput while meeting the
reliability requirement specified by the application.

A. Overview of the Solution

Our design goal is to maximize the data collection through-
put while maintaining the application-specific link reliability
by employing best-suited SF continuously. The SF configura-
tion is selected based on the given link reliability requirement
and link characteristics based on a machine learning model.

time
Initialization Period Operation Period

Initial Data Set

Packet Reception
Observation

SF Selector Selected SF

Wireless
Condition

Application
Reliability

Requirement
Wireless
ConditionSF7

SF8

SF12

SF

Fig. 7: Initialization Period and Operation Period.

After a LoRa end device begins to operate, our runtime SF
control solution guides it through two periods: Initialization
Period and Operation Period, as shown in Figure 7. In
the Initialization Period, our runtime SF control solution
controls each LoRa end device to transmit packets using all
SF configurations in a round-robin fashion. It also controls the
LoRa base station to measure the link characteristics when
receiving every packet and observes the packet receptions
under each SF configuration. This allows the LoRa base station
to create the Initial Data Set S, in which each data element
includes three pieces of information: the link characteristics
(RSS, SNR, and the averaged RSS over the last 10 time
frames), the SF configuration, and the packet reception result
(success or failure). We empirically choose the time length
of the Initialization Period that provides the best performance
(see Section VI-A). After collecting enough data for S, our
runtime SF control solution begins to periodically predict the
best-suited SF configuration in the Operation Period based on
a non-linear mapping between the link characteristics (x) and
the best-suited SF configuration (sf), i.e., f : x→ sf , which
is learned by our machine learning model using S. We will
next present the design of our SF selector that runs in the
Operation Period.

B. KNN-based SF Selector

The primary task of the SF selection algorithm is to identify
the best-suited SF in each time frame as described in Sec-
tion V-A. We define a classification problem that periodically
predicts the packet reception result (success or failure) when
using each SF configuration under the given link character-
istics. In each frame, our solution selects the smallest SF
predicted with a successful packet reception to deliver the
maximum throughput. While considering runtime computa-
tional efficiency, we employ the KNN algorithm [17] for clas-
sification. We adjust the parameters in the KNN algorithm at
runtime to meet the reliability requirement (see Section V-C).
Algorithm 1 presents our KNN-based SF selection algorithm.
The input of Algorithm 1 includes the link characteristics
(x) and the output is the selected SF configuration for the
next frame (sf). x is an array of three integers (x1, x2,
and x3) representing the link characteristics (RSS, SNR, and
averaged RSS). The Initial Data Set S is used to relate the link
characteristics to the packet reception results under each SF

Algorithm 1: KNN-based SF Selection Algorithm
Input : x
Output : sf
Data Set : S
Parameters: k, vt

1 d = 0
2 N = []
3 while N.length < k do
4 X′ = list link conditions (x, d)
5 for x′ in X′ do
6 N.add (S[x′1][x

′
2][x
′
3])

7 end
8 d += 1
9 end

10 for sf in [7...11] do
11 vp = 0
12 for n in N do
13 vp += n[sf]
14 end
15 if vp / N.length > vt[sf] then
16 return sf
17 end
18 end
19 sf = 12

configuration. In our implementation, S is implemented as a 3-
D array that uses three array indices for the link characteristics
and each array element is implemented as a linked list, which
stores the observed packet reception results (1 for success and
0 for failure) using all SF configurations. The parameter k is a
constant, which denotes the number of samples to be searched
for in S. Based on the size and density of S, we empirically set
k to 20 in our implementation. The parameter vt is an array,
which stores the voting thresholds for each SF. To simplify
our presentation, we assume that all arrays in Algorithm 1 are
free of bounds and can be accessed using any integer.

