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Abstract—LoRa as a representative of Low-Power Wide Area
Networks (LPWAN) technologies has emerged as an attractive
communication platform for the Internet of Things. Since its
dense deployment, signal collisions at base stations caused by
concurrent transmissions degrade network performance. Existing
approaches utilize the signal feature, e.g., frequency, to separate
packets from collisions. They do not work well in burst traffic
networks because the feature is not stable or fine-grained enough
and the information for directed signal separation is not suffi-
cient. In this paper, we leverage multidimensional information
and propose a novel PHY layer approach called SCLoRa to
decode collided LoRa transmissions. SCLoRa utilizes cumulative
spectral coefficient, which integrates both frequency and power
information, to separate symbols in the overlapped signal. The
practical factors of channel fading, similar symbol boundary, and
spectrum leakage are taken into account. The SCLoRa design
requires neither hardware nor firmware changes in commodity
devices – a feature allowing fast deployment on LoRa base
stations. We implement and evaluate SCLoRa on USRP B210
base stations and commodity LoRa devices (i.e., SX1278). The
experiment results in different scenarios with different radio
parameters show that the throughput of SCLoRa is 3× than
the state-of-the-art.

I. INTRODUCTION

The Low-Power Wide Area Networks (LPWAN) technolo-
gies, including LoRa [1], NB-IoT [2], Sigfox [3] and Weight-
less [4], have been emerging as popular technologies in recent
years [5]. Many LPWAN-based applications, such as Sailing
Monitoring System [6], health and well-being monitoring [7],
[8], agriculture monitoring [9]–[12], are developed. Since
LoRa is designed to support these applications over a long
range (e.g., more than 10 KM), a large number of LoRa end
devices inevitably coexist at the same time, leading to serious
packet loss when these end devices send packets to a base
station concurrently [13]. This coexistence has been identified
as one of the key challenges [14], which will be more and
more critical given the rapid deployment and inevitable burst
LoRa traffic.

To ameliorate the problem of LoRa concurrent transmis-
sions, existing approaches are divided into two categories,
i.e., MAC-layer approaches and PHY-layer approaches. The
MAC-layer approaches address collision issues through col-
lision detection and transmission scheduling. Although these
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approaches improve the throughput and reliability of LPWAN,
the limited power budget and low cost of LoRa nodes make
it challenging to deploy sophisticated MAC methods [15]–
[17]. Existing PHY-layer approaches elaborately analyze PHY-
level features, such as hardware frequency offset [15] and
frequency change [18], that are unique across different LoRa
nodes. Admittedly, these techniques have the capability to
decouple and demodulate collided concurrent transmissions.
They are limited in resolving collisions in large scale LoRa
networks since they rely on single LoRa feature which is
not fine-grained enough for signal separation of bursty LoRa
transmissions.

To support bursty LoRa in the explosive IoT era, we
introduce SCLoRa, which utilizes multiple LoRa features at
the same time to separate concurrent uplink transmissions.
Specifically, we observe that cumulative spectral coefficient,
determined by the frequency and power, are unique and
reliable across different LoRa devices. This motivates us to
distinguish collided LoRa transmissions for demodulation.
Although the idea is straightforward, it is a nontrivial task
in practice. SCLoRa needs to address several challenges to
realize its idea. The first is the dynamic channel fading,
leading to volatile spectral coefficients. The second is the
similar symbol boundary due to bursty traffic. As a result, we
cumulatively evaluate spectral coefficients at different time to
increase the reliability and differentiability. To grasp SCLoRa
more intuitively, table I shows its comparison with existing
methods.

In order to separate packets from overlapped signals,
SCLoRa performs the following key steps. First, by analyzing
symbols in the window after Fourier transform, the preamble
of each signal in the overlapped signal could be detected
according to the consecutive symbols. Then we utilize the
frequency offset of the upchirp to synchronize the signal, and
correct the spectral coefficient of the upchirp as a reference for
symbol separation. Finally, we slide the window left and right
for each packet and calculate cumulative spectral coefficient
of symbols in the window. Each symbol is evaluated by
comparing the difference of its cumulative spectral coefficient
between actual value and theoretical value. The target symbol
for one packet is extracted with the smallest error in cumula-
tive spectral coefficient. We perform this process to estimate
the feature for each symbol and each packet respectively and
then match the symbols to packets based on the estimation.978-1-7281-6992-7/20/$31.00 ©2020 IEEE



Features for
Signal Separation

Dimensionality for
Symbol Classification

Impacts of SNR
on performance

Impacts of
radio parameters
on performance

Demands on
Signal Boundary

Adaptability to
Burst Traffic

Choir Frequency Offset One: Frequency Medium Little No No
FTrack Signal Boundary One: Frequency Medium Medium Yes No

SCLoRa Cumulative
Spectrum Coefficient

Two: Frequency
and Power Little Little No Yes

TABLE I
COMPARISON OF SCLORA AND EXISTING SOLUTIONS

The contributions of SCLoRa are summarized as follows
• SCLoRa is the first to examine multiple unique features,

e.g., amplitude and frequency offset, for distinguishing
concurrent LoRa packets, in contrast to previous literature
that rely on a single feature. This enables SCLoRa to
work well in dense networks with bursty traffic.

• To be resilient to the dynamic environment, SCLoRa
introduces cumulative spectral coefficient, which are de-
termined by the unique amplitude and frequency offset
and also unique across LoRa nodes. In addition, the
challenges of decoding collided concurrent transmissions
with similar symbol boundary and spectrum leakage are
addressed.

• We evaluate SCLoRa with USRP and commodity LoRa
SX1278 radios. Experiments across different settings
demonstrate the effectiveness of SCLoRa, achieving a 3×
network throughput of the state-of-the-art.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce how LoRa symbols are
modulated and demodulated. Then we introduce the phe-
nomenon of collided LoRa transmissions in burst traffic sce-
narios, followed by the opportunity of decoding them.
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Fig. 1. Signals of the upchirp, the downchirp and the symbol in LoRa.

