
SPEED: Resource-Efficient and High-Performance
Deployment for Data Plane Programs

Xiang Chen∗†‡, Hongyan Liu§, Qun Huang∗, Peiqiao Wang‡, Dong Zhang‡, Haifeng Zhou§††, Chunming Wu§††
∗Peking University †Pengcheng Lab ‡Fuzhou University §Zhejiang University ††Zhejiang Lab

Abstract—Programmable switches allow network administra-
tors to customize packet processing behaviors in data plane
programs. However, existing solutions for program deployment
fail to achieve resource efficiency and high packet processing
performance. In this paper, we propose SPEED, a system that
provides resource-efficient and high-performance deployment for
data plane programs. For resource efficiency, SPEED merges
input data plane programs by reducing program redundancy.
Then it abstracts the substrate network into an one big switch
(OBS), and deploys the merged program on the OBS while min-
imizing resource usage. For high performance, SPEED searches
for the performance-optimal mapping between the OBS and the
substrate network with respect to network-wide constraints. It
also maintains program logics among different switches via inter-
device packet scheduling. We have implemented SPEED on a
Barefoot Tofino switch. The evaluation indicates that SPEED
achieves resource-efficient and high-performance deployment for
real data plane programs.

I. INTRODUCTION

Recent advances in programmable switches (e.g., RMT [1])
allow network administrators to develop novel network proto-
cols and functionalities (e.g., key-value cache [2] and sketches
[3, 4]) in data plane programs. Through the switch com-
piler, administrators deploy these programs on programmable
switches to change switch behaviors in accordance with the
demands raised by network applications such as network mon-
itoring [5] and traffic engineering [6]. In particular, network
applications impose two requirements for the deployment of
data plane programs. First, applications should achieve re-
source efficiency. In particular, the resources of programmable
switches are scarce, thereby the program deployment should
occupy as few resources as possible to support more programs.
Second, applications expect high performance, including high
throughput and low end-to-end latency.

However, to the extent of our knowledge, none of the
existing solutions can satisfy the two requirements. Exist-
ing solutions [7, 8, 9, 10, 11] concentrate on the program
deployment on a single programmable switch. In this case,
it only needs to deal with the resource usage of the single
switch, which is relatively simple. However, the scenario
of multiple switches raises more challenges. For example,
deploying multiple programs can easily exceed the capacity of
available resources in a single switch. It needs to consolidate
resources from multiple switches and allocate the resources
coordinately. In addition, the performance across multiple

Qun Huang is the corresponding author.

switches is determined by various factors, including per-
switch processing and traffic paths. Taking all issues makes
the network-wide placement much more challenging.

In this paper, we propose SPEED, a system that offers
resource-efficient and high-performance deployment for data
plane programs. However, it is not trivial to design such a
system due to program diversity, heterogeneous constraints,
and the need to preserve program logics. In response, we
design SPEED to address the above challenges. Specifically,
SPEED first transforms each program into a table depen-
dency graph (TDG) [12], which is a universal intermediate
representation. Doing so tackles program diversity and eases
further placement. Next, SPEED merges TDGs into a com-
pound TDG. In this step, it identifies and reduces redundancy
among TDGs to save switch resources and enhance resource
efficiency. Thereafter, SPEED handles heterogeneous con-
straints by abstracting the substrate network into an one big
switch (OBS), i.e., a virtual programmable switch that shields
network-wide constraints. It places the compound TDG on
the OBS with the objective of minimizing resource usage
while taking switch resource restrictions into account. Then
it searches for the performance-optimal mapping between the
OBS and the substrate network with respect to network-wide
constraints. Finally, it offers inter-device packet scheduling to
maintain the original program logics among switches.

In summary, this paper makes the following contributions:

• We present our motivation of realizing resource-efficient
and high-performance program deployment (§II). We iden-
tify the design challenges and propose SPEED to tackle
these challenges (§III).

• We articulate the design of SPEED, including program
merging that reduces program redundancy (§IV), TDG
placement on the OBS that minimizes resource usage (§V),
OBS placement on the substrate network that maximizes
performance (§VI), and inter-device packet scheduling that
preserves original program logics (§VII).

• We implement a SPEED prototype with a Barefoot Tofino
switch [13] (§IX). Our evaluation indicates that for the
ten tested data plane programs, SPEED achieves resource-
efficient and high-performance program deployment (§X).

II. BACKGROUND AND MOTIVATION

Background. A data plane program comprises several match-
action tables (MATs). An MAT matches packet headers and
performs actions on packets based on the matching results.978-1-7281-6992-7/20/$31.00 c©2020 IEEE

Fig. 1: Workflow of SPEED.

With MATs, administrators can develop novel network proto-
cols and functions in a hardware-compatible manner. More-
over, programmable switches offer the customizable ASIC
pipeline comprising a fixed number of stages [1, 7]. Each
stage contains a region of SRAM and TCAM resources that
support the deployment of data plane programs.

Goals. In this paper, we address the problem of deploy-
ing multiple programs on a network that contains several
programmable switches. Our work is motivated by recent
advances in the area of programmable networks, which raises
the need of simultaneously deploying multiple data plane
programs in a network. For example, software-defined mea-
surement concurrently runs multiple measurement tasks to
monitor various traffic statistics [14, 15]. In cloud environ-
ments, network operators permit multiple tenants’ programs to
share network resources [16]. In network function virtualiza-
tion, administrators deploy several network functions (e.g., in-
network caching [2]) to provide value-added services [11, 9].

Such deployment needs to address both resource efficiency
and high performance.
• Resource efficiency. The resource capacity of the pro-

grammable switch is extremely limited. For instance, the
memory of a programmable switch is typically tens of
MB [1, 17]. Thus, we should make the best use of switch
resources to reduce overall costs.

• High performance. Many applications impose strict re-
quirements on the performance, especially the end-to-end
latency [18, 19]. For example, adding 1 ms to the latency
leads to ∼80% performance drop on the Memcached server
[20]. Thus, we need to achieve high performance.

III. DESIGN OVERVIEW OF SPEED

In this section, we illustrate the design challenges and our
corresponding design of SPEED.

Challenges. However, we face three design challenges in
program deployment. First, we need to handle the diversity of
multiple programs. For example, the program that realizes a
Count-Min sketch [21] invokes MATs sequentially for packet
processing, while the program for in-network caching [2]
defines many branches, each of which invokes a portion of
MATs, to conditionally process packets. Second, the con-
straints for resource efficiency and high performance are

heterogeneous. For instance, the resource restrictions imposed
by programmable switches are independent of end-to-end per-
formance metrics. Consolidating them is non-trivial. Finally,
a data plane program may be splitted across multiple switches
after deployment. We need to preserve its packet processing
logics. This requires careful program splitting and efficient
inter-device coordination.

Design overview. To address the above challenges, we pro-
pose SPEED, a system that provides resource-efficient and
high-performance program deployment, as shown in Figure 1.
First, SPEED converts input programs into TDGs to address
the challenge of program diversity. Then it offers an algo-
rithm based on longest common subsequence (LCS) [22] that
merges TDGs into a compound TDG with respect to the LCS
of mergeable MATs. In particular, the LCS-based algorithm
reduces program redundancy when merging TDGs so as to en-
hance resource efficiency. Second, to tackle the heterogeneous
constraints, SPEED abstracts the substrate network into an
OBS. It places the compound TDG on the OBS with respect
to switch resource restrictions while minimizing the number of
occupied stages. Next, it searches for the performance-optimal
mapping between the OBS and the substrate network while
taking network-wide constraints into account. Third, SPEED
offers inter-device packet scheduling that correctly directs
traffic to preserve the original program logics. It also enables
the exchange of metadata fields among different switches.

