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Abstract—RFID is becoming ubiquitously available in our daily
life. After RFID tags are deployed to make attached objects
identifiable, a natural next step is to communicate with the tags
and collect their information for the purpose of tracking tagged
objects or monitoring their surroundings in real time. In this
paper, we study an under-investigated problem range detection
in a commodity RFID system, which aims to check if there are
any tags with the data between an upper and lower boundary
in a time-efficient way. This is important especially in a large
RFID system, which can help users quickly pinpoint the target
tags (if any) and give an early warning to users for taking urgent
actions and reducing the potential risk in the nascent stage. We
propose two tailored protocols, selective query and range query
(RQ), to achieve range detection within the scope of the C1G2
standard. The novelty is that, instead of querying each tag, we
exploit the capability of C1G2-compatible selection and quickly
separate target tags from others by silencing most of tags. The
final result is that our best protocol RQ is able to achieve a
range detection with only one query command. We implement
the proposed protocols in commodity RFID systems, without any
modifications of hardware. Extensive experiments show that RQ
is able to improve the time efficiency by near 30×, compared
with the baseline.

Index Terms—RFID, Range detection, C1G2, Time efficiency

I. INTRODUCTION

Radio frequency identification (RFID) is becoming in-
creasingly ubiquitous in a variety of applications, including
library inventory [1], [2], object tracking [3]–[6], warehouse
management [7]–[9], etc. After RFID tags are deployed to
make the attached objects identifiable, a natural next step is
to communicate with the tags and collect their information
of interest. This information can be some static data that are
preloaded in the tag’s memory for reflecting the tagged prod-
uct’s attributes (e.g., expiry date) or some dynamic sensing
data (e.g., temperature) in a sensor-augmented RFID system
for item-level monitoring. By collecting this tag information,
we can either track the status of tagged objects or monitor
their surroundings in real-time.

In this paper, we study an under-investigated problem range
detection in a commodity RFID system, which aims to check
whether there are any tags with the data between an upper
and lower boundary. These tags are referred to as target tags.
High time efficiency is important especially in a large RFID
system, which can help users quickly pinpoint the target tags
(if any) and give an early warning to them for taking urgent
actions and reducing the potential risk in the nascent stage.
For example, in a supermarket, the staff may need to do

the live query for checking whether there are expired goods
by collecting the sell-by date from tags. Consider a chilled
food storage chamber (or a library), where each food (or each
bookshelf) is affixed with a sensor-augmented tag equipped
with a thermal sensor. If the temperature data of a tag is higher
than a threshold, an advance warning (for food to be spoiled
or for fire) should be activated to protect people and assets.

An intuitive solution to range detection is individually
querying each tag and checking whether it holds data within
the given range, one at a time. This method is foolproof but
suffers from long time period in a large scale RFID system. In
some cases the number of target tags is far less than other tags,
it is a waste of time to do the inventory on the entire tag set. In
recent years, some advanced work has been proposed to collect
tag information in an efficient way [10]–[15]. For example,
Chen et al. [11] design a multi-hash method to avoid tag
collision and improve the time efficiency. Yue et al. [12] study
the multi-reader RFID system and use a distributive Bloom
filter to do the tag inventory quickly. Liu et al. [15] design an
incremental polling protocol that sharply drops the length of
the polling vector from 96 bits to less than 2 bits, which saves
the polling overhead for information collection. In spite of the
advancement, existing work is incompatible with EPCglobal
Class1 Gen2 (C1G2) [16], which is the worldwide UHF RFID
standard. Namely, none of them can be implemented in a
commodity RFID system.

In light of this, we explore the full potential of C1G2 and
deliver two tailored solutions that drive significant improve-
ment to range detection in commodity RFID systems. The
basic idea is that, instead of checking each tag, we first silence
the majority of tags and later pinpoint target ones (if any) as
soon as possible. We find the select command specified by
C1G2 is potential to help us reach this goal. It allows a reader
to choose a subset of tags that participate in the subsequent
query. With this ability, we come up with our first solution
called selective query (SQ). SQ partitions the tag populations
into several groups according to the value of the data. Rather
than doing individual inventory, SQ queries only one tag in
each group and silences the remaining tags in the same group
with the select command. In this way, the number of queries
is proportional to only the number of groups, which is a sharp
decline compared with the individual query.

In spite of the improvement, it is still a waste of time to
collect each group. This motivates us to take one step further:
can we do the tag query only once, regardless of the number
of groups or the number of tags? The answer is yes. We978-1-7281-6992-7/20/$31.00 ©2020 IEEE



propose our second protocol called range query (RQ). RQ
first separates all target tags (if any) from others through
several select commands and later does the tag inventory over
the selected tag subset. If there is any reply, a target tag is
detected. The key challenge is how to separate the target tags
from the entire tag set without any prior knowledge of the
tag IDs. We propose two approaches substring masking and
mask combination that jointly minimize the number of selects.
The final result is that RQ needs only a few selects (e.g., two
in most cases) together with a single tag inventory to detect
the target tag, regardless of the number of tags. The main
contributions of this paper are three-fold.

• We study the under-investigated problem range detec-
tion in a commodity RFID system, which helps quickly
pinpoint target tags and reduce the potential risk in the
nascent stage.

• We explore the full potential of C1G2-compatible com-
mands and deliver two tailored solutions. By jointly
using the technologies of substring masking and mask
combination, we are able to detect the target tags with
only one inventory, regardless of the number of tags.

• We implement the proposed protocols in a commodity
RFID system with 1000 tags. Extensive experiments
show that our best protocol RQ can sharply reduce the
detection time from 9.6s to only 0.33s, improving the
time efficiency by near 30×, compared with the baseline.