A. LoRa Modulation and Demodulation

The basic chirp signals in LoRa are the upchirp and the
downchirp, as shown in Figure 1. The upchirp/downchirp is a
signal whose frequency increases/decreases linearly with time.
Modulation: The frequency of a symbol increases linearly
with time. Different symbols are modulated with different
initial frequencies, as shown in Figure 1. We use x[n] to
represent the signal sequence of symbol p as follows

xp[n] = Ape
j2π(−fw+pf∆+nf∆) n

N (1)

where Ap represents signal amplitude of symbol p and −fw
represents the lower bound of the symbol frequency. n is the

index of the sequence and N represents the total number of
sampling points of one symbol. f∆ is frequency change rate,
and −fw + pf∆ represents the initial frequency of symbol
p. And fw is the initial frequency of the downchirp with
frequency change rate −f∆. Then downchirp can expressed
as xd[n] = Ad ej2π(fw−nf∆) n

N .
Demodulation: During demodulation, the signal is multiplied
by the standard downchirp (e.g., Ad = 1) as follows

sp[n] = xps [n] × xd[n]

= Ape
j2π(−fw+nf∆+pf∆) n

N × ej2π(fw−nf∆) n
N

= Ape
j2π(pf∆) n

N

(2)

In Equation 2, sp[n] contains only the frequency pf∆. Then
we perform FFT on sp[n], and we can get the symbol p in the
spectrum (e.g., the symbol in Figure 2).
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Fig. 2. 2(a) reflects the frequency change of the LoRa symbol over time,
and 2(b) is its spectrum after dechirping.

B. Collided Concurrent Transmission

Since LoRa is designed for connecting IoT devices at a
long range (e.g., around 10 KM), it is inevitable that there are
multiple LoRa nodes transmitting at the same time, leading to
wireless interference. To tackle this issue, LoRa adopts a tech-
nique called spreading factor (SF). Two LoRa transmissions
with different SF are orthogonal to each other, enabling LoRa
receivers to correctly differentiate the target transmission.

As a result, LoRa is able to demodulate LoRa transmissions
with different SF parameters, while it fails when there are mul-
tiple ongoing LoRa transmissions with same SF parameters.
This directly limits the communication reliability and network
capacity and is more and more critical with the explosive
growth of deployed LoRa devices.

To alleviate this issue, recent works, e.g., Choir and FTrack
propose to demodulate concurrent LoRa transmissions at the
PHY layer. By exploiting the unique feature (either frequency
offset due to hardware limitation or frequency change), these
methods are able to distinguish collided LoRa signals. Al-
though effective, they are still limited by the number of



concurrent LoRa transmissions, since they rely on one single
feature of LoRa signal. For example, the hardware frequency
offsets could be similar to each other with a large network size
in Choir. Similarly, FTrack suffers from inaccurate frequency
tracking under similar symbol boundaries, which is more and
more likely with an increasing number of LoRa devices. MAC
solutions adjust LoRa transmission scheduling to avoid wire-
less collisions. Although effective, they commonly rely on the
knowledge of LoRa traffic requirement, which naturally grows
with the network size. As a result, MAC solutions suffer from
a performance decrease in a burst traffic scenario. Besides,
the MAC solutions and PHY solutions (e.g., SCLoRa) are
independent, since they work at different layers. By integrating
MAC solutions with PHY solutions, we could further improve
LPWAN network reliability and throughput.

C. Opportunities of Decoding Collisions

Motivated by existing literature that rely on a single feature,
this work aims to examine multiple LoRa features (e.g.,
frequency and amplitude) at the same time. This empowers the
capability of decoding bursty LoRa concurrent transmissions
at a better granularity, which is similar to the well-known
problem of classification at higher dimensions. By doing
this, we address LoRa collisions and improve the networking
capacity, a key issue of current LoRa networks [14]. Although
the idea is straightforward, it is challenging to utilize multiple
LoRa features in a unified way to reliably decode bursty
collided concurrent transmissions under the practical settings
including dynamic channel fading and spectrum leakage.

III. DESIGN OF SCLORA

This section analyzes the opportunities of demodulating
burst LoRa communication via elaborately utilizing both the
frequency and power features of LoRa transmissions. Specif-
ically, Section III-A analyzes the spectral coefficient, which
is intrinsically different across LoRa nodes and stable enough
within each LoRa transmission, followed by the symbol dis-
tinction algorithm that distinguishes concurrent LoRa commu-
nication considering both frequency and power difference.

For the illustration purpose, we introduce the calculation
of spectral coefficients and symbol classification under the
assumption of detected LoRa transmissions, which is achieved
through Section III-D. For easy reading, we summarize the key
notations used in this paper, as shown in table II.

Symbol Explanation
sp(n) It is the signal of the symbol p in the time domain.
Sp[k] It represents the normalized spectral coefficient
∆f It represents the frequency offset.
f∆ It is the frequency change rate.
CSCp[∆f ] It represents the cumulative spectral coefficient.
fw/− fw It is the upper/lower bound of bandwidth.
Errorp It represents the evaluation result of symbol p.
SCj It represents the reference value of spectral coefficient.

TABLE II
SYMBOL SUMMARY

A. Spectral Coefficient
In this section, we first analyze the spectral coefficient of

LoRa transmissions in the ideal scenario. With a LoRa symbol
p, we denote its signal received at a LoRa receiver as sp(n).
And with dechirping and Fast Fourier transform, we convert
the signal to the frequency domain as Sp[k].