Lines 1 and 2 of Algorithm 1 initialize the distance integer
d and the neighbor sample array N. The loop from Line 3
to Line 9 searches for and stores the “nearest neighbors” in
the array N, where the nearest neighbors are the samples in S
within the shortest distances to the input link characteristics
(x). We use the Euclidean distance to measure the distance
between x and x′:

d(x,x′) =

√∑
i

(xi − x′i)2 (1)

where xi and x′i (i ∈ [1, 2, 3]) are the elements of x and
x′. Line 4 lists all integer-valued link characteristics with the
rounded distance (d) to x and stores them in the set X′. The
loop from Line 5 to Line 7 uses the link characteristics in
each x′ from X′ as the indices of S and adds all samples from
the indexed S elements into N. The distance d is incremented
(Line 8) until k samples have been added to N (Line 3). All
samples with the distance d are used when a tie of distance

exists. KNN uses the votes of the neighbors for classification.
The loop from Line 10 to Line 18 counts the votes for each SF
from SF7 to SF11 and returns the selected SF based on the
voting result. For each SF configuration, vp counts the positive
votes from each neighbor n in N, where a neighbor with a
successful reception under the SF (n[sf] = 1) contributes
a positive vote (Line 13). The resulting positive voting rate
(vp/N.length) is compared with the voting threshold of the SF
(vt[sf]). If the positive voting rate is greater than the threshold,
the classification result is positive for the SF (Line 15),
predicting a successful packet reception. The algorithm returns
with the smallest possible SF when a positive classification
result is found (Line 16). The array of voting thresholds vt is
adjusted at runtime in response to the reliability requirement
(see Section V-C). If there is no positive classification result
from SF7 to SF11 or the link characteristics are not available
at the moment, SF12 is selected (Line 19) to maintain the
connection.

C. KNN Voting Threshold Adjustment

The array of voting thresholds (vt) is a set of parameters that
are critical to meet the reliability requirement specified by the
application. Each element in vt is a voting threshold for an in-
dividual SF because each SF may require a different threshold
to meet the reliability requirement. A higher threshold requires
more positive votes to predict a successful packet reception,
which reduces the chance of false positive predictions.

Algorithm 2: Voting Threshold Adjustment
Inputs : Rr, Rc, Rsf, vt
Output : vt
Parameters: α, β, γ

1 if Rc < Rr then
2 for sf in [7...11] do
3 if Rsf [sf] < Rr then
4 vt[sf] += α
5 end
6 end
7 end
8 if Rc > Rr + γ then
9 for sf in [7...11] do

10 if Rsf [sf] > Rr + γ then
11 vt[sf] -= β
12 end
13 end
14 end

When the system begins to operate, the voting thresholds for
SF7 to SF11 are initialized to 0.5. Algorithm 2 is designed to
adjust the voting thresholds and is triggered when a new PDR
measurement is generated or a new reliability requirement
is input by the application. Given the application reliability
requirement (Rr), the current link PDR (Rc), and an array of
PDRs when using each SF configuration (Rsf), there are two
options for adjustments: (1) increasing the voting threshold

Fig. 8: Performance when using the Initial Data Set with
different sizes. Performance is normalized to the one using
the optimal selections.

for sf by α if both Rc and Rsf [sf] are less than Rr (Line 1
to 7) and (2) decreasing the voting threshold for sf by β if
both Rc and Rsf [sf] are higher than Rr + γ (Line 8 to 14).
Algorithm 2 keeps the previous voting thresholds if no change
is needed. In our implementation, we set α to 0.1, β to 0.05
which allows a fast response when the actual reliability fails to
meet the requirement and a slow adjustment when the actual
reliability is high. While increasing the voting thresholds helps
increase the link reliability, decreasing the voting thresholds is
designed to increase the link throughput because the selector
has a greater chance to select smaller SFs with higher data
rates. The value of γ is set to 0.05 in our implementation
which aims to maintain the link reliability between Rr and
Rr + 0.05.

VI. EVALUATION

To validate the efficiency of our runtime SF control so-
lution in maximizing the link throughout while meeting the
application-specified reliability requirement, we performed a
series of experiments. We first empirically identify the best-
suited length of the Initialization Period. We then examine
whether our solution can consistently meet the reliability
requirement specified by the application. We evaluate our solu-
tion’s effect on increasing the data collection throughput, and
compare its performance against three baselines. Finally, we
evaluate the runtime efficiency of our solution by measuring
its execution time on a Raspberry Pi computer. To ensure a
fair comparison between our solution and baselines, we apply
all solutions on the same data trace collected from our 14-
month empirical study with six shuttles (see Section IV). We
also identify the optimal SF selections by analyzing the entire
data trace. Please note that the optimal solution cannot be
implemented at runtime and is only for comparison purposes.