The rest of the paper is organized as follows. Section II
formulates the problem of range detection. Section III shows
an intuitive solution: exclusive collection. Section IV presents
the method of selective query. Section V details the approach
of range query. Section VI evaluates the protocol performance.
Section VII discusses the related work. Finally, Section VIII
concludes this paper.

II. PROBLEM FORMULATION

We consider an RFID system that consists of a reader and a
number of tags. Each tag has a unique tag ID that exclusively
indicates the associated object. By communicating with the
tags and collecting some specific information from these tags,
the reader is able to grasp the attributes of the tagged objects
(e.g., expiry date) or the status of the surroundings (e.g.,
temperature and humidity). The problem of range detection
is to check if there are any tags that hold data with the
value between an upper and lower boundary. These tags are
referred to as target tags. More specifically, consider a tag set
Γ = {t1, t2, ..., tn}, in which each tag ti, 1 ≤ i ≤ n, holds
data di of interest. We assume that the value of di is a positive
integer, each of which represents an attribute value or a specific
sensor value. For example, we can define the expiry date of
2020 as follows: 1 indicates ‘Jan-1-2020’, 2 indicates ‘Jan-2-
2020’, ..., and 366 indicates ‘Dec-31-2020’. The mapping rule
and the range of interest depend on the applications, which are
out of the scope of this paper. It is difficult (time-consuming)
to figure out whether target tags exist in a large RFID system.
Our objective is to minimize the detection time with only the

commodity RFID device; any modifications to the MAC-layer
communication protocol or hardware are not allowed. The
high time efficiency is important especially in a large RFID
system, which can give an early warning to users and help
them reduce the potential risk in the nascent stage.

III. EXCLUSIVE COLLECTION

The Class1 Gen2 (C1G2) protocol [16] is a worldwide
UHF RFID standard that defines the physical interactions and
logical operations between the commodity readers and tags.
According to C1G2, the RFID reader collects tag information
through an inventory frame, which consists of a group of time
slots. The time slot is a short time window, within which
a tag can communicate with the reader. Each tag randomly
picks one of these time slots and transmits its tag ID together
with the user data (if required) to the reader in that slot.
According to the tag’s choice, the time slots fall into three
categories: singleton slots picked by exactly one tag, collision
slots chosen by more than one tag, and empty slots with none
of tags chosen. Only the singleton slot is available to collect
tag information, since the empty slot has no tags and the
collision slot suffers from tag collision.

To do range detection within the scope of C1G2, we can
execute the inventory on each tag of Γ. Once we get the data
di from the tag ti, we check whether it is within a given range.
If yes, we report the event. Otherwise, we continue to do the
next inventory for another tag. This solution is intuitive and
foolproof. However, it is time-consuming since C1G2 allows
only one tag to be read at a time; there are near n reads
needed for range detection. In some cases, the number of
target tags is far less than that of all tags (e.g., 1000 tags
with only one target). It is a waste of time to do the inventory
on the entire tag set. Reducing the number of inventories and
quickly pinpointing the target tags (if any) amongst the large
tag populations is the key to performance boost.

IV. SELECTIVE QUERY

A. Basic Idea

The low time efficiency of exclusive collection is due to
the fact that the reader has to communicate with each tag,
even though the tag is not the target. If we can silence most
of these tags, a great deal of communication overhead can
be avoided. Let us take a closer look at the tagged objects
in practice. We get two observations. First, in some cases the
number of values in the domain of {di} to be collected is far
less than the number of tags. For example, consider the expiry
date in 2020. The number of different values in the domain
is 366, which is much smaller than the number of goods in
a supermarket (e.g., Wal-Mart offers 142,000 different items
on average in its supercenters [17]). According to pigeonhole
principle, there must be some tags holding the same data.
Second, different tags may have the same attribute or similar
surroundings. For example, the expiry date of the same batch
of milk is usually identical; the nearby sensor-augmented tags



are likely to report the same temperature.1 These two findings
shed light on the basic idea of our protocol: collect the same
data only once and silence the left tags having the same data.
In this way, the number of reads is equal to the number of
different values amongst the tags (which is smaller than that
in the domain of di sometimes); many tags with the same data
will not participate in the subsequent query, greatly saving the
communication time. Next, we discuss how to silence the tags
and pinpoint the target tags quickly within the scope of the
C1G2 standard, which is referred to as selective query (SQ).

B. Selective Query (SQ)

C1G2 specifies a select operation before the inventory,
which allows a reader to choose a specific subset Γ′ ⊆ Γ
of tags that participate in the incoming query. In other words,
it is capable of silencing the tag set Γ − Γ′. Below, we first
describe how a select operation works and then discuss how
to use selective query to do range detection.

1) Select Function: The command Select determines
which tags keep active by setting their inventoried flags, which
consists of six fields.
• MemBank, Pointer, Length, Mask. These four

fields jointly determine which tags are matching or not.
MemBank specifies the memory bank for comparison, which
could be one of the four banks: MemBank-0, MemBank-1,
MemBank-2, and MemBank-3. The customized data are
stored in MemBank-3, so the MemBank is always set to 3
in this work. Pointer indicates the starting position in the
chosen memory bank. Length is the length of Mask that is
a specific bit string determined by the application demands. If
Mask is the same as the string that begins at Pointer and
ends Length bits later in the memory of MemBank, the tag
is matching. Otherwise, the tag is not-matching.
• Target, Action. The field Target indicates the

object that Select will operate. It is either a tag’s selected
flag (SL) or an inventoried flag, which is a one-bit indicator
that serves as the access control of a tag. In other words, the se-
lection function is actually achieved by masking the interested
tags, setting the matching tags’ flags to a specific value while
not-matching tags to opposite, and finally operating the tags
with the same flag value. How to set the flag is determined by
Action field. As shown in Table II, there are eight actions,
where matching and not-matching tags assert or deassert their
SL flags, or set their inventoried flags to A or B. By combining
Target and Action, the reader is able to modify the specific
flag of a group of tags. Note that C1G2 specifies that a tag
shall support four inventoried flags, each of which corresponds
to a session, which is used to fit the case of exclusive reading
amongst multiple readers (see [16]). In this paper, we take the
inventoried flag in session 2 as the metric to show our protocol
design. The other flags can be used in the similar way.