Sp[k] =

N−1∑
n=0

sp(n)e−j2π
kn
N

=

N−1∑
n=0

Ape
j2π(pf∆−k) n

N

(3)

Here N is the total number of sampling points in the window.
Let Sp[k]

N be the spectral coefficients of signal sp(n), which
captures the fundamental harmonics. The spectral coefficient is
proportional to Sp[k], so we normalize the spectral coefficient
to Sp[k]. As Eq.(3) shows, Sp[k] is equal to

∑N−1
n=0 Ap when

k is pf∆ (i.e., Sp[pf∆] =
∑N−1
n=0 Ap), which is not associated

with the specific value of the transmitted symbol p.
In practical scenarios, the symbol boundary is not always

aligned with the window boundary, which leads to frequency
offset. We set the frequency offset of the symbol as ∆f , and
the time offset of the symbol from the window in the time
domain is ∆f

f∆
. ∆f is determined by the frequency offset

of the upchirp in preamble detection duration. And f∆ is
the frequency change rate according to Eq.(1). Because the
signal amplitude fluctuates in real-world transmission, we
quantify amplitude Ap as Ap[n] = [Ap0

, ..., Api , ..., ApN−1]
to easily denote amplitude of each sampling point. As shown
in Figure 3(a), due to the frequency offset, only the signal
sequence (e.g., the black part) in the window can affect the
spectral coefficient. Then the normalized spectral coefficient
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Fig. 3. 3(a) reflects the different boundary offsets. 3(b) shows the error
between the ground truth and the theoretical values of the spectrum. 3(c)
reflects the frequency change of the LoRa symbol over time, and 3(d) is the
spectrum after dechirping.

of the symbol is denoted as follows



Sp[pf∆ + ∆f ] =


∑N−1

n=−
∆f
f∆

Ap[n] ∆f < 0∑N−1−
∆f
f∆

n=0 Ap[n] ∆f > 0

(4)

From Eq.(4) we find that the spectral coefficient of the
symbol is associated with the power of the signal and the
frequency offset. Note that frequency offset is associated with
the time offset in LoRa.

As shown in the Figure 3(c) and 3(d), two different symbols
in a packet have the same spectral coefficient at their frequency
because the amplitude of their signal and the time offset of
each symbol from the window in the time domain are constant.
SCLoRa utilizes the spectral coefficient to demodulate burst
LoRa transmissions by examining both power and frequency.

Since LoRa transmissions are generally affected by the
varying channel fading, the spectral coefficient is volatile in
practice. Figure 3(b) depicts the error between the theoretical
spectral coefficient and the spectral coefficient calculated from
the received signal. Figure 4 demonstrates the statistics of the
spectral coefficients for different LoRa transmitters. Similar to
the theory, the spectral coefficients are generally stable within
a LoRa transmission and are different across distinct LoRa
transmitters.
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Fig. 4. The Spectral coefficient distribution across LoRa nodes.

Taking the spectral coefficient of Node 3 for example. The
normal spectral coefficients are about 12, while the outliers of
15 at 7th, 9th, 10th and 22nd symbols also exist, which are
very close to the spectral coefficients of Node 1. This motivates
us to utilize the spectral coefficient in a more sophisticated
way, i.e., by considering the spectral coefficient’s power and
frequency features as discussed in the next section.

B. Cumulative Spectral Coefficient

To solve the problem of unstable spectral coefficients due
to the dynamic fading and close spectral coefficients among
symbols, we count the cumulative changes of spectral coef-
ficients over time. Since spectral coefficients are related to
frequency offset and the amplitude of the sampling point,
when frequency offset changes, the spectral coefficients will
change accordingly. We define cumulative spectral coefficient
as CSCp[∆f ], and the following equation represents the series
of spectral coefficient, with different frequency offsets.

CSCp[∆f ] = Sp[pf∆ + ∆f ] , − fw < ∆f < fw (5)

In order to fully describe the change of the symbol’s
spectral coefficient with frequency offset, the range of ∆f

ensures the window slide from the signal just entering the
window to completely leaving the window. Importantly, since
the frequency of the LoRa signal also changes linearly with
time, what should be calculated is the spectral coefficient of
the shifted frequency. After the symbol spectral coefficient is
calculated, the distribution of cumulative spectral coefficient
can be obtained by controlling different frequency offsets as
in Eq.(5).

After the process shown in Figure 5(a), we get the result
in Figure 5(b). The blue line is the theoretical value of
the cumulative spectral coefficient distribution, and the red
line is the ground truth. When the frequency offset is 0,
all sampling points of the symbol are in the window. The
spectral coefficient reaches the maximum. When the frequency
offset increases, the sampling point of the symbol slides
out of the window, resulting in a decrease in the spectral
coefficient. From the results, even if the spectral coefficient
calculated at each frequency offset point exists an error with
the theoretical value, the distribution of the actual cumulative
spectral coefficient is very similar to the theoretical results. It
is clear that cumulative spectral coefficient is more accurate,
compared with a signal spectral coefficient.

Righte slide

Left  slide

(a) Sliding window

- -100200 0 100 200

Frequency O setff

0

50

100

150

|
|

F
F

T
Theoretical value

Ground truth

(b) Cumulative spectral coefficient

Fig. 5. The distribution of cumulative spectral coefficient is obtained through
the sliding window.

In addition, cumulative spectral coefficient makes it easier
to distinguish symbols with similar spectral coefficients. As
shown in Figure 6, the target symbol cannot be simply
extracted as a result of the same spectral coefficients of
three peaks. When the window slides to the left or right,
the sampling points of the two interfering symbols in the
window increase accordingly, while the sampling points of
the target symbol decrease in the window. By exploiting this
phenomenon, SCLoRa manages to increase the differences
of cumulative spectral coefficient between the interference
symbol and the target symbol for identifying the target symbol.