IV. PROGRAM MERGING

In this section, we elaborate how SPEED merges input
programs into a compound TDG. We illustrate the notion of
TDG (§IV-A) and the workflow of program merging (§IV-B).

A. TDG Generation

Given a data plane program, SPEED generates the cor-
responding TDG. A TDG is a direct acyclic graph (TDG)
T = (VT , ET) [7]. The nodes in VT represent the MATs
defined in the program, and the directed edges in ET repre-
sent the execution dependencies between MATs. Each MAT
u ∈ VT has the following properties: (1) a set fmu recording
the matching fields of u; (2) a set au recording the actions of
u; (3) a set fau recording the fields modified by the actions
of u; (4) the match type, i.e., exact, longest prefix match, or
wildcard; (5) the maximum number of rules eu; and (6) the
width (in bits) of each rule wu. Each edge (u, v, tu,v) ∈ ET

indicates the dependency between two MATs, u and v, where
v is a downstream MAT of u. The dependency type tu,v of
an edge can be (1) Match dependency (M): u modifies a
field f ∈ fau ∩ fmv ; (2) Action dependency (A): both u and v
modify the same field f , i.e., f ∈ fau ∩ fav ; (3) Reverse match
dependency (R): u matches a field f ∈ fmu ∩fav ; (4) Successor
dependency (S): whether to execute v depends on fau ; and (5)
No dependency (N): u and v are not interdependent.

To generate a TDG T , SPEED enumerates every MAT and
obtains MAT properties to build TDG nodes. Then it identifies
the dependency between each pair of MATs to construct TDG
edges. Also, according to TDG edges, it creates a dependency

2 4 6 8 10
of MATs

0

20

40

Us
ag

e
(%

) Ground True
w/o Sharing
w/ Sharing

(a) SRAM Usage

2 4 6 8 10
of MATs

0

2

4

Us
ag

e
(%

) Ground True
w/o Sharing
w/ Sharing

(b) VLIW Usage
Fig. 2: Impact of merging MATs on resource usage.

matrix DT [10]: given an edge (u, v, tu,v) ∈ ET , DT [u, v] =
1 if tu,v ∈ {M,A,R,S}; DT [u, v] = 0 if tu,v = N.

B. TDG Merging

Motivation. Our motivation of program merging comes from
the need to reduce resource usage and the occurrence of
redundant operations. For example, in software-defined mea-
surement (SDM) [14, 15, 23, 24, 25, 26, 27], the applica-
tions (e.g., anomaly detection) require to measure various
traffic statistics (e.g., per-flow count and flow cardinality).
However, a measurement algorithm usually only measures
partial statistics, which lacks of generality. Thus, SDM of-
ten simultaneously deploys multiple SDM algorithms (e.g.,
sketches [3, 4]) in the network for collecting multiple types of
statistics, which highlights the need to optimize their overall
resource consumption. Moreover, we observe that different
SDM algorithms are likely to perform the same operations;
for instance, all sketch algorithms need to compute several
hash functions to locate the positions to store statistics. This
raises the opportunity of program merging.

Observations. Our design of program merging is based on
two observations. First, we observe that merging MATs can
reduce the overall resource usage if and only if MATs are
mergeable. We define that two MATs are mergeable if (1)
their matching fields and actions are the same, and (2) their
resources can be shared between them. To justify our observa-
tion, we study the impact of merging MATs on resource usage
on a Barefoot Tofino switch [13]. Above all, we write a data
plane program in P4 [12]. The program has n identical MATs,
each of which matches five-tuples and executes a routing
action with respect to 216 rules. Thus, the required capacity
of switch resources equals to n× 216 rules. We vary n from
2 to 10 and measure the resource usage as the ground true.
Next, we use two different methods to merge the n identical
MATs, respectively. First, we merge the n identical MATs into
a compound MAT without resource sharing (“w/o Sharing”),
i.e., the compound MAT retains the same capacity of n× 216

rules. Second, we merge the n identical MATs but permit
resource sharing (“w/ Sharing”). In this context, the compound
MAT uses a shared memory region, which has a capacity
of 216 rules. We measure the resource usage after merging
MATs and compare it with the ground true. Figure 2 indicates
the resource usage is reduced only when resource sharing is
activated (“w/ Sharing”), which justifies our observation.

Second, we observe that in most cases, it is sufficient to
only address the default-only MATs, i.e., those contain no
matching fields or only one rule. Even though default-only
MATs are simple, merging them still brings many benefits. For

example, multiple SDM tasks usually execute some identical
operations (e.g., hashing) via default-only MATs. Thus, merg-
ing these default-only MATs can reduce the overall usage of
switch resources. For other MATs (referred as normal MATs),
note that their rules are installed at runtime after the program
is actually deployed. Since it is infeasible to obtain MAT
rules in the deployment, we do not take normal MATs into
account. Further, merging normal MATs brings limited gain.
For instance, advanced load balancers require a capacity of
millions of MAT rules to record connections [17, 28]; network
functions need large lookup tables for handling different flows
[29]; in-network caches store a large amount of key-value
items in MATs [2]. Such rules are typically application-
specific so that there are limited opportunities to merge them
with others.

According to our observations, we design SPEED to only
identify and merge default-only MATs. We leave the merging
of application-specific normal MATs in our future work.
Problem statement. Given several TDGs as input, SPEED
needs to merge these TDGs into a compound TDG Tm. It aims
at minimizing the number of stages occupied by Tm, which is
determined by both MAT dependencies and the resource usage
of Tm [7]. In particular, the MAT dependencies are supposed
to be preserved during TDG merging so as to maintain the
original program logics. Thus, to minimize the number of
stages, the objective of SPEED is to maximize the number of
merged MATs in Tm. Here, two MATs u, v defined in input
TDGs can be merged into a merged MAT w ∈ VTm if and
only if the following constraints are simultaneously satisfied.
(1) Equivalence. u and v use the same matching fields and
actions: fmu = fmv , au = av .
(2) Default-only. u and v are default-only MATs, i.e., the
MATs that have no matching fields or only execute a default
action: fmu = fmv = φ, or eu = ev = 1.
(3) Correctness. Merging u and v into w will not interrupt
the original MAT dependencies in ET1

and ET2
:

DTm [a, u] = DT1 [a, u],∀u, a ∈ VT1

DTm
[u, b] = DT1

[u, b],∀u, b ∈ VT1

DTm
[c, v] = DT2

[c, v],∀v, c ∈ VT2

DTm
[v, d] = DT2

[v, d],∀v, d ∈ VT2

(4) Loop-free. The compound TDG Tm is loop-free:

DTm
[a, b] ·DTm

[b, a] = 0,∀a, b ∈ VTm

Solution overview. We merge the TDGs iteratively. Given
n input TDGs, we pick up and merge two of them in each
iteration. After n − 1 iterations, there is only one TDG left,
which is the resulting merged TDG. Thus, the problem is
reduced to merge two TDGs with maximum merged nodes.
This problem can be solved by maximizing the length of LCS
between topological orderings of the two TDGs (proved by
Theorem 3.3 in [30]). We propose an LCS-based algorithm
(Algorithm 1) that runs in polynomial time as follows.
Algorithm. SPEED takes two TDGs, T1 and T2, as input.
It first obtains their topological orderings (line 2). Then it
enumerates every pair of MATs defined in the two TDGs to

Algorithm 1 Merging TDGs.
Input: TDG T1 = (VT1 , ET1), TDG T2 = (VT2 , ET2)
Output: compound TDG Tm
Variables: set s of pairs of mergeable MATs
1: function MERGE TDG(T1, T2)
2: order1 ← TopoSort(T1), order2 ← TopoSort(T2)
3: s← Get Mergeable MAT Pairs(VT1 , VT2)
4: if s == φ then
5: Tm ← ParallelMerge(T1, T2)
6: return Tm
7: else
8: lcs← LCS(odr1, odr2, s)
9: VTm ← lcs ∪ (VT1