2) Query Function: Besides Select, C1G2 defines an-
other common command called Query, which initiates and

1The case that does not follow the above two observations will be discussed
in Section V.

TABLE I: Select command.
 Command Target Action MemBank Pointer Length Mask 

# of bits 4 3 3 2 EBV 8 Variable 

description 1010 000: Inventoried (S0) 

001: Inventoried (S1) 

010: Inventoried (S2) 

011: Inventoried (S3) 

100: SL 

101: RFU 

110: RFU 

111: RFU 

See 

Table 2 

00: FileType 

01: EPC 

10: TID 

11: File_0 

Starting 

Mask 

address 

Mask 

Length 

(bits) 

Mask 

value 

 

specifies an inventory frame over the active tag populations
with a specific flag (A or B). Query includes three fields that
we concern: Sel, Session, and Target. Sel consists of
two bits that determine which tags respond to the reader: 002
and 012 indicate all matching tags by the previous Select;
102 indicates tags with deasserted SL flag (∼SL); and 112
indicates tags with asserted SL flag (SL). Since SL is not used
in this paper, this field is set to 0 all the time. Session selects
a session for this inventory frame. As aforementioned, session
2 (S2) is used in this paper, so the value is set to 2 (102).
Target determines which tags participate in the upcoming
inventory frame: 0 indicates the tags with the flag A and 1
indicates B. Tags will invert their inventoried flags from A to
B (or vice versa) after being successfully queried.

3) Design of SQ: Given a tag set Γ and its data set {di},
we divide the tag populations into different groups according
to the value of di. For any two tags ti and tj , if and only
if the data di is identical to dj , these two tags belong to
the same group. Assume that there are k groups, which are
G = {g1, g2, ..., gk}. The objective of SQ is to query each
group only once; multiple replies from the same group are a
waste of communication overhead. Note that, no one knows
the group information in advance. It is just defined for ease
of presentation. We need to collect each group’s data without
any knowledge of the groups or tag IDs a priori.

In general, SQ consists of k rounds at most. In the first
round, the reader inventories a tag ti (the first active tag to be
read) for collecting its data di. If di is within the given range,
a target tag is detected. Otherwise, the reader uses the data di
to do the mask to silence the tags in g′1, where g′1 is the group
in which the tag ti resides2. In this way, we have successfully
collected the data of the tag set of the group g′1, with only a
query together with a select command. The reader does the
similar operations in the following rounds. The difference is
that when silencing the group g′i in the i-th round, we need
to pay attention to the silenced tags in the previous rounds:
the select operation issued in the i-th round is not supposed
to activate these silenced tags and let them participate in the
subsequent read cycles again.

Next, we detail how each round works with Gen2-
compatible commands Select and Query. A Select
command is denoted by:

S( t︸︷︷︸
Target

,

Action︷︸︸︷
a , b︸︷︷︸

MemBank

,

Pointer︷︸︸︷
p , l︸︷︷︸

Length

,

Mask︷︸︸︷
m ), (1)

2The reason for using g′1 instead of g1 is to show that the order of groups
to be queried in the rounds does not have to follow the order defined in G.



with the fields of Target (t), Action (a), MemBank (b),
Pointer (p), Length (l), and Mask (m). Assume that the
active tags are the ones with the flag A, while silenced tags
are with the flag B. Initially, the reader broadcasts a select
command to activate all tags by setting their flags to A. The
Select command is as follows:

Flag← AB : S(2, 0, 3, 0, 0, 0), (2)

where t = 2 (0102) means the operating object is the invento-
ried flag in session 2 (S2), a = 0 indicates that the inventoried
flags of matching tags will be set to A while those of not-
matching will be set to B (abbr. AB), (p, l,m) = (0, 0, 0)
means all tags within the reader’s coverage zone are matching.
By this means, all tags’ flags are set to A. After that, the reader
executes each round for collecting a group’s data. It consists
two operations: a Query and a Select. The Query is to
do inventory on active tags, which is denoted by:

Q(Sel,Session,Target). (3)

To query the active tags with inventoried flags in S2 being A,
the query command shall be Q(0, 2, 0). After this command is
issued, an inventory frame is carried out. Each active tag (with
the inventoried flag being A) randomly chooses a slot and
replies to the reader in that slot. The reader is able to collect
a tag’s data in a singleton slot. Assume that the inventoried
tag is t′ and its reported data is d′. If d′ falls into the given
range, a target tag is detected. Otherwise, the reader needs to
silence the group where the tag t′ resides by issuing another
Select command:

Flag← B− : S(2, 5, 3, p′, l′, d′), (4)

where p′ and l′ indicate the matching position and the length
of the data d′, a = 5 means the matching tags are set to B
while the not-matching tags remain unchanged. In other word,
this command sets all tags with the data d′ to B, while other
tags do not change their flags.

Now we put all the pieces together and sketch the SQ
protocol for range detection within the scope of C1G2. As
shown in Alg. 1, Line 1 is for the reader to broadcast a
Select to activate all tags in the field of view (the inventoried
flags are set to A). Lines 2-10 detail the process of selective
query, round by round. Each loop corresponds to a round.
In each round, the reader first does the inventory on the
active tags (Line 3). Assume the collected data is d′. If d′

falls into the given range, a target tag is detected and the

TABLE II: Eight Actions of Select.

Action Tag Matching Tag Not-Matching Abbr. 