A. Impact of Initialization Period Length

As discussed in Section V-A, our runtime SF control solu-
tion first controls the LoRa end devices installed on the shuttles
to use all six SFs (SF7 to SF12) for packet transmissions in
a round-robin fashion to generate the Initial Data Set S. The
network may experience poor reliability and low throughput
in the Initialization Period. Thus, it is beneficial to keep the

(a) Using the initial data collected from different shut-
tles for Shuttle A.

(b) Using the initial data collected from different shut-
tles for Shuttle B.

Fig. 9: Performance when using the Initial Data Set collected from one shuttle on another. Performance is normalized to the
one when using the initial data collected from the same shuttle. The Initial Data Set includes one loop of data. Rr = 0.8.

Initialization Period as short as possible. We run experiments
to study the impact of the length of the Initialization Period on
network performance. Figure 8 shows the network reliability
and throughput when our runtime SF control solution uses S
with different sizes. All results are normalized to those using
the optimal selections. As Figure 8 shows, the normalized
reliability is very low (0.57) when S has the collected data
when a shuttle traveled the first quarter of its route. After
the shuttle traveled the first half of its route, the normalized
reliability increases to 0.92, but the normalized throughput is
only 0.72. The normalized throughput increases to 0.87 and
the normalized reliability is 0.92 when the shuttle traveled the
whole route once. More data in S does not provide much help
on improving the throughput and reliability. The results show
that collecting one loop of data to create the Initial Data Set
is enough for our KNN-based SF selector to provide good SF
selections at runtime.

B. Sharing the Initial Data among Shuttles

We run experiments to explore the feasibility of sharing the
Initial Data Set collected from one shuttle with other shuttles.
Figure 9 plots the reliability and throughput performance when
using the initial data collected from other shuttles on Shuttles
A and B. The results are normalized to the one when using
the initial data collected from the same shuttle. As Figure 9a
shows, the normalized reliability ranges from 0.98 to 0.99
when using the initial data collected from Shuttle B, C, D,
E, and F for Shuttle A, while the normalized throughput
ranges from 0.96 to 0.99. Similarly, the normalized reliability
and throughput are not less than 0.94 and 0.97, respectively,
when using the initial data collected from different shuttles
for Shuttle B. The absolute reliability is not less than 0.87
and 0.83 when using the initial data collected from different
shuttles on Shuttles A and B, respectively, which meets the
reliability requirement specified by the application (Rr = 0.8).
The results show that using the Initial Data Set collected
from one shuttle for other shuttles only slightly degrades
the performance of our runtime SF control solution when
the shuttles follow the same route; therefore it is feasible

(a) An example data trace of PDR measurements.
The application changes its PDR requirement from
0.8 to 0.9 at the 51st hour. The PDR measurement is
computed in every 1.25 hours.

(b) CDF of PDR measurements.

Fig. 10: Performance under different application reliability
requirements.

to share the Initial Data Set among different shuttles, which
significantly reduces the initialization overhead.

C. Effectiveness of our Runtime SF Control Solution

We perform a series of experiments to examine whether our
runtime SF control solution can consistently meet the reliabil-
ity requirement specified by the application. We configure the
application to input different reliability (PDR) requirements
and measure the actual PDRs at the LoRa base station.
Figure 10a plots the example PDR measurements collected
from a shuttle for more than 100 hours. In this example, the

(a) CDF of normalized throughput.

(b) CDF of normalized PDR.