− lcs) ∪ (VT2
− lcs)

10: ETm ← Deduplicate(ET1
∪ ET2

, lcs)
11: return Tm = (VTm , ETm)
12: end if
13: end function

Fig. 3: Example of merging two TDGs.

obtain a set s that records the pairs of the MATs that can
be merged, i.e., mergeable MATs (line 3). Specifically, for
each pair (u, v) (u ∈ VT1

, v ∈ VT2
), it determines whether

the two MATs satisfy the constraints as mentioned above. If
so, u and v are mergeable, and (u, v) is added to s. Next,
if s is empty, SPEED produces Tm by adding a pre-visiting
MAT and parallelly connecting T1 and T2 to the pre-visiting
MAT (lines 4-7). Otherwise, it inputs topological orderings
and s into an LCS solver to obtain an LCS (line 8). The LCS
solver uses dynamic programming for problem solving with
respect to s. Note that topological orderings may correspond
to multiple LCSes. We design the LCS solver to output the
first LCS it solved since every LCS meets our objective.
Finally, SPEED calculates ETm

as the union of ET1
and

ET2
. It also needs to deduplicate VTm

based on lcs (line 10).
This is because both ET1

and ET2
hold the same set of the

dependencies of the MATs defined in lcs.
Example. SPEED first acquires the topological orderings of
input TDGs, T1 and T2 (Figure 3(a)-(c)). It identifies three
pairs of MATs that are mergeable (Figure 3(d)). Then it runs
the LCS solver to obtain the LCS of topological orderings
(Figure 3(e)). The LCS indicates that the maximum number
of merged MATs is three. According to the LCS, SPEED
merges VT1

and VT2
into VTm

, and connects the MATs in
VTm

based on ET1
and ET2

. For instance, it merges a2 ∈ VT1

and b3 ∈ VT1 into c2 ∈ VTm . It connects c2 to b5 based on
the edge from b3 to b5, which originates from ET2 .

V. TDG PLACEMENT ON ONE BIG SWITCH

In this section, we describe (1) how SPEED abstracts the
substrate network into an OBS, and (2) how SPEED places

TABLE I: Notation of symbols.
Symbol Description

N Number of OBS stages.
VQ Set of virtual nodes in the linear OBS request.
EQ Set of virtual links in the linear OBS request.
VG Set of switches in the substrate network.
EG Set of physical links in the substrate network.
Pu,v Set of paths between two programmable switches.
Ft Throughput for packet processing.
Fl Packet transmission latency.
ps Switch programmability.
bs Switch bandwidth.
ls Switch processing latency.
bp Path bandwidth.
lp Path transmission latency.
ρ Number of stages per programmable switch.
N Number of stages in OBS.
MS Capacity of SRAM resources in a switch stage.
MT Capacity of TCAM resources in a switch stage.
RS SRAM resources used by an MAT.
RT TCAM resources used by an MAT.
SS Start stage ID of an MAT.
SE End stage ID of an MAT.
D Variable denoting if two MATs should be separated.
xui Variable denoting if an MAT is placed on a stage.
α
uQ
uG Variable denoting if a virtual node is placed on a switch.
β
uQ,vQ
p Variable denoting if a virtual link is placed on a path.

the compound TDG Tm on the OBS with the objective of
minimizing resource usage. Table I summarizes the notations.

One big switch. SPEED first identifies both the number
∣∣NP

∣∣
of programmable switches in the network and the number ρ of
stages per programmable switch. Then it constructs a virtual
programmable switch with N =

∣∣NP
∣∣×ρ stages as the OBS.

Each OBS stage offers a region of memory resources for the
placement of MATs. Here, memory resources include SRAM
(denoted by MS) and TCAM (denoted by MT). The i-th OBS
stage has a stage ID of i.

Problem statement. SPEED takes the compound TDG Tm =
(VTm

, ETm
) and the OBS as input. It aims to place the MATs

in VTm
on the stages of OBS while respecting the MAT

dependencies recorded in ETm
. It produces a set of binary

decision variables, {xui } , u ∈ VTm , i ∈ [1,N]: xui = 1 if the
MAT u is placed on the i-th stage of OBS; xui = 0 otherwise.

Objective. SPEED aims to minimize the number of OBS
stages occupied by Tm, which equals to minimizing the
maximum stage ID λ occupied by the MATs in VTm :

min λ (1)

λ = max
∀u∈VTm ,∀i∈[1,N]

(xui · i) (2)

NP hardness. However, the above problem is extremely hard.
In fact, even a special case of this problem is NP-hard. In
the special case, none of the MATs in VTm

depends on other
MATs, and each MAT can only be assigned to one stage. This
special case equals the bin packing problem, which has been
proved as NP-hard [31]. Thus, it follows that our problem is
also NP-hard because our problem is more general.

Optimization framework. In essence, the above problem is a
0-1 integer programming problem since its output comprises

0-1 variables. Thus, SPEED offers an optimization framework
that relaxes the NP-hard problem via linear programming
relaxation to solve the problem in polynomial time. The
framework encodes our objective and constraints, including
both switch resource restrictions and MAT dependencies in
ETm

, and inputs them to a solver, Gurobi [32], to obtain
the resource-optimal placement

{
xui
j

}
. We illustrate how the

framework encodes constraints as follows.
(1) Switch resource restrictions. The resources used by the
MATs placed on a switch stage must not exceed the capacity
of the stage. Therefore:∑

u∈VTm

(xui ·RS(u)) ≤MS , ∀i ∈ [1,N] (3)

∑
u∈VTm

(xui ·RT (u)) ≤MT , ∀i ∈ [1,N] (4)

Here, the resource usage of each MAT can be calculated based
on MAT properties. Given an MAT u ∈ VTm , its resource
usage depends on its match type, number of rules eu, and
width of each rule wu. If u only uses the match type exact, its
usage of SRAM RS(u) = eu×wu bits; otherwise, it occupies
RT (u) = eu × wu bits TCAM and does not use SRAM.
(2) MAT dependencies. The placement solution must respect
the MAT dependencies indicated by ETm . Specifically, pro-
grammable switches prohibit the MATs with match/action
dependencies from being placed on the same stages in order
to maximize throughput [7]. Given two MATs u, v ∈ VTm

,
if v depends on u with a match/action dependency, the start
stage occupied by v (denoted by SS(v)) must occur after the
end stage occupied by u (denoted by SE(u)), i.e.

SS(v) ≥ SE(u), ∀D(u, v) = 1 (5)

Here, the boolean variable D(u, v) indicates if u and v should
be placed in different stages: D(u, v) = 1 if u and v should
be placed in different stages; D(u, v) = 0 otherwise. For
each edge (u, v, tu,v) ∈ ET : D(u, v) = 1 if tu,v ∈ {M,A};
D(u, v) = 0 if tu,v ∈ {R,S,N}.

VI. ONE BIG SWITCH PLACEMENT ON NETWORK

In this section, we first illustrate how SPEED places the
OBS on the substrate network. Then we present the details
of deploying the compound TDG on programmable switches
with respect to placement results.
OBS request. SPEED first encodes the OBS into an OBS
request Q = (VQ, EQ), where VQ is the set of virtual nodes
and EQ is the set of virtual links. The i-th virtual node uQ ∈
VQ corresponds to the sequence of ρ OBS stages, the IDs
of which range from (i − 1) · ρ to i · ρ. For example, the
left virtual node shown in the Step#3 of Figure 4 represents
the sequence of the first two OBS stages. Each virtual link
(uQ, vQ) ∈ EQ represents the link from the i-th virtual node
uQ to the (i+ 1)-th virtual node vQ.
Substrate network. The substrate network can be represented
by a directed graph G = (VG, EG), where VG and EG denote
the set of switches and that of physical links in the substrate

network, respectively. Each switch uG ∈ VG has three proper-
ties: (1) ps(uG) indicates switch programmability. ps(uG) = 1
if u is programmable; ps(uG) = 0 otherwise; (2) bs(uG)
represents the switch bandwidth in Gbps; and (3) ls(uG)
denotes the processing latency in milliseconds. Each physical
link (uG, vG) ∈ EG between two switches uG, vG ∈ VG is
associated with two properties: (1) bl(uG, vG) represents the
bandwidth of (uG, vG) in Gbps; and (2) ll(uG, vG) denotes
the transmission latency of (uG, vG) in milliseconds.