000 assert SL or inventoried → A  deassert SL or inventoried → B  AB 

001 assert SL or inventoried → A  do nothing  A- 

010 do nothing deassert SL or inventoried → B  -B 

011 negate SL or (A→B, B→A) do nothing S- 

100 deassert SL or inventoried → B  assert SL or inventoried → A BA 

101 deassert SL or inventoried → B do nothing B- 

110 do nothing assert SL or inventoried → A -A 

111 do nothing negate SL or (A→B, B→A) -S 

 

Algorithm 1: Selective Query.

1 Flag ← AB : S(2, 0, 3, 0, 0, 0);
2 while there are still active tags (flag is A) do
3 Q(0, 2, 0);
4 Assume the collected data is d′;
5 if d′ is within the given range then
6 A target tag is detected; break;
7 else
8 Flag ← B− : S(2, 5, 3, p′, l′, d′);
9 end

10 end

detection process ends (Lines 5-6). Otherwise, the reader needs
to silence all tags that hold the same data d′ by broadcasting a
Select with the action B− (Lines 7-8). The reader repeats
the above process until all active tags are silenced or a target
tag is detected.

C. Performance Analysis

Now we discuss the execution time of SQ. Assume that
the tag set Γ = {t1, t2, ..., tn} is partitioned into k groups
according to the value of {di}. According to Alg. 1, the reader
first broadcasts a Select to activate all tags in the field of
view. After that, the reader deals with each group at a time:
isolating a tag in a group, collecting its data, and silencing the
whole group with the same data. If there is no target tag, the
reader needs to go through all k rounds. The execution time
T ∗ of SQ is:

T ∗ = ts + k(tq + ts), (5)

where k is the number of rounds, ts and tq are the time
intervals of a Select command, an inventory frame issued
by a Query command, respectively. In a more generalized
case, if there exist some target tags, it is unnecessary for the
reader to run k rounds. Once a target tag is detected, the reader
can terminate the protocol immediately. If the protocol ends
at the i-th round, it means that there are no target tags in the
previous (i− 1) rounds and a target tag is detected in the i-th
round. Let ρ be ratio of the number of target tags to n. The
probability fi that the reader detects a target tag or terminates
the protocol in the i-th round is:

fi =

{
(1− µi)

i−1µi, i < k

(1− µk−1)
k−1, i = k,

(6)

where µi indicates the probability that a target tag is detected
in the i-th round, which is

µi =
ρ× n

n−
∑i−1

j=1 |g′j |
, (7)

where g′j is the group to be collected in the i-th round, |g′j | is
the number of tags in the group g′j . The expression (1−µi)

i−1

means the probability that the previous (i− 1) rounds do not
have any target tags. If there are no any target tags in the
previous (k−1) rounds, the protocol executes k round for sure.



Thus, in the case of i = k, the probability is (1 − µk−1)
k−1

instead of (1 − µk−1)
k−1µk. Finally, we have the execution

time T of the protocol SQ:

T = ts + (tq + ts)(

k∑
i=1

i× fi). (8)

Clearly, Eq. (5) is just a specific case of Eq. (8), in which
the number of target tags is equal to 0. According to Eq. (8),
we can see that the execution time of SQ is proportional to
the number k of groups, rather than the large number n of
tags. In practice, different tags may have the same attribute or
similar surroundings. For example, the production dates of the
same batch of goods are usually identical; the nearby sensor-
augmented tags are likely to report the same humidity. Assume
that each group has 50 tags on average, i.e., k = 0.02n. It is
potential for SQ to improve the time efficiency by an order of
magnitude, compared with the method of exclusive collection.
The performance evaluation can be seen in Section VI.

V. RANGE QUERY

The performance improvement of SQ benefits from the
effective use of the select command together with the query
command. By silencing many tags with the same data, most
data collection can be avoided. However, SQ still suffers from
two limitations. First, the objective of range detection just
needs a binary answer: yes or no. It is a great waste of time
for SQ to collect each group’s data individually. Second, SQ
performs well in the common cases that each group has many
tags (i.e., k << n). However, in some specific cases when k
is close to n, the number of rounds approaches to n, such that
SQ degrades to the basic exclusive collection. Can we reduce
the number of query rounds to only once, regardless of the
number k of groups or the number n of tags? The answer is
positive. In this section, we propose another protocol called
range query (RQ) that further improves the time efficiency of
range detection.

A. Design of RQ

In database, the range query is a common operation that
retrieves all records where some value is between an upper
and lower boundary. Similarly, in this paper, the range query
answers three questions: i) are there some data in {di} not
greater than a lower boundary (this query is referred to as
LRQ); ii) are there some data in {di} greater than an upper
boundary (URQ); iii) are there some data between an upper
and lower boundary (LURQ). Below, we first detail LRQ. The
other two queries can be easily generalized from LRQ, which
will be discussed shortly later in Section V-B.

Assume the lower boundary is τ . The objective of LRQ is
to detect whether there are any tags that hold the data di less
than or equal to τ . The basic idea is separating all target tags
(if any) from others first, and later carrying out the inventory
frame over the selected tags. If there are any replies, a target
tag is detected. Otherwise, there is no target tag. The key
challenge is how to separate the target tags from the entire tag
set without any prior knowledge of tag IDs.