Figure 7 depicts the result of cumulative spectrum coeffi-
cient of the target symbol and the interference. In particular,
Figure 7(b) reflects the difference of cumulative spectral coef-
ficient of the interfering symbols when the signal boundaries
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of the two symbols are aligned. When the boundaries of
the signals are close, the power (e.g., Ap) can be used to
distinguish the symbols.
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Fig. 7. The cumulative spectrum coefficient distribution of the interfering
symbol and the target symbol.

C. Symbol Classification

By calculating cumulative spectral coefficient, we not only
reduce the influence of signal amplitude fluctuations but also
increase the degree of discrimination between peaks in the
window with similar spectral coefficients. Therefore, we use
the results of cumulative spectrum coefficient to classify the
mixed symbols in the spectrum. Algorithm 1 describes the
process of symbol classification.

Algorithm 1 Symbol classification extraction for packet j
1: for count=1 to n do
2: SCj = 1

M sum(Su[ku]);
3: end for
4: while l < PayloadLen do
5: s(window) = x(window) × x(downchirp);
6: Sp=FFT(s(window));
7: pick(Sp, pi);
8: while −fW < ∆f < fw do
9: for i=1 to n do

10: Errori+=abs(SCj-Ai
∆f

f∆
-CSCpi [∆f ]);

11: end for
12: end while
13: TargetSymbol=min(pi, Errori);
14: end while

First, we need to determine the boundary of each signal
(described in the next section) and assign a window to each
signal. Initially, the boundaries of the allocated windows are
respectively aligned with the corresponding signal boundaries,
so the spectral coefficient of the target symbol in each window
reaches the maximum value for no frequency offset. In order
to select the target peak correctly, we evaluate each peak in the
initial window. We slide the window according to Eq.(5) and
calculate the spectral coefficient of each peak. The evaluation
result of each symbol is represented by Errorp as follows

Errorp =

N∑
s=−N

∣∣∣∣∣∣SCj −
|s|∑
i=1

A[i] − CSCp[sf∆]

∣∣∣∣∣∣ (6)

where A[i] represents the ideal amplitude of the sampling point
and each value in it is equal to 1. SCj is the reference of
spectral coefficient(introduced in next section), as a conse-
quence, SCj −

∑|s|
i=1 A[i] represents the spectral coefficient

of the shifted peak. And CSCp[sf∆] denotes the actual
spectral coefficient of the shifted peak. Since the theoretical
value of the spectral coefficient of the target symbol can
be calculated, Errorp can be used to represent cumulative
spectral coefficient error between the actual value and the
theoretical value. After evaluating all the peaks in the initial
window, we select the one with the smallest Errorp as the
target symbol. Then we align the window with the boundary
of the next symbol in the packet and evaluate the peak in the
window. Our principle of classifying symbols is to classify the
symbols with the smallest evaluation error when the window
finishes scanning all the symbols.

D. Packet Processing

This section introduces how SCLoRa detects LoRa trans-
missions and further demodulates with its spectral coeffi-
cients discussed above. To detect ongoing LoRa transmissions,
SCLoRa utilizes the preamble detection to identify the LoRa
preambles, which are based on the continuously repeated
peaks with the same frequency and spectral coefficient in the
spectrum. This is effective because even if the time-domain
signal is destroyed, the frequency and spectral coefficients
in the spectrum can still be effectively extracted. SCLoRa
requires a symbol period duration to collect enough samples
for distinguishing collided transmissions. This increases to a
preamble period when collided signals have aligned bound-
aries. After identifying LoRa preamble, SCLoRa knows the
exact the start of transmission and SF, thus knowing the
symbol boundary based on the relationship between frequency
offset and time offset. With detected LoRa transmissions,
SCLoRa resolves the collision problem of uplink transmission
with the following procedures. The basic idea is to go through
the packet with cumulative spectral coefficient computation
and symbol classification.

To measure the spectral coefficients of different LoRa
transmissions, SCLoRa analyzes the preamble signal. When
detecting preamble, we calculate the spectral coefficient of
each upchirp in the preamble of each signal. We set the



average value of these spectral coefficients in the preamble
as a reference value (e.g., SCj in Algorithm 1) for spectral
coefficients of symbols in the payload. We use Su[k] to
represent the spectral components of the upchirp and ku to
represent the frequency of the upchirp in preamble according
to Eq.(3). And we count the Peak(ku, Su[ku]) of each upchirp
in the preamble. We represent the average result of spectral
coefficients in the preamble as 1

N SCj , which serves as the
reference spectral coefficient of each symbol in packet j. And
SCj is defined as follows

SCj =
1

M

M∑
i=1

Sui
[ku] (7)

where M represents the number of the upchirp in the preamble
and ui represents the upchirp i. In addition to the measurement
based on the preamble, SCLoRa also updates the measured
spectral coefficients iteratively based on the current LoRa
signal, so that it is able to track the dynamic channel.

The overhead of SCLoRa mainly comes from FFT for the
calculation of spectral coefficients, which makes the deploy-
ment of SCLoRa on programmable base stations feasible.
The computation cost of FFT is O(nlog(n)). For SCLoRa,
to evaluate the symbol by cumulative spectral coefficient, the
computation costs of one target symbol extraction becomes
O(nwNlog(N)), where is the N is the number of sampling
points in the window and nW is the number of windows
sliding. For the payload length l, the total computation of
symbol classification is O(lnwNlog(N)).

E. Spectrum Leakage Elimination

Due to the limited sliding window, the FFT results of LoRa
signal suffer from spectrum leakage. To alleviate this issue,
we utilize different window functions. Specifically, rectangular
window makes the main lobe narrow and the side lobe drop
slowly, so the frequency can be more accurate. Blackman
window makes the main lobe wider and the side lobe drop
quickly, which helps to get the spectral coefficient accurately.
The Blackman window makes it easier for us to determine the
symbol and the rectangular windows reduce the error of spec-
tral coefficient estimation. We filter the original information
by adding Windows twice to make the frequency and spectral
coefficient more accurately. In addition, the target frequency is
convex in the spectrum, so the frequency identification error
can be reduced by setting the part of the spectrum of the
non-convex frequency to 0. By doing this, we can effectively
reduce the error caused by spectrum leakage.