In addition, for each pair of programmable switches denoted
by (uG, vG) with uG, vG ∈ VG, ps(uG) · ps(vG) = 1, we
search for the network paths from uG to vG and populate
these paths to a set PuG,vG

. A network path is linear and may
include several links and traditional switches. For each path
p ∈ PuG,vG

, we measure its bandwidth bp and latency lp: bp is
the minimum bandwidth of the links and traditional switches
resided in the path, while lp is the sum of latency of the links
and switches resided in the path. Such measurement can be
easily done by means of a central SDN controller.

Problem statement. Given an OBS request Q = (VQ, EQ)
and the substrate network G = (VG, EG), SPEED needs to
place Q on G via node mapping and link mapping. In node
mapping, it needs to find a unique programmable switch in
uG ∈ VG for each virtual node uQ ∈ VQ. It produces a set of
boolean variables,

{
α
uQ
uG

}
, each of which indicates whether a

virtual node uQ is placed on a switch uG: αuQ
uG = 1 if uQ is

placed on uG; αuQ
uG = 0 otherwise. In link mapping, for the

placement of virtual link (uQ, vQ) ∈ EQ between two virtual
nodes uQ, vQ ∈ VQ, it tries to find a path p between the two
mapped programmable switches uG, vG ∈ EG from PuG,vG .
It outputs a set of boolean variables,

{
β
uQ,vQ
p

}
. If (uQ, vQ)

is placed on p, βuQ,vQ
p = 1; otherwise, βuQ,vQ

p = 0. Note
that our results can be easily extended to the one-to-many
link mapping, where a single virtual link can be mapped onto
several paths using the path-splitting technique [33].

Objective. SPEED aims to achieve maximum packet process-
ing performance, i.e., maximizing throughput or minimizing
per-packet processing latency, leading to a multi-objective
optimization problem. For simplicity, SPEED transforms the
problem into a single objective problem using the weighted
sum method [34]. It defines the objective as a weighted sum:

max (ω · Ft − (1− ω) · Fl) (6)

where Ft and Fl denote the throughput and packet trans-
mission latency, respectively. Here, we ignore the in-switch
processing latency because it is deterministic after TDG
placement [7]. Moreover, ω is a user-configurable 0-1 weight:
when ω = 0, SPEED seeks for minimizing latency; when
ω = 1, it aims at maximizing throughput at runtime.

NP hardness. We show that even a special case of the above
problem is NP-complete. In the special case, the mapping of
nodes in VQ has been provided, while SPEED only needs
to place virtual links. However, even mapping links is hard.
Previous studies [35, 36] have proved that the link mapping
problem equals the unsplittable flow problem, which is NP-

complete. Since the special case is NP-complete, our original
problem is NP-hard.
Optimization framework. SPEED relaxes the above problem
in its optimization framework. Since the variables used by
the above problem are restricted to be either zero or one, the
framework utilizes linear programming relaxation and encodes
network-wide constraints for problem solving. We elaborate
network-wide constraints as follows.
(1) Node assignment. Each virtual node uQ ∈ VQ can only
be assigned to a programmable switch uG ∈ VG, i.e.∑

∀uG∈VG

αuQ
uG
· ps(uG) = 1, ∀uQ ∈ VQ (7)

(2) Link assignment. Each virtual link (uQ, vQ) ∈ VQ can
only be assigned to a path p ∈ PuG,vG between two mapped
programmable switches uG, vG ∈ VG, i.e.∑

∀p∈PuG,vG

αuQ
uG
· αvQ

vG · β
uQ,vQ
p = 1, ∀uG, vG ∈ VG (8)

(3) Performance metrics. The performance metrics include
both throughput Ft and per-packet processing latency Fl. On
the one hand, Ft is the minimum between the minimum
bandwidth of mapped programmable switches (denoted by
F s
b) and the minimum bandwidth of mapped network paths

(denoted by F p
b), i.e.

Ft = min (F s
b , F

p
b) (9)

Here, F s
b is a constant implying the bandwidth capacity of

a programmable switch, while F p
b is the minimal bandwidth

among selected paths, i.e.

F p
b = min

αuQ
uG
· αvQ

vG ·
∑

∀p∈PuG,vG

βuQ,vQ
p · bp

 > 0,

∀uG, vG ∈ VG,∀(uQ, vQ) ∈ EQ

(10)

On the other hand, the latency Fl is calculated as the accu-
mulation of latency of selected paths, i.e.

Fl =
∑

∀(uQ,vQ)∈EQ

∑
∀uG,vG∈VG

∑
∀p∈PuG,vG

αuQ
uG
·αvQ

vG ·β
uQ,vQ
p · lp

(11)

Deployment. SPEED deploys the compound TDG Tm on the
substrate network. It takes, as input, the placement results,
including {xui } for the placement of Tm on the OBS, and{
α
uQ
uG

}
for the placement of OBS on the substrate network.

For each MAT u ∈ VTm
, SPEED makes two decisions: (1)

deploying u on the programmable switch uG ∈ VG; and (2)
placing u on the k-th stage of uG. For the first decision,
SPEED first locates the virtual node uQ ∈ VQ that includes
the i-th OBS stage in which u resides (i.e., xui = 1). Then
it searches for the programmable switch uG ∈ VG, which
sustains the virtual node uQ (i.e., αuQ

uG = 1), as the target
switch for the deployment of u. For the second decision,
SPEED calculates k as follows.

k = i−
⌊
i− 1

ρ

⌋
· ρ

Next, for each programmable switch, SPEED inputs the
MATs to be deployed on the switch and relevant MAT
dependencies recorded in Tm to a target-specific compiler. The
compiler generates corresponding switch configurations and
installs these configurations on switches. After that, SPEED
completes program deployment.

VII. INTER-DEVICE PACKET SCHEDULING

The placement decision may split a program on different
programmable switches to fit resource limitations. However,
this compromises the original MAT dependencies defined in
the programs. First, the lack of packet scheduling between
programmable switches leads to incomplete packet process-
ing. Second, the MATs on a downstream switch cannot obtain
the values of the fields modified by the MATs resided in
upstream switches to continue packet processing.

To this end, SPEED provides inter-device packet scheduling
comprising a four-step workflow: (1) It analyzes the input
TDG Tm to identify the fields modified by MATs. It initials
a specific packet header, i.e., SPEED header, to record these
fields; (2) It inserts a specific routing module to the end of
switch ASIC pipeline. The routing module is a default-only
MAT that includes identified fields into the SPEED header. In
the upstream switch, it piggybacks SPEED header on every in-
coming packet and delivers packets to the downstream switch;
(3) It identifies the paths between the upstream switch and the
downstream switch. It generates routing rules with respect to
MAT dependencies and network paths, and populates these
rules to the traditional switches resided in those paths; (4) The
routing module of downstream switch parses packet headers
and extracts fields from SPEED header. It delivers these fields
to MATs for further processing and removes SPEED header
from packets. In this way, SPEED guarantees the correctness
of packet processing across different switches.