As aforementioned, the select command allows a reader
to choose a specific subset of tags that participate in the
subsequent query operations, which is potential to do the tag
partition. To do so, we need to activate the tags (if any) with
the data no greater than τ while silencing other tags. An
intuitive way is to check each value d′ ∈ [1, τ ] individually,
one at a time. Specifically, for the first case of d′ = 1, the
reader issues a Select command to all tags, with the mask
string 1 together with the action AB. After that, the tags with
the data value equal to 1 are matching and their inventoried
flags are set to A. On the contrary, the inventoried flags of
other not-matching tags are set to B (see Action in Table
II). The Select command is as follows:

Flag← AB : S(2, a = 0, 3, p′, l′,m = 1), (9)

where a = 0 indicates that the inventoried flags of matching
tags will be set to A while those of not-matching will be set
to B, (3, p′, l′) determines the matching position of the data.
If and only if the data is same as m = 1, the tag is matching.
Otherwise, the tag is not-matching. With this command, the
tags with data equal to 1 are activated (the flag is A) and
other tags are silenced. Instead of doing the tedious inventory
immediately, we move to the next number. For the number
i (≤ τ ), we conduct the similar select operation. The only
difference is that the action is A− and the mask value is i.
The action A− means that the inventoried flags of matching
tags are set to A, whereas the other tags keep unchanged.
In this way, we increasingly activate the tags with the data
i, without changing the flags of existing tags. The Select
command is as follows:

Flag← A− : S(2, a = 1, 3, p′, l′, i), (10)

where a = 1 means the action of A−. By repeating the selects
τ times, we are able to activate all tags (whose flags are A)
with the data belonging to the interval [1, τ ], and silence the
remaining tags (whose flags are B). The next is to query the
active tags (if any) with a single Query command:

Query−A : Q(0, 2,Taget = 0), (11)

where Taget = 0 means doing the inventory on the tags
with the flags being A, i.e., those with data belonging to the
interval [1, τ ]. If any response is received by the reader, there
must be some target tags for sure. By this means, LRQ sharply
reduces the number of inventory rounds from k to exact one,
which greatly saves the communication overhead, compared
with selective query (SQ). However, this is not free. LRQ
takes τ select operations to activate the wanted tags, which is
a high cost when τ is large. For example, consider 10,000 tags
and τ = 5000. For SQ, the reader needs to conduct 100 select
operations and 100 inventories (if each group has 100 tags on
average). In contrast, LRQ takes 5000 selects together with one
inventory to achieve the same task, which is time-consuming
from a global view. The main reason is that LRQ deals with
each number at a time. To improve the time efficiency, we
need to operate multiple numbers in parallel.



To do so, the basic idea is that, instead of taking the specific
value of a number as the mask, we seek for a common binary
substring that is able to choose multiple numbers and thereby
activate the potential target tags associated with these numbers,
with only a single select command. More specifically, assume
that the length of the number τ in binary representation is l′.
Hence, the domain of the data of interest is [1, 2l

′
]. Consider

a specific case that τ = 2x − 1, where x < l′. Its binary
representation is:

B(τ = 2x − 1) : 0 0 0 0 0︸ ︷︷ ︸
l′−x

1 1 ...1 1 1︸ ︷︷ ︸
x

(12)

Clearly, the rightmost x bits of the binary number in Eq.
(12) are all 1s and the left (l′ − x) bits are all 0s. For any
number larger than 2x − 1, the rightmost x digits start over,
and next digit is incremented. In other words, the leftmost l′−x
bits are non-zero. In contrast, for all numbers that are smaller
than 2x − 1, the leftmost l′ − x bits must be zeros (if not,
this number is larger than 2x − 1 for sure). This observation
enables LRQ to select all numbers in the interval [1, τ ] via
only a mask, i.e., the leftmost l′ − x bits. The Select is:

Flag← AB : S(2, a = 0, 3, p′, l = l′ − x,m = 0), (13)

where a = 0 means the action of AB, l = l′ − x indicates
that the mask is the leftmost l′ − x bits, and m = 0 means
that mask string is zeros. This single select command is able
to activate all tags with their data smaller than or equal to
τ = 2x − 1 by setting their inventoried flags to A, regardless
of the value of x. This is a great performance boost, compared
with one-by-one selects. For example, when x is 10, the basic
LRQ needs to execute the selects 1023 times, in comparison
to only once by the improved LRQ.

However, things are not quite that simple, especially in a
generalized case where τ can be any number in the domain.
Consider another case that τ = 2x, where x < l′. There is
no common mask that can choose all numbers in [1, 2x] with
only one select command. To address this problem, we need
to combine multiple selects together to incrementally activate
tags. Namely, we first use the select command in (13) to
choose all numbers in [1, 2x− 1]. After that, we issue another
select with the action A− and the mask 2x to incrementally
choose the number 2x:

Flag← A− : S(2, a = 1, 3, p′, l′,m = 2x), (14)

where the action a = 1 means A− and the value of 2x is
the mask for activating the tags with the data being 2x. Now
the question is: given any τ in [1, 2l

′
], how many selects does

LRQ need and what exactly are these selects in a generalized
case. The answer is taking advantage of the specific case of
2x − 1, as many as possible. That is because all numbers in
[1, 2x− 1] can be chosen by only one select command. Given
any τ , we first discuss the case that τ is an odd number. Its
binary representation B(τ) can be expressed as follows:

B(τ) : 0...0 1
↑
r1

0...0 1
↑
r2

0...0 1 1...1︸ ︷︷ ︸
d(τ)

(15)

where d(τ) is the number of consecutive rightmost 1s. Let
R(·) = {ri} be the index set of 1s in B(τ), where the index
counts from right to left and the index of the rightmost bit
is 0. Without loss of generality, we sort the indices and make
them satisfy ri > rj when i < j. For example, given a number
43 = 001010112, we have R(001010112) = {r1 = 5, r2 =
3, r3 = 1, r4 = 0}.

The basic idea of improved LRQ is to find the biggest
number 2x−1 that is smaller than τ . The reason is that it is the
biggest sub-interval of [1, τ ] that can be chosen by only one
select command. For example, given 43, the biggest number
2x − 1 is 31. We can first mask the sub-interval [1, 31] with
the Select in (13). With the index set R(τ), it is easy for us
to find the biggest x, which is equal to r1, i.e., 25 − 1 = 31.
The mask string is the left bits of the r1-th bit together with
another ‘0’. In this example, the left of the r1-th bit are two
zeros; the final mask string is three zeros ‘000’.