IV. PERFORMANCE EVALUATION

In this section, we present the experiment results under
different settings and the comparison with existing methods.
We implement SCLoRa and perform experimental evaluations
at USRP B210 and LoRa commodity nodes, which are shown
at Figure 8. The commodity nodes use the STM32 chip as the
main control chip, SX1278 as the radio frequency chip, and
the 3.7v lithium battery to power the entire equipment. The
crystal oscillator circuit that provides the clock for the master

Fig. 8. The scenes of experiments we conducted indoors and the distribution
of our equipment. The left part contains 20 SX1278 commodity nodes, a
USRP B210, and a laptop. The right part depicts some detailed distributions
on commodity nodes, in which STM32L52RCT, SX1278 and Li-Po batteries
are used.

chip adopts the ST recommended routing method to minimize
the interference of the environment and electromagnetic. And
we also used MATLAB for signal processing. Both our USRP
B210 and commodity nodes operate at 510MHz bands. In
our experiments, we use commodity nodes as the sender to
transmit data, and then we use USRP B210 as the base station
to receive signals transmitted by the commodity nodes. The
USRP B210 is connected to a Dell XPS13 and is controlled
by Gnu-Radio.

Our experiments are conducted on a university campus.
Indoor experiments are conducted in an experimental building,
while outdoor experiments are conducted on playgrounds and
on campus roads. There is nearly no equipment working
in the 510MHz band in our experimental environment, so
we can more easily control our settings and environment.
Our commercial equipment supports a variety of SF and
bandwidth, mainly including SF6 to SF12 and bandwidths of
62.5KHz, 125KHz, 250KHz, 500KHz.

Next, we will evaluate the performance of SCLoRa in
different environments and different RF parameter settings. In
the experiments, we mainly compare SCLoRa with the two
technologies FTrack [18] (e.g., the-state-of-art) and LoRa [1]
(i.e., the actual LoRa).

A. Main performance

a) Performance of different numbers of nodes: To ex-
plore the impact of the number of nodes in the network on
the performance, we conduct the following experiments. In
the experiments, the number of nodes is from 2 to 20, and the
bandwidth of all nodes is 125KHz. Figure 9 shows the results
when the SF is 8, 10, and 12, respectively. The packet sending
interval is random (i.e., 1000-2200ms). The packet contains a
22-byte payload and 8 upchirps preamble.

As shown in Figure 9, we evaluate SCLoRa by analyzing the
throughput of the network. In the three figures, the collision is
most serious at SF12, followed by SF10 and SF8. The result
shows that FTrack does not perform well when the SF is
small. Because when SF becomes smaller, the symbol duration
becomes shorter. When the signals collide, a shorter duration
results in similar signal boundaries. For FTrack, similar signals
boundaries will cause collided signals to be indistinguishable.
In addition, the large SF causes the symbol duration to be
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Fig. 9. The network throughput varies with the network size under different SF: 9(a) depicts the case when SF is 8, 9(b) depicts the case where SF is 10,
and 9(c) depicts the case where SF is 12.

longer, and the channel occupancy will increase significantly.
In this case, as shown in Figure 9, even when the number of
nodes and the number of transmitted packets increase, severe
collisions cause LoRa’s throughput to decrease significantly.
For FTrack, as the number of nodes increases, the boundaries
of more signals are similar, which makes separation difficult.

b) The performance with different SNRs: In this exper-
iment, we explore the performance with different SNR. The
experiment is also carried out indoors, where four nodes are
used as terminal devices for transmission with the same pa-
rameters(bandwidth=125KHz, packet sending interval=(100-
200ms), carrier frequency=510MHz). The packet contains a
22-byte payload and 8 upchirps preamble. We conducted
comparative experiments in three SF(e.g., SF8, SF10, and
SF12) at low SNR(< 5dB), medium SNR(5 − 20dB), and
high SNR(> 20dB) as shown in Figure 10.

From Figure 9 we can see that SCLoRa has the highest
throughput, followed by FTrack, and the lowest is LoRa. And
it can be observed that when the SF is small (SF8), the
performance of FTrack is similar to LoRa, especially when
the SNR is low. When the signals are overlapped, a small
SF may make the boundarie of signals close, which makes
it difficult to distinguish symbols for FTrack. In addition,
frequency extraction is not very accurate at low SNR for
FTrack, which makes solving collision more difficult. From the
experimental results, we can see that SCLoRa is less affected
when the SNR decrease. This is because cumulative spectrum
coefficient can effectively identify the noise interference.

c) Performance of different duty cycles: We evaluate
the performance of SCLoRa under burst traffic. The sudden
traffic may be caused by two reasons: dense deployment
and expanding packet delivery ratio [19] in the network. In
real usage scenarios, low power device LoRa can adopt a
duty cycle of 2% [18]. In order to facilitate the evaluation
of our experiments, we will increase the duty cycle of the
device to simulate burst traffic scenarios. We will compare
the performance of the base station to deal with collisions
during concurrent transmission at three different duty cycles
(duty cycle = 10%, 20%, and 40%). All end devices tested here
maintain the same SF=8 and the same bandwidth = 125KHz
and center frequency=510MHz. We set up 20 end devices

indoors, and a USRP B210 as a base station to receive their
packets. If the devices in the real environment are set with a
2% duty cycle, then three different duty cycles can represent
100, 200, and 400 devices in the network for concurrent
transmission.