Fig. 11: Performance comparisons between our solution and
three baselines. Performance is normalized to the one using
the optimal selections.

application inputs 0.8 as the PDR requirement at the beginning
of the Operation Period and then changes the requirement to
0.9 at the 51st hour. As Figure 10a shows, our runtime SF
control solution can always meet the application reliability
requirement except for the first measurement. The slightly
lower reliability (0.76) in the first measurement is caused by
the voting threshold adjustments performed at the beginning
of the Operation Period. More importantly, our runtime SF
control solution only takes 117 µs to select a new SF to
accommodate the reliability requirement changes issued by
the application. This demonstrates the time efficiency of our
SF selections. Figure 10b plots the Cumulative Distribution
Function (CDF) of PDR measurements under different ap-
plication reliability requirements. The PDR measurement is
computed every 25 minutes. In more than 95.8% and 90.2%
of the time, our runtime SF control solution provides good SF
selections, which successfully meet the application reliability
requirements, 0.8 and 0.9, respectively.

Our runtime SF control solution is designed to maximize the
link throughput. We compare the throughput provided by our
solution against three baselines: ADR+, Probing, and GPS-
based. ADR+ is an enhanced version of ADR, which takes
input from the average (instead of maximum) SNR of the last
20 packets and selects SFs based on the required SNR for each
SF configuration [12]. Probing is a LoRa transmission param-
eter selection algorithm based on the measured link Packet
Reception Ratio (PRR) [18]. GPS-based is a baseline that we

Fig. 12: The execution time of SF selections on a Raspberry
Pi computer.

create by installing GPS devices on the shuttles and using
GPS coordinates to select SF configurations. Figure 11 plots
the comparisons among four solutions, where all results are
normalized to the optimal values. Figure 11a shows the CDF
of normalized throughput. The median throughput normalized
to optimal is 0.58, 0.57, 0.86, and 0.92, when the LoRa base
station runs ADR+, Probing, GPS-based, and our solution,
respectively. Figure 11b shows the CDF of normalized PDR.
The median normalized PDR is 0.66, 0.69, 0.89, and 0.93
when the LoRa base station runs ADR+, Probing, GPS-based,
and our solution, respectively. As Figure 11a and 11b show,
our runtime SF control solution consistently provides the
highest throughput and best reliability among all solutions.
The result also indicates that the measured link characteristics
can be used reliably to select good SF configurations and there
is no need to install additional GPS devices which are cost and
time inefficient.

D. Time Efficiency of our Runtime SF Control Solution

Our KNN-based SF selection is designed to be lightweight.
We measure the time duration taken by our KNN-based SF
selector to select the best-suited SF configuration. We record
the time of the events when the input is fed into the selector
and the output (i.e., SF configuration) is generated. For this
experiment, we repeat the measurement 50,000 times on the
Raspberry Pi computer with a 900MHz quad-core ARM CPU
and the RAM of 1GB. Figure 12 plots the CDF of the
time duration of each run. As Figure 12 shows, the median
execution time is 117 µs. 90% and 99% of the SF selections
finish within 165 µs and 241 µs, respectively. These results
demonstrate the good time efficiency of our SF selector as
well as the advantage of using the KNN algorithm.

VII. RELATED WORK

Satellite and cellular technologies are traditionally used to
collect real-time data from moving vehicles through long-
distance links. For instance, vehicular satellite links have been
used to connect emergency vehicles to information headquar-
ters in disaster areas [3], while LTE-based communication
systems have been integrated into the urban transit systems [1],
[2]. LTE-based vehicle-to-everything (V2X) communication
is currently being standardized by 3GPP [19]. Unfortunately,