After that, we can repeat this process recursively. The dif-
ference is that, in the i-th select (i > 1), we mask the numbers
in [2ri−1 , 2ri−1 + 2ri − 1] with the action A−. For example,
in the second select of 43, we can take the left four bits of
the r2-th bit together with a ‘0’ (i.e., ‘00100’) as the mask
string for select. The numbers in [25, 25 + 23 − 1] = [32, 39]
will be matching by this mask string, while others are not-
matching. Finally, for the last d(τ) rightmost 1s, instead of
checking each ri, only one mask is able to deal with the left
numbers. The mask string is the bits from the leftmost one
to the d(τ)-th bit (including the d(τ)-th bit). For example,
the mask string of the third selects for 43 is ‘001010’. It can
select the numbers in [40, 43]. In this way, the numbers in the
interval [1, 43] are all selected and the tags (if any) holding
any one of these numbers are activated (their flags are set to
A). As we can see, only three selects are issued, which are
listed below:

1⃝ [ 1, 31]← AB : S(2, 0, 3, p′, 3,m = 000),

2⃝ [32, 39]← A− : S(2, 1, 3, p′, 5,m = 00100),

3⃝ [40, 43]← A− : S(2, 1, 3, p′, 6,m = 001010).

(16)

So far, we have discussed the case that τ is an odd number.
If τ is even, its selecting process is exactly same as the odd
case, except for the last select. Since the rightmost bit is 0
rather than 1, the last select in this case is using a select
command to individually deal with the number τ . Its mask
string is τ itself and the select command can be seen in (10).

Alg. 2 sketches LRQ for range detection within the scope
of C1G2. Given the lower boundary τ , Line 1 gets the index
set R(τ) = {ri} of 1s in binary representation, where d(τ)
is the number of consecutive rightmost 1s. If the specific case
that τ is equal to 2d(τ)− 1 happens, a single select command
with the mask string of l′ − d(τ) zeros is able to choose all
numbers in [1, τ ], which is shown in Lines 2-4. Lines 5-13
deal with a more generalized case. For the first index r1, Line
5 operates all numbers in [1, 2r1 − 1] by issuing only a single
select command with the mask string of l′ − r1 zeros and the
action AB. After that, except for the last d(τ) rightmost ones
(if any), the reader repetitively checks each index ri, and uses



Algorithm 2: Range Query LRQ(τ).
Input: The lower boundary τ .
Output: Is there any target tag: yes or no?

1 Get R(τ) = {ri} and d(τ);
2 if τ == 2d(τ) − 1 then
3 Flag ← AB : S(2, 0, 3, p′, l′ − d(τ), 0);
4 else
5 Flag← AB : S(2, 0, 3, p′, l′ − r1, 0);
6 for (i = 2; |R(τ)| − d(τ); i++) do
7 Flag← A− : S(2, 1, 3, p′, l′ − ri,M(ri) +

′ 0′);
8 end
9 if d(τ) ≥ 1 then

10 Flag← A− : S(2, 1, 3, p′, l′ − d(τ),M(ri));
11 else
12 Flag← A− : S(2, 1, 3, p′, l′, τ);
13 end
14 end
15 Query−A : Q(0, 2, 0);
16 if there is a reply then
17 return yes;
18 else
19 return no;
20 end

a select to mask the numbers [2ri−1 , 2ri−1 + 2ri − 1], where
the mask string is the l′ − ri − 1 bits on the left of the ri-th
bit (M(ri)) together with a bit ‘0’. Lines 9-13 depict the last
select of LRQ. If τ is an odd number (d(τ) ≥ 1), the last d(τ)
bits are ones and one mask can pick remaining numbers. If τ is
an even number, only the number τ is left not-matching. Line
12 masks this single number with the value τ . To this end, the
tags with the data being any one of [1, τ ] are activated (flag
is A) while others are silenced (flag is B). Line 15 issues a
query command to inventory the active tags. If there is a reply,
a target tag exists.

B. URQ & LURQ

So far, we have detailed the detection process of LRQ,
which can easily expand to the other two queries: URQ and
LURQ. For URQ (are there some data greater than an upper
boundary), we just need to invert the actions of selects in Alg.
2. Namely, the actions AB and A− are replaced with BA and
B−, respectively. In this way, the tags with the data greater
than the upper threshold are set to A, while others are set to
B. After issuing the query command Query−A : Q(0, 2, 0),
only target tags will reply to the reader if any. For LURQ (are
there some data in the interval (τL, τU ], where τL and τU are
a lower boundary and an upper boundary, respectively), we
only need to run the Alg. 2 twice with a small change. In the
first run, we do LRQ(τU ) as is according to Alg. 2 except for
removing the query operation, which sets all tags with the data
belonging to the interval [1, τU ] to A, while others to B. In the
second run, we do LRQ with the lower threshold τL, where
all actions are set to B−. By this means, tags with the data

in the interval [1, τL] are set to B; only the tags within the
interval (τL, τU ] are A. The two runs are shown as follows:

1⃝ [1, τU ]← A : Do LRQ(τU ) Lines 1-14,
2⃝ [1, τL]← B : Do LRQ(τL) with action B − .

(17)

C. Mask Combination

By investigating commodity RFID readers through their
data sheets as well as real experiments, we find that these
readers allow a select command to contain multiple masks,
e.g., up to two masks are supported by Impinj R420 [18] and
four masks by ALR 9900+ and ALR F800 [19]. With this
function, we are able to fill several masks into one select,
such that multiple basic selects are compressed into a single
one, saving the communication overhead by several times.