VIII. CASE STUDY

We illustrate the workflow of SPEED via an example shown
in Figure 4. In our example, there are two measurement
programs to be simultaneously deployed. The two programs
execute different sketch algorithms: one runs a Count-Min
sketch [21] but the other runs an ElasticSketch [4]. Each
program invokes three MATs. The first MAT hashes the source
IP address of each packet. The second MAT maintains the
sketch structure to record flow statistics. It uses the hashing
result as the address to locate sketch counters, and updates
corresponding counters accordingly. Finally, the third MAT
matches the source IP address of the packet with its rules.
For the matched packet, it determines which port to output the
packet. Given the two programs as input, SPEED executes the
following three steps to deploy them on the substrate network.
Step#1: program merging. SPEED first converts input pro-
grams into corresponding TDGs. Next, it identifies mergeable
MATs among TDGs. Specifically, there are three pairs of

Fig. 4: Example of SPEED.

MATs that use the same matching fields, i.e., (a1, b1), (a2, b2),
and (a3, b3). Here, only a1, b1 are mergeable MATs, while the
remaining MATs are not. This is because: (1) a1 and b1 are
default-only MATs and perform the same action; (2) a2 and b2
execute different actions (a2 updates Count-Min sketch, while
b2 updates ElasticSketch); (3) although a3 and b3 perform the
same action, they are not default-only MATs. Finally, SPEED
calculates the LCS of mergeable MATs, which is a1 in this
example. According to the LCS, it merges the two TDGs into
a compound TDG Tm.

Our example also illustrates why SPEED does not merge
the two normal MATs a3 and b3. First, if SPEED merges
a3 and b3 while preserving the total capacity of MAT rules
(512+1024=1536 rules), the total resource usage will not be
reduced as mentioned in §IV-B, such that merging a3 and b3
will not bring any benefits. Second, if SPEED merges a3 and
b3 while allowing sharing resources among a3 and b3, the
rule capacity of the merged MAT (denoted by c) must be less
than the total capacity of a3 and b3, i.e., c <1536 rules. In
this context, if administrators want to install more than c rules,
they will encounter unexpected failures because the merged
MAT does not provide sufficient space for MAT rules.

Step#2: TDG placement. SPEED abstracts the network into
an OBS. Suppose that the number ρ of stages per pro-
grammable switch is two. SPEED consolidates the stages of
all the programmable switches to create the OBS with four
stages. It then places the MATs of Tm on the OBS with respect
to MAT dependencies. Here, a strawman solution is to place
each MAT on an individual stage, which occupies four stages.
However, SPEED can find the resource-optimal placement that
minimizes the number of occupied stages (i.e., three stages).

Step#3: OBS placement. SPEED partitions the OBS based

on ρ, the number of stages per programmable switch. The
partitioning generates two virtual nodes, N1 and N2. N1 cor-
responds to the first two stages in OBS, while N2 corresponds
to the last two. There is also a virtual link (N1, N2) from N1
to N2. The two virtual nodes and the virtual link are encoded
as an OBS request. According to network-wide constraints,
SPEED chooses programmable switches and network paths to
place N1, N2, and (N1, N2) with the objective of maximizing
performance. In our example, N1 and N2 are placed in the two
switches, S1 and S2, respectively. The virtual link (N1, N2)
is placed on Path#2 with minimal latency (i.e., 32 ms).

Step#4: Inter-device packet scheduling. SPEED installs
routing modules to programmable switches, and populates
routing rules to these modules. At runtime, the upstream
switch (i.e., S1) looks up its routing rules and decides which
next hop to forward packets. Before sending the packet out, it
piggybacks the essential metadata fields (the index idx in this
example) on packet headers. The downstream switch (i.e., S2)
extracts the index from packet headers and feeds the index to
its MATs for packet processing. It then removes the index
from packet headers to recover the original packet structure.

In addition, SPEED can also enhance measurement ac-
curacy by splitting a measurement program over multiple
switches. For example, when using UnivMon [37] for heavy
hitter detection, we can achieve an F1 score of 0.69 on a
CAIDA 2018 trace [38] with 1.31M flows in one switch with
12 stages, while which SPEED will improve the F1 score to 1
by splitting the sketches over two switches of the same size.

IX. IMPLEMENTATION

Program merging. We implement the function of program
merging in C++. It takes the data plane programs written
in P414 or P416 as input. It translates input programs into
high-level intermediate representations (HLIRs) [39] via the
P4 compiler, P4C [40]. HLIR is a relatively straightforward
translation of the input program that simplifies parsing. For
each HLIR, SPEED generates the TDG by analyzing the
properties of MATs defined in HLIR.

Program placement. We implement the optimization frame-
work for TDG placement and OBS placement atop Gurobi
[32]. SPEED also supports the incremental placement of
data plane programs. Specifically, when new programs arrive,
SPEED does not require any changes to existing deployed pro-
grams. Instead, it places new programs on the programmable
switches whose resources are not exhausted yet. Doing so
will minimize the interruption of the existing deployment.
Also, during network upgrading, administrators can choose
to jointly place the existing programs and new programs via
SPEED so as to produce the resource-optimal deployment.

Runtime control. SPEED configures programmable switches
via P4Runtime [41] and controls traditional switches via
OpenFlow [42]. Also, it periodically measures the available
bandwidth and latency of each path between programmable
switches for making OBS placement decision.

TABLE II: Data plane programs used in our evaluation.
“Dep.” represents MAT dependencies.

Name # MATs # Dep. Name # MATs # Dep.

CountMin (CM) [21] 6 3 Switch-V1 (V1) [44] 9 8
FlowRadar (FR) [45] 24 54 Switch-V2 (V2) [44] 10 10
UnivMon (UM) [37] 35 66 Switch-V3 (V3) [44] 20 20
SketchLearn (SL) [3] 35 66 Switch-V4 (V4) [44] 30 34
ElasticSketch (ES) [4] 21 66 Switch-V5 (V5) [44] 93 148

X. EVALUATION

In this section, we perform experiments to evaluate SPEED.
Our experimental results include:
• The program merging of SPEED reduces the number of

occupied stages and runs faster than P4Visor (Exp#1).
• Compared to heuristics, the TDG placement of SPEED

reduces the number of stages by up to 25% (Exp#2).
• Compared to heuristics, the OBS placement of SPEED

achieves 14%∼59% latency reduction (Exp#3).
• For tested programs and topologies, SPEED completes its

optimization in two seconds, which is acceptable for offline
optimization (Exp#4).

• The inter-device packet scheduling of SPEED consumes
less than 5% switch resources and has a small impact on
packet processing performance (Exp#5).

A. Experimental Setup

Testbed. We build a testbed comprising a 32×100 Gbps
Barefoot Tofino switches [13] and two servers. Each server
has 2.30 GHz CPUs, 128 GB RAM, and a two-port 40 Gbps
NIC. The testbed is organized as a sequential topologic. The
Tofino switch is located in the middle of our testbed. The
leftmost server and the rightmost server run a traffic sender
and a traffic receiver based on MoonGen [43], respectively.
These devices are connected via 40 Gbps links. Moreover,
we employ another server that runs SPEED prototype and
all the comparison methods as the control plane. This server
is directly connected to the devices in our testbed. For each
experiment, we present the average result after 100 runs.
Data plane programs. Table II presents the details of ten
real data plane programs used in our evaluation. Here, the
first five programs implement sketch algorithms and are used
to measure flow statistics. Moreover, the remaining programs
[44] are different versions (V1-V5) of switch.p4 [46], an
open-source data plane program with 123 MATs. Specifically,
V1 turns on l2 lookups and ACL; V2 realizes l2 lookups,
ACL, and ECMP; V3 enables l2 lookups, ACL, ECMP, and
link aggregation group (LAG); V4 supports l2 lookups, ACL,
ECMP, LAG, and multicast; V5 retains most of the functions
of switch.p4, but disables OpenFlow processing.