The results of the experiment are shown in Figure 11(a). We
compared the throughput of SCLoRa, FTrack and LoRa. The
evaluation results show that SCLoRa performs best, followed
by FTrack, and LoRa has the worst performance because it
does not have the ability to resolve conflicts. For FTrack,
the core of its design is to utilize the different boundaries
of conflicting signals to distinguish the signals, and its per-
formance is easily affected by RF parameters (e.g., SF and
bandwidth). Here we set a smaller SF, which may lead to
certain performance limitations of FTrack. Because shorter
symbols lead to shorter air time [20], the signal boundaries
are similar or the same, which cannot be solved by FTrack.
From Figure 11(a), we can see that the throughput of SCLoRa
is much higher than FTrack. For SCLoRa, we utilize the
cumulative change error of LoRa symbol spectral coefficients
to resolve collisions. The spectral coefficient of the LoRa
symbol is related to the boundary of the signal and the
amplitude of the sampling point. Therefore, when the signal
boundaries are similar, the spectral coefficients of the LoRa
symbol may still be different because of the different power
of the signal. In the process of cumulatively calculating the
spectral coefficient error, the difference between the target
symbol and the interfering symbol will also increase, so we
can more effectively separate the conflicting signals.

d) The performance of different distance: In order to
explore the performance of SCLoRa at different distances,
we fix the base station and place LoRa nodes at different
locations on the campus to test the throughput. As shown in
Figure 12, we place the USRP B210 and the laptop at P1
and four nodes at P2 − P9. The marked points represent
the place of the campus road where many buildings and
trees on both sides of the road which may affect the signal
transmission. The distances of P2-P9 from P1 are shown in
Figure 11(b). The bandwidth of these devices is 125KHz and
the packets including a payload of 22 bytes and a preamble of
8 upchirps are sent in a small random interval(100-220ms). As
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Fig. 10. The throughput of three approaches (SCLoRa, FTrack, LoRa) with different SNR under different SF (8, 10, 12).
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Fig. 11. 11(a) the throughput of three approaches at different duty cycles. 11(b) the performance of concurrent transmission at different distances. 11(c)
shows the performance of collision resolution. 11(d) the distribution of the spectral coefficient of the symbols at different SNR.

a result of the hardware limitations and parameter settings, the
communication distance of our equipment could reach nearly
1 kilometer.

Fig. 12. Outdoor experiment scene: the satellite map of the campus. We place
our equipment at points P1-P9 respectively.

From Figure 11(b), we find that as the communication
distance increases, the throughput of various approaches de-
creases. The major drop in the throughput is mainly due to the
obvious attenuation of the LoRa signal in the transmission pro-
cess in the real environment. As the communication distance
increases, SCLoRa still guarantees the highest throughput.
SCLoRa has a better effect on solving this problem, not only
benefit by the CSS modulation technology used by LoRa but
also because SCLoRa makes full use of the characteristics
of CSS technology by constructing more reliable symbol
classification models based on cumulative spectral coefficient.

e) SRR at different bandwidth: The factors that affect the
performance of LoRa concurrent transmission are not only
scene changes but also the parameter settings. So in order
to explore this impact of different bandwidths on SCLoRa

performance, we conducted the following experiments. Our
experiments are performed in the laboratory. The bandwidth
of four nodes and USRP B210 are set as 62.5KHz, 125KHz
and 250KHz. The packets including a payload of 22 bytes
and a preamble of 8 upchirps are sent in a small random
interval(100-220ms).

As the bandwidth becomes larger, the symbol duration
becomes shorter, which makes the signal collisions fewer.
From Figure 13, it can be observed that as the bandwidth
increases, the performance of the three approaches has been
improved. In the comparison of the symbol reception rate
(SRR) of the three approaches, SCLoRa has the highest SRR,
FTrack is second, and LoRa is the lowest. Besides, a small
SF results in a small symbol duration and a small channel
occupation, so there is less signal collision. As a result, when
the SF is stable, as the bandwidth increases, the SRR also
becomes larger. The comparison results of SCLoRa, FTrack
and LoRa show that SCLoRa is more suitable for concurrent
scenarios. Especially when the BW is small and the SF is
large, SCLoRa can still keep good performance. This is mainly
because the signal boundary does not have a significant impact
on SCLoRa(e.g., the spectral coefficient is related to frequency
deviation and power).

B. Collision resolution capability

In order to intuitively illustrate SCLoRa’s ability to resolve
signal collisions during concurrent transmission, we conducted
the following experiments. We achieve different degrees of
conflict by increasing the number of colliding nodes(from 2
to 10). In order to ensure that all nodes will collide during
transmission, we reduce the transmission cycle of all nodes and
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Fig. 13. The symbol reception rate(SRR) of concurrent transmission at different bandwidth.

set their duty cycle to be greater than 50%. The experiment
is conducted in the school’s laboratory, during which there
is no interference from other signals. We evaluate the ability
to resolve collisions by measuring the symbol reception rate
(SRR) at the base station. And we compare the performance
of SCLoRa with FTrack and LoRa.

The experimental results are shown in the Figure 11(c),
and the three lines represent the symbol reception rate of
three different technologies when a signal collision occurs. We
observe that SCLoRa performs best in the ability to resolve
signal collisions during concurrent transmission, followed by
FTrack, and LoRa performs the worst because it does not have
the ability to resolve collisions. In this experiment, due to the
high duty cycle of the transmitted signal, the collision signal
boundary will be relatively close, especially when the number
of colliding nodes increases. Since SCLoRa considers the
information of frequency offset and power in two dimensions,
it is easier to distinguish the symbols in the case of such
symbol mixing.