D. Performance Analysis

Now we discuss the execution time of LRQ. The other
two (i.e., URQ and LURQ) can be easily derived based on
LRQ. Given a lower boundary τ , the communication overhead
of LRQ consists of two parts: 1) the selects issued by the
reader for masking the numbers in the interval [1, τ ] and 2) a
query command together with an inventory frame for checking
whether there is any tag reply. According to Alg. 2, the number
of selects depends on |R(τ)| and d(τ), where |R(τ)| is the
number of ones in τ ’s binary representation and d(τ) is the
number of consecutive rightmost ones. Clearly, the number
f(τ) of selects is:

f(τ) = |R(τ)| − d(τ) + 1. (18)

This is a sharp decline in the number of selects. That is because
|R(τ)| is smaller than ⌈log2 τ⌉, which is much smaller than τ
itself. For example, given τ = 5000, the number f(5000) of
selects in LRQ is only 6, which is significantly smaller than
5000, compared with the basic range query. Besides, by taking
the mask combination into account, the number of selects can
be further reduced greatly. Hence, we have the execution time:

T (τ) = ⌈f(τ)
ω
⌉ × ts + tq, (19)

where ω is the number of masks that can be filled in one
select, ts is the time interval of issuing a select command by
the reader, and tq is the time interval of a query command
together with an inventory frame for checking the presence
of potential target tags. According to Eq. (19), the execution
time of LRQ declines sharply. For example, consider 10,000
tags and τ = 5000. LRQ spends only 2 selects (w = 4 when
Alien readers [19] are adopted) together with an inventory to
do the range detection, which is far superior to the overhead
of 100 selects and 100 inventories (if each group has 100 tags
on average), in comparison to SQ.

For URQ, its execution time is exactly same as that of LRQ.
However, LURQ is slightly different. It needs two runs for
selecting the numbers in the interval (τL, τU ], which are shown
in Eq. (17). Hence, the execution time T (τL, τU ) of LURQ is:

T (τL, τU ) = ⌈
f(τL) + f(τU )

ω
⌉ × ts + tq. (20)



VI. EVALUATION

A. Experimental Setup

We implement and evaluate our protocols with commodity
RFID readers and tags. As shown in Fig. 1(a), four models of
UHF RFID readers from two most experienced RFID suppliers
are used in our experiments, including Impinj [18] and Alien
[19]. Each reader is connected to a directional antenna that
is with 8.5 dBic gain and operates at around 920 MHz. To
better mimic a real RFID system and study the performance
of the protocols in practice, we set up the experiments in a
library, where up to 1000 commodity tags are used, which
is shown in Fig. 1(b). We first investigate the capabilities of
readers concerned by this study, in terms of the select and
inventory operation. The experiment results show that these
four readers support both of these operations. However, Impinj
readers provide users with only character-level masking: the
start position of the mask must be the 4i-th bit (the first
bit of each character). Instead, the Alien readers (e.g., ALN-
F800, ALN-9900+) are able to do the bit-level mask, which is
necessary for our protocols. Therefore, ALN-F800 is adopted
to implement and evaluate our protocols in the experiments.
We assert that the bit-level mask is specified by C1G2; the
disability of Impinj readers may be due to the fact that they
support this function under the hood, but do not expose this
level details to users.

B. Number of Selects

In Section V-D, we have discussed the expected number of
selects that is needed by RQ. Now we first study the number
of selects in LRQ (URQ is the same as LRQ). As shown
in Fig. 2(a), we vary the length of the threshold τ in binary
representation from 1 to 16. Two cases are investigated: with
mask combination (RQ-W) and without (RQ). Since the Alien
readers [19] allow a select command to combine four masks,
the factor ω in Eq. (19) is set to 4. As we can see, the (maximal
and average) numbers of selects experience a near linear rise as
the length of τ increases. This is intuitive as longer τ increases
the probability of more binary ones. However, it does not
mean that the large threshold needs more selects. It depends on
the number of ones and the number of consecutive rightmost
ones in the binary representation of τ . For example, when
τ is equal to 20,000, LRQ needs 6 selects to do the mask.
When τ is 2000, LRQ takes one more select, i.e., 7 selects,
to do the mask. In addition, by taking the mask combination
into account, this number will be further reduced (RQ-W).
The positive results validate that LRQ and URQ are able to
minimize the number of selects by combining the technologies
of substring masking and mask combination.

In Fig. 2(b), we study the number of selects in LURQ,
with respect to the lower boundary τL and the upper boundary
τU . The lengths of these two boundaries range from 1 to 16,
where τU > τL. Given a specific length pair of τL and τU , we
plot the average number of selects that LURQ needs to cover
the interval (τL, τU ]. As we can see, the maximal number of
selects is less than 17. If mask combination is considered, this
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(a) Readers. (b) Experimental setup.
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Fig. 1: Experimental Setup.

number will drop to only 5. This small number well indicates
that LURQ is time-efficient, regardless of the query interval.

C. Time Efficiency

For range detection, high time efficiency is vital to give
an early warning to users and help them reduce the potential
risk. In this subsection, we study the execution time of our
protocols. Since there is no prior work studying the problem
of range detection within the scope of C1G2, we take exclusive
collection (EC) as the baseline for comparison.

In Fig. 3, we compare the execution time of SQ and RQ
(LRQ is adopted) with the baseline EC under three scenarios.
For RQ, we set the threshold or the interval randomly in the
domain of the data. In scenario 1, we set n = 500, l′ = 16,
ρ = 0.1%, where n is the number of tags, l′ is the length of the
data in binary representation, and ρ is the ratio of the number
of target tags to n. For SQ, we assume that each group has 20
tags on average. In scenario 2, we double the number n of tags,
i.e., n = 1000, l′ = 16, ρ = 0.1%. Since one reader antenna
cannot cover 1000 tags, we use two in the case of n = 1000.
In scenario 3, we let the ratio ρ be zero, i.e., n = 1000,
l′ = 16, and ρ = 0, which means there is no target tag in the
system. The execution time of the protocols are presented in
Fig. 3. Take scenario 2 for example. The execution time of
EC is 9.6s, which is the longest amongst the three protocols.
SQ reduces the execution time to 3.2s since it silences most
of tags with the same data. LRQ further reduces the execution
time to 0.33s, which improves the time efficiency by near 30×,
compared with EC. Similar conclusions can also be drawn in
the other two scenarios: RQ performs the best, SQ follows,
and EC is the worst.