B. Heuristics for Comparison

We select two sets of heuristics that focus on TDG place-
ment and OBS placement, respectively. These heuristics are
used by representative research studies [7, 33, 47, 48]. Thus,
we compare them with SPEED.
TDG placement. We implement two greedy heuristics, first
fit by level (FFL) and first fit by level and size (FFLS) [7]
for comparison. FFL and FFLS sort MATs and place MATs

2 3 4 5
of Merged Programs

0

20

40

60

of

 S
ta

ge
s

13
21

35
45

13
19

30
41

13
19

30
41

SPEED
P4Visor
Strawman

(a) # of stages (sketches).

2 3 4 5
of Merged Programs

0

25

50

75

of

 S
ta

ge
s

12
27 32

70

10
21 24

66

10
21 24

66SPEED
P4Visor
Strawman

(b) # of stages (switch.p4).

2 3 4 5
of Merged Programs

100

101

102

103

104

Ti
m

e
(m

s)

1.2
2.7 4.4 7.3

124 259 436 621
SPEED P4Visor

(c) Execution time (sketches).

2 3 4 5
of Merged Programs

100

101

102

103

104

Ti
m

e
(m

s)

1.1
2.7 5.0 8.3

127 267 453 685
SPEED P4Visor

(d) Execution time (switch.p4).
Fig. 5: (Exp#1) Impact of program merging.

2 3 4 5
of Merged Programs

0

20

40

60

of

 S
ta

ge
s

16
24

36

49

16
25

38

52

13
19

30
41

SPEED
FFL
FFLS

(a) # of stages (sketches).

2 3 4 5
of Merged Programs

0

30

60

90

of

 S
ta

ge
s

12
26 30

73

13
28 32

77

10
21 24

66
SPEED
FFL
FFLS

(b) # of stages (switch.p4).
Fig. 6: (Exp#2) Effect of TDG placement.

on the OBS based on the order between them. Specifically,
FFL sorts MATs based on MAT dependencies: the MAT with
the highest level should be placed first. Here, the level of an
MAT is defined as the number of dependencies in the longest
path from the MAT to the end. Moreover, FFLS sorts MATs
based on both dependencies and resource usage: the MAT
with the highest level and the largest usage of SRAM and
TCAM should be placed first.
OBS placement. We refer to virtual network embedding
approaches [33, 47, 48] and design three heuristics for OBS
placement: (1) R-Greedy randomly picks a programmable
switch from the underlaying topologic. It uses a Greedy
strategy that searches for an adjacent programmable switch
with the minimal link latency. It repeats the procedure until
finding enough switches for OBS placement; (2) R-BFS is
similar to R-Greedy, but uses breadth-first search (BFS) to
select programmable switches for OBS placement; (3) NodeR-
ank first calculates a weight for every programmable switch
based on the number of connections. For instance, a switch
connected to three nodes will be given a weight of three.
NodeRank picks the switch with the highest weight as root,
and runs BFS to selects other switches for OBS placement.

C. Experimental Results

(Exp#1) Impact of program merging. We evaluate the
impact of program merging on the usage of switch resources.
We use two program merging methods, SPEED and P4Visor
[10], to incrementally merge the programs in Table II, respec-
tively. P4Visor is a virtualization platform that merges input
programs into a compound one to concurrently run multiple
programs on a single device. The difference between P4Visor

2 3 4 5
of Merged Programs

0

50

100

150
La

te
nc

y
(m

s)

<1
22

54

11
2

<1

27
46

12
0

<1
20

36

11
1

<1 11
22

71

SPEED
NodeRank
R-BFS
R-Greedy

(a) AboveNet.

2 3 4 5
of Merged Programs

0

50

100

150

La
te

nc
y

(m
s)

<1

28
53

96

<1
24

61

10
6

<1
15

33

87

<1 10
21

70

SPEED
NodeRank
R-BFS
R-Greedy

(b) B4.

2 3 4 5
of Merged Programs

0

50

100

150

La
te

nc
y

(m
s)

<1
22

59

10
2

<1
25

54

10
3

<1
16

30

86

<1 11
22

74

SPEED
NodeRank
R-BFS
R-Greedy

(c) AT&T.

2 3 4 5
of Merged Programs

0

50

100

150

La
te

nc
y

(m
s)

<1
26

50

97

<1
22

52

11
5

<1
16

32

91

<1 10
22

77

SPEED
NodeRank
R-BFS
R-Greedy

(d) Internet2.
Fig. 7: (Exp#3) Impact of OBS placement.

and SPEED is that P4Visor takes all types of MATs into
account as merging TDGs. However, SPEED chooses to only
merge default-only MATs as mentioned in §IV-B. Moreover,
we also design a strawman method that directly combines
input programs without program merging as the baseline. All
the methods are running on the same environment.

After program merging, we obtain eight merged TDGs, the
first four of which are merged by the sketch-based programs,
while the last four TDGs originate from the programs based on
switch.p4. Then we leverage the TDG placement of SPEED to
obtain the number of stages occupied by each merged TDG.
We compare SPEED with P4Visor and the strawman method
in two aspects: (1) the number of stages occupied by their
merged TDGs, and (2) their execution time. Figure 5 indicates
that (1) compared to the strawman method, SPEED achieves
better placement that occupies a fewer number of stages; (2)
the time of program merging in SPEED is less than 10 ms,
while P4Visor spends hundreds of milliseconds. Note that our
comparison is fair because both SPEED and P4Visor need to
process all MATs (including default-only MATs and normal
MATs). Thus, we evaluate the same functionality for the two
systems. The only differences are their approaches of dealing
with normal MATs: P4Visor does not classify the types of
MATs, while SPEED identifies and discards the inefficient
normal MATs to speed up the merging.
(Exp#2) Impact of TDG placement. We evaluate the impact
of TDG placement on the usage of switch resources, in terms
of the number of occupied stages. We use the same TDGs used
by Exp#1 (merged by SPEED) as the input of TDG placement.
We use SPEED, FFL, and FFLS to place these TDGs on an
OBS with infinite stages, respectively. Figure 6 shows that
SPEED consumes fewer stages and achieves high resource
efficiency. Compared to FFL and FFLS, SPEED reduces the
number of stages by up to 25% and 23.1%, respectively.
(Exp#3) Impact of OBS placement. We evaluate the impact
of OBS placement in SPEED on the end-to-end performance
of OBS. We select four real wide-area networks (WANs),
including AboveNet [49], Google B4 [50], AT&T [51], and
Internet2 [52]. We simulate these large-scale topologies in
Mininet [53]. In each topologic, we randomly select half

2 3 4 5
of Merged Programs

10 1

101

103

Ti
m

e
(m

s)

0.
6 1.

3

1.
4 4.

9

0.
2 0.

6 0.
7 2.

8

84 151 173
447

SPEED FFL FFLS

(a) TDG placement.

2 3 4 5
of Merged Programs

10 2

101

104

107

Ti
m

e
(m

s)

0.
01 0.

13

0.
14 0.
18

0.
01 0.

14 0.
8

32
8

0.
2 0.
25 0.

96

31
9

0.
2

20
9 69
5 16
36

SPEED
NodeRank

R-BFS
R-Greedy

(b) OBS placement.
Fig. 8: (Exp#4) Execution time of SPEED.

TABLE III: (Exp#5) Resource overhead of inter-device
packet scheduling compared to the usage of switch.p4.