those satellite or cellular based systems are often very costly
because they use expensive devices and licensed frequency
bands, which limits their applications. In recent years, LoRa,
an emerging LPWAN technology, has been used as a low-
cost alternative that provides the capability for long-range data
collection to low data rate applications. For instance, Islam
et al. proposed a LoRa link scheduling algorithm and tested
it in city environments [4]. Liando et al. conducted large-
scale measurements on the performance of a campus-wide
LoRa network and studied the impact of LoRa transmission
parameters on link performance [20]. More recently, LoRa
has been employed to support vehicular communication. For
example, Santa et al. developed a LoRa-based vehicular moni-
toring platform [21]. Salazar-Cabrera et al., Boshita et al., and
Guan et al. presented prototypes of public vehicle tracking
systems that use LoRa to transfer the real-time locations and
operating conditions of vehicles [22]–[24]. Bertoldo et al.
deployed LoRa end devices on public transportation vehicles
to transfer environmental sensor readings [5]. Ouya et al.
proposed a LoRa-based communication protocol that allows
electric vehicles and charging stations to exchange information
on energy demand and availability [25]. The existing studies
have demonstrated the feasibility of using LoRa to reliably
collect data over long distances. To our knowledge, our work
is the first to investigate the SF selection for LoRa end devices
installed on running vehicles, distinguished from previous
work using static SF configurations. Our yearlong empirical
study provides valuable insights on selecting SF configurations
for the LoRa end devices with mobility. Our work is therefore
orthogonal and complementary.

In the literature, several approaches have been proposed
to configure SF for LoRa networks based on link quality.
For instance, the ADR algorithm, specified in LoRaWAN,
estimates the link quality using the maximum SNR in 20
historical samples and selects the SF configuration based on
the required SNR for each SF [11]. ADR+ is an enhanced
version of ADR which replaces the maximum SNR with the
average SNR to estimate the link quality [12]. The Probing
algorithm makes use of the measured PRR to configure SF and
gradually approaches the optimal configuration [18]. Unfortu-
nately, those SF control approaches designed for stationary
LoRa end devices do not work well for mobile devices. As
presented in Section VI-C, our runtime SF control solution
significantly outperforms the existing solutions. There also
exist some approaches that estimate the link quality and select
the SF configuration based on the GPS locations of LoRa
end devices [26]–[28]. However, those GPS-based approaches
significantly increase the system cost and power consumption
of LoRa end devices. Our experimental results presented in
Section VI-C show that the measured link characteristics can
be used reliably to select good SF configurations and there is
no need to install those GPS devices.

KNN is a classical machine learning technique that uses
the nearest neighbors in the collected data set to determine
the class or value of a query example [17]. KNN has been
demonstrated as an efficient and effective algorithm when

applied to solve many wireless communication problems. For
instance, Yu et al. and Arya et al. used KNN for indoor
and outdoor localization based on RSS measurements, respec-
tively [29], [30]. Li et al. employed KNN to detect network
intrusions in Wireless Sensor Networks (WSNs) [31] while
Pan et al. used KNN to estimate the missing data during
data transfers in WSNs [32]. Donohoo et al. used KNN to
predict the energy demand of mobile devices [33]. Ma et al.
employed KNN to predict the PRR of 802.11 links based on
SNR measurements [34]. To our knowledge, our work is the
first to use KNN to select SF configuration for mobile LoRa
end devices. Our experimental results presented in Section VI
demonstrate the effectiveness and efficiency of our proposed
solution.

VIII. CONCLUSION

Satellite and cellular technologies are traditionally used to
collect real-time data from running vehicles to the base station
through their long-distance links. However, such systems are
often costly because of their use of expensive devices and
licensed frequency bands, which prevents them from being
used in many application scenarios. As an emerging LPWAN
technology, LoRa has been used as a low-cost alternative
that provides capability for long-range data collection to low
data rate applications. In this paper, we present a low-cost
LoRa-based wireless network, ShuttleNet, that collects real-
time data from six shuttles circling our university campus
and has operated in the real world for more than a year.
When implementing ShuttleNet, we find that the selection
of LoRa SF poses a significant challenge because of its
effects on two conflicting QoS metrics. To investigate the
impact of SF configuration on network performance, we have
performed a 14-month empirical study. Our empirical study
shows that a larger SF provides higher network reliability at
the cost of lower throughput. More importantly, we observe
that the link reliability increases more significantly when the
LoRa transmitters use large SFs (SF11 and SF12), while
the link throughput decreases dramatically at small SFs. This
indicates that increasing SF when the current SF is large may
significantly enhance the link reliability at the cost of slightly
reducing the link throughput, while slightly decreasing SF
when the current SF is small may significantly improve the
throughput without introducing too much damage on the link
reliability. Those observations motivate us to develop a runtime
SF control solution that employs the KNN algorithm to adapt
the SF configuration based on the link characteristics. We com-
pare our solution against three state-of-the-art baselines and
observe that ours consistently provides the highest throughput
and the best reliability among all solutions.