Next we study in more details the impact of different
parameters, including the number n of tags, the length l′ of
the data in binary representation, and the ratio ρ of the number
of target tags to n. In Fig. 4(a), we show how n influences
the execution time of EC, SQ, and RQ. We set l′ to 16, ρ
to 0.1%, and vary the number n of tags from 100 to 1000.
When the number of tags is greater than 500, we use two
antennas to do the range detection, as each antenna covers
about 500 tags at most. Besides, assume that each group in
SQ has 20 tags on average. For RQ, we adopt the worst
case, four selects, which is shown in Section VI-B. As we
can see, the execution time of EC increases with n. This is
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intuitive as EC needs to individually communicate with each
tag. The number of tags increases; the total communication
time increases proportionally. Similar to EC, SQ also sees a
rise trend over n. The difference is that the absolute value
is much smaller. That is because it silences most tags with
the same data. In contrast, the execution time of RQ remains
stable, as it relies on the threshold τ . RQ improves the time
efficiency by more than an order magnitude. For example, in
the case of n = 500, EC takes 4.8s, SQ reduces the time to
1.6s, RQ further drops this time to 0.17s, producing a 28×
performance gain.

In Fig. 4(b), we study the impact of the ratio ρ on the
execution time of EC, SQ, and RQ. We fix n to 1000, l′ to
16, and vary ρ from 0 (no target tag) to 1%, with a step of
0.1%. The results show that the execution time of EC and SQ
both sees a downward trend as ρ increases. That is because in
these two protocols once the reader detects a target tag, the
execution process terminates. The large ρ increases the ratio of
the number of target tags to n, as well as the probability that
a target tag is detected. On the contrary, the execution time
of RQ also remains stable since it aims to select all numbers
within the given range, regardless of the ratio ρ.

In Fig. 4(c), we show the impact of l′ on the execution time
of EC, SQ, and RQ. We fix n to 1000, ρ to 0.1%, and vary
l′ from 16 to 48, with a step of 16 (as the reader collects the
user data in word level). As we can see, the execution time of
EC and SQ both experiences a very slight rise over l′. That is
because when doing the inventory, EC and SQ need to do the

read cycle and collect more data as l′ gets longer. For RQ, the
large l′ increases the length of the boundary τ , as well as the
number of selects. Even so, RQ is far superior to the baseline.

VII. RELATED WORK

Range detection is to check if there are any tags that hold
data with the value between an upper and lower boundary,
which can be treated as a specific case of information col-
lection. As one main branch of RFID research, information
collection has attracted many attentions in recent years. The
information can be the basic tag ID that exclusively labels
each associated object, or the attributes of tagged goods for
live query, or the sensing information in sensor-augmented
RFID systems (e.g., the temperature of chilled food), etc.
To achieve high efficiency, early research uses Aloha-based
protocols [20]–[22] and tree-based protocols [8], [23]–[25]
to identify tags in a time-efficient way. The basic idea of
Aloha-based protocols is to let tags transmit data in different
time slots. Each tag randomly selects a slot and only the
slots chosen by exactly one tag can be used to collect ID
information, which effectively avoids tag-to-tag collisions. The
tree-based protocols apply a dynamic ID prefix of tag IDs to
progressively split a tag set into smaller subsets until only one
tag is left in each subset. This process is iteratively executed
until all tags are successfully identified.

For other information collection, Chen et al. [11] propose an
efficient multi-hash information collection protocol by using
multiple hash functions to avoid tag collision during slot



assignment. Yue et al. [12] study the multi-reader RFID system
and use a Bloom filter to determine which tags are covered
by each reader. Qiao et al. [13] propose a polling-assisted
protocols to collect the tag information from a subset of tags in
an energy-efficient way. Liu et al. [15] propose an incremental
polling protocol that sharply drops the polling vector from
96 bits to less than 2 bits, which greatly saves the polling
overhead for information collection. In recent years, Liu et al.
[14] investigate the problem of category information collec-
tion in a multi-category RFID system. Instead of repeatedly
interrogating each tag, this work just samples each category
by two steps: zooming into this category and isolating a tag at
a small cost. Liu et al. [10] study the problem of range query
that checks which interval the data held by each tag belong to.
In other words, it aims to collect each tag’s data in a coarse-
grained way, which is with a different goal as our problem.
Chen et al. [26] design a general framework, differential
Bloom filter (DBF), to automatically detect anomalies in RFID
systems. Unlike our work, DBF focuses on the anomaly event,
such as missing tags, unknown tags, or cloned tags, rather
than the specific data in each tag’s memory. In spite of the
advancement, these protocols cannot work in the commodity
RFID systems due to C1G2 incompatibility. The reason is that
these protocols make some ideal assumptions, e.g., hashing or
building a filter, which however are not supported by C1G2.

VIII. CONCLUSION

This paper studies the problem of range detection in a
commodity RFID system. By exploring the full potential of
C1G2-compatible commands, we deliver two tailored solution-
s: selective query (SQ) and range query (RQ). SQ partitions
the tag set into several groups and queries each group only
once, which reduces the number of tag inventories to only
the number of groups. RQ further reduces this number to
exact one, by quickly separating target tags (if any) from the
entire tag set with carefully designed selects. We implement
these two protocols in a commodity RFID system, without
any modification of hardware. Extensive experiments show
that RQ is able to improve the time efficiency by an order
of magnitude, in comparison to the baseline.
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