Name PHV SRAM TCAM VLIW Stage

w/o SPEED 84.23% 29.58% 29.58% 36.72% 100%
w/ SPEED 89.41% 29.58% 29.58% 41.41% 100%

Overhead 4.91% 0% 0% 4.69% 0%

of devices as programmable switches, while the remaining
devices are set to layer-3 routers. We set the latency of each
link to be uniformly distributed from 10 ms to 50 ms via
the APIs offered by Mininet, as suggested by the controller
placement problem in WAN [54]. Next, we use the four TDGs
evaluated in Figure 6(b) and generate four corresponding OBS
requests. For each OBS request, we use SPEED and the
three heuristics in §X-B to place the OBS on the substrate
network, respectively. We set the objective to minimize the
end-to-end latency. Figure 7 shows that the OBS placement
of SPEED outperforms the three heuristics with 14%∼59%
latency reduction. Note that the throughput results also follow
the same trend, which is elided here.
(Exp#4) Execution time of SPEED. We measure the execu-
tion time of SPEED. We first invoke SPEED to place the
four TDGs used by Exp#3 on the OBS, respectively, and
generate corresponding OBS requests. Then we use SPEED
to place the OBS requests on the Internet2 topologic. Also,
we use the heuristics in §X-B to repeat the experiment, and
compare their time with SPEED. As shown in Figure 8, the
heuristics run faster since SPEED takes more time to optimize
the placement. However, SPEED consumes at most 2.07s,
which is acceptable for offline placement. Note that here we
evaluate SPEED with a small number of programs. When the
number of programs increases, the execution time of SPEED
can reach several minutes (e.g., >5min when merging all the
programs in Table II). We discuss this limitation in §XI.
(Exp#5) Overhead of inter-device packet scheduling.
We measure the overheads incurred by inter-device packet
scheduling. First, we quantify the resource overhead on a
Barefoot switch. To do this, we deploy switch.p4 [46] on the
switch and measure its resource usage as the baseline. Then
we use SPEED to insert a routing module into switch.p4. The
routing module initials a SPEED header and piggybacks all
the metadata values used by the MATs of switch.p4 on incom-
ing packets. As shown in Table III, SPEED consumes less than
5% switch resources. Second, we measure the performance
overhead. We write a simple port-forwarding (i.e., directly
forwarding packets from one port to another port) program
as the baseline. Then we develop another port-forwarding
program running with the routing module for switch.p4. We

64 128 256 512 1024
Packet Size (Bytes)

0

20

40

Th
pt

. (
M

pp
s)

36 34

18
9 5

36 34

18
9 5

w/o SPEED w/ SPEED

(a) Throughput

64 128 256 512 1024
Packet Size (Bytes)

0
250
500
750

1000

La
te

nc
y

(n
s)

68
1

70
3

72
5

72
7 79

9

67
3

69
3

71
7

71
9 79

0

w/o SPEED
w/ SPEED

(b) Latency
Fig. 9: (Exp#5) Performance overhead of inter-device packet

scheduling.
deploy the two programs on our testbed, respectively, and test
their performance with 40 Gbps traffic. Figure 9 indicates that
SPEED adds up to 10 ns to per-packet processing latency
without dropping throughput, which is acceptable.

XI. LIMITATIONS

Assumptions. SPEED assumes that different programmable
switches have the same number of stages (§V∼§VI). This as-
sumption holds true in the production networks (e.g., Gateway
[55], cloud systems [56], datacenter networks [2, 57]), which
typically employ PISA-based switches [13, 1] that offer fixed
number of stages. However, different types of programmable
devices may contain different number of stages. To this end,
we plan to extend SPEED to support program deployment on
the network comprising various programmable devices.

Execution time of SPEED. The execution time of SPEED
is long, which limits the scalability of SPEED. In particular,
according to our preliminary evaluation, the execution time
of SPEED can reach several minutes when there are a large
number (>10) of programs to be deployed. In the future, we
plan to develop efficient heuristics as the alternatives of our
ILP-based placement to address this limitation.

Location-constrained deployment. SPEED jointly places the
input programs on the network. However, some programs
may impose the constraints that they have to be deployed
on specific network locations. For instance, the program for
Gateway should be placed on network boundaries [55]. We
leave the exploration of this situation in our future work.

Overheads of inter-device packet scheduling. The inter-
device packet scheduling consumes a portion of bandwidth
resources due to packet piggybacking. However, according to
our empirical study, it only requires a few additional bytes in
packet headers. For example, it only uses additional 16 bytes
in packet headers to deliver the metadata fields matched by the
MATs of switch.p4 [46] between switches. Thus, compared
to a general MTU of 1500 bytes, the bandwidth overhead of
using a few additional bytes is relatively small (e.g., less than
1% when using 16 bytes). Also, since SPEED only occupies a
few bytes in packet headers, the resulted overhead on packet
processing performance is small (see Exp#5 in §X). Another
limitation is that SPEED requires assistance from end-hosts
to increase the MTU in order to enable inter-device packet
scheduling. We plan to tackle this limitation in the future.

Impacts of network failures. Network failures such as link
and device failures will affect the original packet processing

of data plane programs. Currently, SPEED adopts a central
controller to detect link and device failures. Once detecting
a failure, the controller collects failure information and pro-
visions them to administrators for further failure recovery. In
the future, we will enhance the fault tolerance of SPEED by
incorporating various state-of-the-art techniques. For example,
we plan to leverage re-routing techniques (e.g, [58]) to search
for backup paths after link failures.

XII. RELATED WORK

Program merging. Many recent solutions [8, 9, 10, 11] lever-
age the techniques of program merging to reduce the usage
of switch resources. However, these solutions only target a
single device and ignore some realistic constraints imposed by
programmable switches. Thus, their merged programs cannot
be guaranteed to be deployable. Instead, SPEED carefully
takes switch resource restrictions into account and deploys
the merged program across multiple programmable switches,
which ensures the practicality of program deployment. More-
over, P5 [59], MATReduce [60], and Precedence [61] are
proposed to save switch resources at the code level. SPEED
is orthogonal and complementary to these research efforts.
Program deployment. Recent works [7, 62, 63, 64] optimize
the compilation of a data plane program on a single pro-
grammable device. SPEED takes a step further to investigate
how to concurrently place several programs across multi-
ple switches while achieving resource efficiency and high
performance. In addition, prior solutions in other domains
such as virtual network embedding [33, 65, 66, 48] optimize
the placement of multiple requests on the substrate network.
Different from them, SPEED addresses the specific challenges
of achieving resource-efficient and high-performance program
deployment in programmable networks.

XIII. CONCLUSION

We propose SPEED, a system that provides resource-
efficient and high-performance program deployment. It first
merges input programs into a compound TDG by reducing
program redundancy. It then abstracts the substrate network
as an OBS and places the compound TDG on the OBS while
minimizing resource usage. Next, it offers the performance-
optimal placement that maps the OBS to the substrate net-
work. The experimental results indicate that SPEED achieves
resource efficiency and high end-to-end performance.

ACKNOWLEDGEMENT

We thank our shepherd Prof. Gabor Retvari, and the anony-
mous reviewers for their constructive comments. This work
is supported by the National Key R&D Program of China
(2018YFB1800601), the National Natural Science Foundation
of China (61802365), FANet: PCL Future Greater-Bay Area
Network Facilities for Large-scale Experiments and Appli-
cations (No. LZC0019), the Industrial Internet innovation
and development project (No. TC190A449), the Key R&D
Program of Zhejiang Province (2020C01021), and the Major
Scientific Project of Zhejiang Lab (2018FD0ZX01).

REFERENCE

[1] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 99–
110, 2013.

[2] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in SOSP. ACM, 2017, pp. 121–136.

[3] Q. Huang, P. P. Lee, and Y. Bao, “Sketchlearn: relieving user burdens
in approximate measurement with automated statistical inference,” in
SIGCOMM. ACM, 2018, pp. 576–590.

[4] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in SIGCOMM. ACM, 2018, pp. 561–575.