ACKNOWLEDGMENT

This work was supported by the NSF through grant CRII-
1657275 (NeTS) and the Transportation and Parking Services
at SUNY at Binghamton through a grant. We thank our IT
specialists Mr. Robert L Mess and Mr. Dave Hall for assisting
us in deploying and maintaining the LoRa base station.

REFERENCES

[1] T. Tang, K. Dai, Y. Zhang, H. Zhao, and H. Jiang, “Field Test Results
Analysis in Urban Rail Transit Train Ground Communication Systems
of Integrated Service Using LTE-M,” in IEEE International Conference
on Intelligent Transportation Systems (ITSC), 2016.

[2] A. Khayat, M. Kassab, M. Berbineau, and A. Belghith, “LTE Based
Telecommunication System for Urban-Guided Transports,” in Transport
Research Arena (TRA), 2014.

[3] G. Iapichino, C. Bonnet, O. del Rio Herrero, C. Baudoin, and I. Buret,
“Advanced Hybrid Satellite and Terrestrial System Architecture for
Emergency Mobile Communications,” in International Communications
Satellite Systems Conference (ICSSC), 2008.

[4] M. T. Islam, B. Islam, and S. Nirjon, “Duty-Cycle-Aware Real-Time
Scheduling of Wireless Links in Low Power WANs,” in IEEE In-
ternational Conference on Distributed Computing in Sensor Systems
(DCOSS), 2018.

[5] S. Bertoldo, L. Carosso, E. Marchetta, M. Paredes, and M. Allegretti,
“Feasibility Analysis of a LoRa-Based WSN Using Public Transport,”
Applied System Innovation, vol. 1, no. 4, 2018.

[6] B. Soret, P. Mogensen, K. I. Pedersen, and M. C. Aguayo-Torres,
“Fundamental Tradeoffs among Reliability, Latency and Throughput in
Cellular Networks,” in IEEE Globecom Workshops (GC Wkshps), 2014.

[7] LoRa Modulation Basics. [Online]. Available:
https://www.semtech.com/

[8] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-
Segui, and T. Watteyne, “Understanding the Limits of LoRaWAN,” IEEE
Communications magazine, vol. 55, no. 9, 2017.

[9] F. Delobel, N. El Rachkidy, and A. Guitton, “Analysis of the Delay
of Confirmed Downlink Frames in Class B of LoRaWAN,” in IEEE
Vehicular Technology Conference (VTC Spring), 2017.

[10] A. A. Syed, W. Ye, J. Heidemann, and B. Krishnamachari, “Under-
standing Spatio-Temporal Uncertainty in Medium Access with ALOHA
Protocols,” in Proceedings of Workshop on Underwater Networks
(WuWNet), 2007.

[11] LoRaWAN Adaptive Data Rate. [Online]. Available:
https://www.thethingsnetwork.org/

[12] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive Config-
uration of LoRa Networks for Dense IoT Deployments,” in IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2018.

[13] RN2903 Provided by MICROCHIP. [Online]. Available:
https://www.microchip.com/wwwproducts/en/RN2903

[14] iC880A Provided by IMST. [Online]. Available: https://www.wireless-
solutions.de/products/radiomodules/ic880a.html

[15] O. Afisiadis, M. Cotting, A. Burg, and A. Balatsoukas-Stimming, “On
the Error Rate of the LoRa Modulation with Interference,” Transactions
on Wireless Communications, 2019.

[16] SX1272 Datasheet Provided by Semtech. [Online]. Available:
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1272

[17] P. Cunningham and S. J. Delany, “k-Nearest Neighbour Classifiers,”
Multiple Classifier Systems, vol. 34, no. 8, 2007.

[18] M. Bor and U. Roedig, “LoRa Transmission Parameter Selection,” in
IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS), 2017.