C. SCLoRa overhead

Computation overhead: We compare the computation over-
head of SCLoRa and FTrack. Table III shows the average over-
head of correctly demodulating a LoRa symbol of different
numbers of concurrent LoRa transmissions. The computation
overhead increases with the total number of nodes. On average,
SCLoRa’s computation overhead is 69.87% lower than that of
FTrack.
Energy consumption: We also compare the energy consump-
tion of LoRa nodes in both SCLoRa and FTrack designs.
When LoRa packets are corrupted, LoRa nodes are required
to retransmit, leading to higher energy consumption. Table IV
demonstrates the energy consumption of LoRa nodes to suc-
cessfully transmit one LoRa packet of different numbers of
concurrent LoRa nodes. Since SCLoRa offers better com-
munication reliability under collisions, LoRa nodes manage
to save more energy consumption. For example, the energy
consumption of SCLoRa is 56.46% lower than that of FTrack
when the number of concurrent transmissions equals four.

D. Design insights

a) Spectral coefficient stability: In SCLoRa, the spectral
coefficient of LoRa signal is mainly used to classify symbols.

No. of Collided Trans 2 4 6 8 10
SCLoRa (ms) 0.64 1.61 1.95 2.14 2.36
FTrack (ms) 1.12 3.98 9.11 10.79 20.16

TABLE III
OVERHEAD COMPARISON

No. of Collided Trans 2 4 6 8 10
SCLoRa (×10−3 J) 2.29 2.63 3.17 3.64 4.59
FTrack (×10−3 J) 4.76 6.04 8.77 13.02 19.50

TABLE IV
ENERGY COMPARISON

In order to verify the reliability of the theory that the spectral
coefficient of symbol remains stable in one packet, we evaluate
the spectral coefficients of the target symbols in the packet
in the real environment. We measure the fluctuation of the
spectral coefficients by measuring the standard deviation of
a set of symbols in multiple packets. From the previous
description, we know that the spectral coefficient is related
to the power of the signal and the frequency offset of the
symbol. Noise is likely to affect the spectral coefficient of
the symbol because it affects the power of the signal. So we
measure the fluctuation of the spectral coefficients in the LoRa
packet at low SNR(< 5dB), medium SNR(5−20dB) and high
SNR(> 20dB) by commodity nodes.

The three curves in Figure 11(d) respectively count the
CDFs of the stability of the spectral coefficients of the symbols
at different SNR. In Figure 14, the fluctuation ratio represents
the error ratio of actual value to the theoretical value. At
high and medium SNR, the fluctuation ratio of the spectral
coefficient approximately reaches 90% of the symbols. Even
at low SNR, the fluctuation rate of the spectral coefficient
of approximately reach 80% of the symbols. The above
experimental results show that the spectral coefficients of the
symbols in a packet are almost stable. So it is feasible to use
the spectral coefficients of the symbols to distinguish different
signals.

b) Spectral coefficient changes as the window slides:
In SCLoRa, we establish an accurate symbol classification
model based on cumulative spectral coefficient. To illustrate
the reliability of the model, we measure the error between the
actual value of spectral coefficient under the window sliding
and the theoretical value. Considering the effect of noise, our
experiments are performed at low SNR(< 5dB), medium
SNR(5 − 20dB) and High SNR(> 20dB). In addition, in
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Fig. 14. The fluctuation ratio between the spectral coefficient of the ground truth when the window is sliding.

order to explore the change of the symbol’s spectral coeffi-
cient under different degrees of window slide, we set small
slide(< 1/3symbol duration), medium slide(1/3− 2/3symbol
duration), and large slide(> 2/3symbol duration) respectively
for experiments.

In Figure 14, the fluctuation ratio represents error rate of
actual value to theoretical value. And we can find that when
the window is sliding, the stability of the symbol’s spectral
coefficients is best at high SNR, then medium SNR, and low
SNR at worst. Comparing the small slide, medium slide and
large slide, we find the small slide brings the highest stability
of the spectral coefficients, almost all less than 0.2, followed
by the medium slide (0.4), and the worst is the large slide (0.6).
This is because a large slide causes fewer signals of the target
symbol in the window, and the spectral coefficient of the target
symbol is easily affected by the neighboring symbols and the
overlapped symbols. Therefore, when calculating cumulative
spectral coefficient,we need consider the weight of sliding
Windows to different degrees to ensure more accurate symbol
classification results.

V. RELATED WORK

The problem of collision in wireless networks has always
been the focus of attention. In fact, as the challenges of
LPWAN: capacity and coexistence [14], concurrent trans-
mission becomes an inevitable form, and the resolution of
signal collision problems in concurrent transmission becomes
more important. There are two types of approaches: MAC
approaches and PHY approaches, which are two different
levels of solutions and do not conflict but even collaborate
with each other. The MAC solution, such as [21]–[24], can
guarantee the communication order in the network, thereby
maximizing the effective utilization of the network capacity,
improving the throughput of the network, and ensuring reliable
communication. The PHY solution, such as [15], [18], [25]–
[28], extracts valid information after signal collision.

Orthogonal signals can effectively improve the possibility
of concurrent transmission, [29], [30]explain the orthogonality
between LoRa symbols, which can improve the utilization of
the channel. By combining interference management and inter-
ference cancellation, the technology overcomes the problem of
the throughput limitation in the MIMO LAN [31]. And many
solutions use the nature of various wireless technologies to

solve the PHY layer collision problem [15], [25], [32]. [32]
uses the constellation diagram to implement parallel decoding
for cots RFID tags. [25] uses the relationship between signal
points of ZigBee to extract the phase. [15] uses the imperfec-
tions of the hardware itself to separate the superimposed LoRa
symbols.