[5] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
SIGCOMM. ACM, 2018, pp. 357–371.

[6] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in NSDI, 2013, pp. 29–42.

[7] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches.” in NSDI, 2015, pp. 103–115.

[8] D. Hancock and J. van der Merwe, “Hyper4: Using p4 to virtualize the
programmable data plane,” in CoNEXT. ACM, 2016, pp. 35–49.

[9] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu, “Hyperv: A high
performance hypervisor for virtualization of the programmable data
plane,” in ICCCN. IEEE, 2017, pp. 1–9.

[10] P. Zheng, T. Benson, and C. Hu, “P4visor: Lightweight virtualization
and composition primitives for building and testing modular programs,”
in CoNEXT. ACM, 2018, pp. 98–111.

[11] X. Chen, D. Zhang, X. Wang, K. Zhu, and H. Zhou, “P4sc: Towards
high-performance service function chain implementation on the p4-
capable device,” in IM. IEEE, 2019, pp. 1–9.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[13] Barefoot Network. Barefoot Tofino. [Online]. Available: https:
//www.barefootnetworks.com/technology/#tofino

[14] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Scream: Sketch
resource allocation for software-defined measurement,” in CoNEXT.
ACM, 2015, p. 14.

[15] ——, “Dream: dynamic resource allocation for software-defined mea-
surement,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 419–430, 2015.

[16] T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. R. Ports, and
A. Panda, “Multitenancy for fast and programmable networks in the
cloud,” in HotCloud, 2020.

[17] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,” in
SIGCOMM. ACM, 2017, pp. 15–28.

[18] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in SIGCOMM. ACM, 2016,
pp. 1–14.

[19] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in SIGCOMM. ACM, 2017, pp. 43–56.

[20] D. Popescu, N. Zilberman, and A. Moore, “Characterizing the impact
of network latency on cloud-based applications performance,” 2017.

[21] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[22] D. S. Hirschberg, “Algorithms for the longest common subsequence
problem,” Journal of the ACM, vol. 24, no. 4, pp. 664–675, 1977.

[23] Q. Huang and P. P. Lee, “Ld-sketch: A distributed sketching design for
accurate and scalable anomaly detection in network data streams,” in
INFOCOM. IEEE, 2014, pp. 1420–1428.

[24] ——, “A hybrid local and distributed sketching design for accurate
and scalable heavy key detection in network data streams,” Computer
Networks, vol. 91, pp. 298–315, 2015.

[25] L. Tang, Q. Huang, and P. P. Lee, “Mv-sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams,” in
INFOCOM. IEEE, 2019, pp. 2026–2034.

[26] ——, “Spreadsketch: Toward invertible and network-wide detection of
superspreaders,” in INFOCOM. IEEE, 2020, pp. 1608–1617.

[27] Q. Huang, H. Sun, P. P. Lee, W. Bai, F. Zhu, and Y. Bao, “Omnimon:
Re-architecting network telemetry with resource efficiency and full
accuracy,” in SIGCOMM, 2020, pp. 404–421.

[28] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula:
Scalable load balancing using programmable data planes,” in SOSR,
2016, pp. 1–12.

[29] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external
memory for switch data planes,” in HotNet, 2018.

[30] D. Saha, A. Samanta, and S. R. Sarangi, “Theoretical framework for
eliminating redundancy in workflows,” in ICSC. IEEE, 2009, pp. 41–
48.

[31] E. C. man Jr, M. Garey, and D. Johnson, “Approximation algorithms
for bin packing: A survey,” Approximation algorithms for NP-hard
problems, pp. 46–93, 1996.

[32] Gurobi optimizer. [Online]. Available: http://www.gurobi.com
[33] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network

embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[34] R. T. Marler and J. S. Arora, “The weighted sum method for multi-
objective optimization: new insights,” Structural and multidisciplinary
optimization, vol. 41, no. 6, pp. 853–862, 2010.

[35] J. M. Kleinberg, “Approximation algorithms for disjoint paths prob-
lems,” Ph.D. dissertation, Massachusetts Institute of Technology, 1996.

[36] S. G. Kolliopoulos and C. Stein, “Improved approximation algorithms
for unsplittable flow problems,” in Proceedings 38th Annual Symposium
on Foundations of Computer Science. IEEE, 1997, pp. 426–436.

[37] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in SIGCOMM. ACM, 2016, pp. 101–114.

[38] The caida anonymized internet traces. [Online]. Available: http:
//www.caida.org/data/overview/

[39] P4 Language Consortium. P4-HLIR. [Online]. Available: https:
//github.com/p4lang/p4-hlir

[40] P4 Language Consortium. P4C. [Online]. Available: https://github.com/
p4lang/p4c

[41] P4 Language Consortium. P4runtime: A control plane framework
and tools for the p4 programming language. [Online]. Available:
https://github.com/p4lang/pi

[42] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[43] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in IMC. ACM,
2015, pp. 275–287.

[44] P4 language tests. [Online]. Available: https://github.com/jafingerhut/
p4lang-tests/tree/master/v1.0.3

[45] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: a better netflow for
data centers,” in NSDI, 2016, pp. 311–324.

[46] P4 Language Consortium. switch.p4. [Online]. Available: https:
//github.com/p4lang/switch

[47] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
ACM SIGCOMM Computer Communication Review, vol. 41, no. 2, pp.
38–47, 2011.

[48] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in INFO-
COM. IEEE, 2014, pp. 1–9.

[49] AboveNet. [Online]. Available: http://www.topology-zoo.org/maps/
Abvt.jpg

[50] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined wan,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 3–14.

[51] At&t north america topologic. [Online]. Available: http://www.
topology-zoo.org/maps/AttMpls.jpg

[52] Internet2 topologic. [Online]. Available:
https://www.internet2.edu/media/medialibrary/2018/07/16/
Internet2-Network-Infrastructure-Topology-Layers-23.pdf

[53] Mininet. [Online]. Available: http://mininet.org/
[54] B. Heller, R. Sherwood, and N. McKeown, “The controller placement

problem,” ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 473–478, 2012.

[55] K. Qian, S. Ma, M. Miao, J. Lu, T. Zhang, P. Wang, C. Sun, and F. Ren,
“Flexgate: High-performance heterogeneous gateway in data centers,”
in APNet, 2019, pp. 36–42.

[56] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and
I. Stoica, “Netchain: Scale-free sub-rtt coordination,” in NSDI, 2018,
pp. 35–49.

[57] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in SIGCOMM. ACM, 2017, pp.
85–98.

[58] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in NSDI, 2019, pp. 161–176.

[59] A. Abhashkumar, J. Lee, J. Tourrilhes, S. Banerjee, W. Wu, J.-M. Kang,
and A. Akella, “P5: Policy-driven optimization of p4 pipeline,” in SOSR.
ACM, 2017, pp. 136–142.

[60] X. Chen, D. Zhang, and H. Zhou, “Matreduce: Towards high-
performance p4 pipeline by reducing duplicate match operations,” in
GLOBECOM. IEEE, 2018, pp. 1–7.

[61] C. Leet, S. Chen, K. Gao, and Y. R. Yang, “Precedence: Enabling
compact program layout by table dependency resolution,” in SOSR,
2019, pp. 1–7.

[62] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in SIGCOMM, 2016,
pp. 15–28.

[63] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy et al., “drmt:
Disaggregated programmable switching,” in SIGCOMM. ACM, 2017,
pp. 1–14.

[64] X. Gao, T. Kim, A. K. Varma, A. Sivaraman, and S. Narayana,
“Autogenerating fast packet-processing code using program synthesis,”
in HotNet, 2019, pp. 150–160.

[65] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[66] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on networking, vol. 20, no. 1, pp. 206–219,
2011.