[19] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, “Vehicle-
to-Everything (V2X) Services Supported by LTE-Based Systems and
5G,” IEEE Communications Standards Magazine, vol. 1, no. 2, 2017.

[20] J. C. Liando, A. Gamage, A. W. Tengourtius, and M. Li, “Known and
Unknown Facts of LoRa: Experiences from a Large-Scale Measurement
Study,” ACM Transactions on Sensor Networks, vol. 15, no. 2, 2019.

[21] J. Santa, R. Sanchez-Iborra, P. Rodriguez-Rey, L. Bernal-Escobedo, and
A. F. Skarmeta, “LPWAN-Based Vehicular Monitoring Platform with a
Generic IP Network Interface,” Sensors, vol. 19, no. 2, 2019.

[22] R. Salazar-Cabrera, Á. Pachón de la Cruz, and J. M. Madrid Molina,
“Proof of Concept of an IoT-Based Public Vehicle Tracking System,
Using LoRa (Long Range) and Intelligent Transportation System (ITS)
Services,” Journal of Computer Networks and Communications, 2019.

[23] T. Boshita, H. Suzuki, and Y. Matsumoto, “IoT-Based Bus Location Sys-
tem Using LoRaWAN,” in IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2018.

[24] P. Guan, Z. Zhang, L. Wei, and Y. Zhao, “A Real-Time Bus Positioning
System Based on LoRa Technology,” in IEEE International Conference
on Smart Grid and Smart Cities (ICSGSC), 2018.

[25] A. Ouya, B. M. De Aragon, C. Bouette, G. Habault, N. Montavont, and
G. Z. Papadopoulos, “An Efficient Electric Vehicle Charging Architec-
ture Based on LoRa Communication,” in IEEE International Conference
on Smart Grid Communications (SmartGridComm), 2017.

[26] M. Asad Ullah, J. Iqbal, A. Hoeller, R. D. Souza, and H. Alves, “K-
Means Spreading Factor Allocation for Large-Scale LoRa Networks,”
Sensors, vol. 19, no. 21, 2019.

[27] S. Demetri, M. Zúñiga, G. P. Picco, F. Kuipers, L. Bruzzone, and
T. Telkamp, “Automated Estimation of Link Quality for LoRa: a
Remote Sensing Approach,” in ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), 2019.

[28] N. Benkahla, H. Tounsi, S. Ye-Qiong, and M. Frikha, “Enhanced ADR
for LoRaWAN Networks with Mobility,” in IEEE International Wireless
Communications & Mobile Computing Conference (IWCMC), 2019.

[29] F. Yu, M. Jiang, J. Liang, X. Qin, M. Hu, T. Peng, and X. Hu,
“5G WiFi Signal-Based Indoor Localization System Using Cluster
k-Nearest Neighbor Algorithm,” International Journal of Distributed
Sensor Networks, vol. 10, no. 12, 2014.

[30] A. Arya, P. Godlewski, and P. Mellé, “Performance Analysis of Outdoor
Localization Systems Based on RSS Fingerprinting,” in International
Symposium on Wireless Communication Systems (ISWCS), 2009.

[31] W. Li, P. Yi, Y. Wu, L. Pan, and J. Li, “A New Intrusion Detection
System Based on KNN Classification Algorithm in Wireless Sensor
Network,” Journal of Electrical and Computer Engineering, 2014.

[32] L. Pan and J. Li, “K-Nearest Neighbor Based Missing Data Estimation
Algorithm in Wireless Sensor Networks,” Wireless Sensor Network,
vol. 2, no. 02, 2010.

[33] B. K. Donohoo, C. Ohlsen, S. Pasricha, Y. Xiang, and C. Anderson,
“Context-Aware Energy Enhancements for Smart Mobile Devices,”
IEEE Transactions on Mobile Computing, vol. 13, no. 8, 2013.

[34] Y. Ma, “Improving Wireless Link Delivery Ratio Classification with
Packet SNR,” in IEEE International Conference on Electro/Information
Technology (EIT), 2005.