The characteristics of LoRa is based on chirp spread spec-
trum(CSS) modulation. In CSS-based ranging studies, signal
collisions are prevented by using backoff time [33]. In recent
researches, instead of retransmitting the entire frame, the
terminal device continuously transmits the bitmap to determine
the correct symbol for each collision frame [34], and full syn-
chronization of the signal is required. For signals that are not
synchronized, the proposed algorithm [35] maps the symbols
together according to the change of the symbols at different
signal boundaries. FTrack [18] separates each symbol by
tracking the frequency of chirp, which performs better in cases
where the boundaries of the signal are not aligned. Similarly, it
is not easy for Choir to distinguish the frequency offset caused
by hardware in burst traffic. mLoRa [28] uses sample-by-
sample and then chirp-by-chirp to decode conflicting packets,
but this method is not applicable to simultaneous collisions
of multiple nodes. Compared with prior work, SCLoRa is
more suitable for burst LoRa traffic since multidimensional
information make it more differentiable for decoding collided
concurrent transmissions.

VI. CONCLUSION

In this paper, we propose a novel design called SCLoRa to
solve the collision of multiple concurrent LoRa transmissions.
SCLoRa makes no hardware or firmware changes in LoRa end
devices and is deployable on programmable base stations. The
core of our design is to make use of the spectral coefficient of
LoRa signal. By leveraging multi-dimensionality in decoding
collided LoRa transmissions, SCLoRa further improves the up-
link transmissions. The experiment results show that SCLoRa
performs well and is suitable for burst traffic scenarios.
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power wide area networks in urban settings,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
pp. 309–321, ACM, 2017.

[16] A.-A. A. Boulogeorgos, P. D. Diamantoulakis, and G. K. Karagiannidis,
“Low power wide area networks (lpwans) for internet of things (iot)
applications: Research challenges and future trends,” arXiv preprint
arXiv:1611.07449, 2016.

[17] M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range
communications in unlicensed bands: The rising stars in the iot and
smart city scenarios,” IEEE Wireless Communications, vol. 23, no. 5,
pp. 60–67, 2016.

[18] X. Xia, Y. Zheng, and T. Gu, “Ftrack: parallel decoding for lora
transmissions,” in Proceedings of the 17th Conference on Embedded
Networked Sensor Systems, pp. 192–204, 2019.

[19] K. Vikram and S. K. Sahoo, “A collaborative framework for avoiding
interference between zigbee and wifi for effective smart metering
applications,” Electronics, vol. 22, no. 1, pp. 48–56, 2018.

[20] J. C. Liando, A. Gamage, A. W. Tengourtius, and M. Li, “Known and
unknown facts of lora: Experiences from a large-scale measurement
study,” ACM Transactions on Sensor Networks (TOSN), vol. 15, no. 2,
pp. 1–35, 2019.

[21] Z. Hu and C.-K. Tham, “Ccmac: coordinated cooperative mac for
wireless lans,” in Proceedings of the 11th international symposium
on Modeling, analysis and simulation of wireless and mobile systems,
pp. 60–69, ACM, 2008.

[22] M. C. Bor, J. Vidler, and U. Roedig, “Lora for the internet of things.,”
in EWSN, vol. 16, pp. 361–366, 2016.

[23] B. Reynders, W. Meert, and S. Pollin, “Power and spreading factor
control in low power wide area networks,” in 2017 IEEE International
Conference on Communications (ICC), pp. 1–6, IEEE, 2017.

[24] J.-T. Lim and Y. Han, “Spreading factor allocation for massive connec-
tivity in lora systems,” IEEE Communications Letters, vol. 22, no. 4,
pp. 800–803, 2018.

[25] L. Kong and X. Liu, “mzig: Enabling multi-packet reception in zigbee,”
in Proceedings of the 21st annual international conference on mobile
computing and networking, pp. 552–565, ACM, 2015.

[26] M. Benbaghdad, B. Fergani, and S. Tedjini, “Toward a new phy layer
scheme for decoding tags collision signal in uhf rfid system,” IEEE
Communications Letters, vol. 20, no. 11, pp. 2233–2236, 2016.

[27] Y. Cao, Z. Wang, L. Kong, G. Chen, J. Yu, S. Tang, and Y. Chen,
“Forward the collision decomposition in zigbee,” in 2019 IEEE 27th
International Conference on Network Protocols (ICNP), pp. 1–11, IEEE,
2019.

[28] X. Wang, L. Kong, L. He, and G. Chen, “mlora: A multi-packet reception
protocol in lora networks,” in 2019 IEEE 27th International Conference
on Network Protocols (ICNP), pp. 1–11, IEEE, 2019.

[29] B. Reynders and S. Pollin, “Chirp spread spectrum as a modulation
technique for long range communication,” in 2016 Symposium on
Communications and Vehicular Technologies (SCVT), pp. 1–5, IEEE,
2016.

[30] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tinnirello,
“Impact of lora imperfect orthogonality: Analysis of link-level perfor-
mance,” IEEE Communications Letters, vol. 22, no. 4, pp. 796–799,
2018.

[31] S. Gollakota, S. D. Perli, and D. Katabi, “Interference alignment and
cancellation,” in ACM SIGCOMM Computer Communication Review,
vol. 39, pp. 159–170, ACM, 2009.

[32] J. Ou, M. Li, and Y. Zheng, “Come and be served: Parallel decoding
for cots rfid tags,” in Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, pp. 500–511, ACM,
2015.

[33] H. Cho and S. W. Kim, “An anti-collision algorithm for localization
of multiple chirp-spread-spectrum nodes,” Expert Systems with Applica-
tions, vol. 39, no. 10, pp. 8690–8697, 2012.

[34] S. Abboud, N. E. Rachkidy, and A. Guitton, “Efficient decoding of
synchronized colliding lora signals,” arXiv preprint arXiv:1902.05295,
2019.

[35] N. El Rachkidy, A. Guitton, and M. Kaneko, “Decoding superposed lora
signals,” in 2018 IEEE 43rd Conference on Local Computer Networks
(LCN), pp. 184–190, IEEE, 2018.


