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Abstract—As an epoch-making technology, wireless power
transfer incredibly achieves energy transmission wirelessly, en-
abling reliable energy supplement for wireless rechargeable sen-
sor networks (WRSNs). Existing methods mainly concentrate on
performance improvement theoretically, neglecting the fact that
most Commercial Off-The-Shelf (COTS) rechargeable sensors
(e.g., WISP and Powercast) are not allowed to conduct sensing
and energy harvesting tasks simultaneously, termed charging
exclusivity. Therefore, their schemes are not feasible for practical
applications. In this paper, we focus on the charging exclusivity
issue in stochastic events monitoring while improving network
performance. In specific, we pay close attention to trading off
charging and sensing tasks and formulate a combinatorial opti-
mization problem with routing constraints. We introduce novel
discretization techniques and investigate the routing problem to
reformulate the original problem into the maximization of a
submodular function. With a slightly relaxed budget, the output
of our proposed algorithm is better than (1 − 1/e)/2 of the
optimal solution to the original problem with a smaller charging
radius (1 − ξ)Dc. Through extensive simulations, numerical
results show that in terms of charging utility, our algorithm
outperforms baseline algorithms by 21.3% on average. Moreover,
we conduct test-bed experiments to demonstrate the feasibility
of our scheme in real scenarios.

I. INTRODUCTION

Wireless power transfer technology [1] has provided effec-

tive means for energy replenishment in Wireless Rechargeable

Sensor Networks (WRSNs) [2]–[6], in which sensors are

with rechargeable batteries to harvest energy through wireless

signals transmitted by wireless charging vehicles (WCVs).

In recent years, much effort has been devoted to charging

performance optimizations in WRSNs [7], [8], such as: max-

imizing charging utility [9], minimizing charging time [10],

network lifetime extension [11], and so on. In these works,

they assume that energy harvesting and event sensing can be

simultaneously conducted by sensors. However, this assump-

tion contradicts practical applications to some extent, especial-

ly for COTS (Commercial Off-The-Shelf) wireless charging

equipment. In this kind of equipment (e.g., Powercast [12] and
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Fig. 1. Network model.

WISP [13]), energy capture modules and onboard supercapac-

itors are implemented instead of traditional lithium batteries

for efficient energy harvesting. However, COTS rechargeable

sensors are lightweight and simple in structure, which lacks

complex power control circuits [12]. As a result, the onboard

supercapacitor is confined to one of the two statuses: charging

or discharging. Thereby, simultaneous charging and sensing

cannot be achieved. State-of-the-art methods [14], [15] empha-

sized the feasibility of theoretical results/analysis. However, in

realistic scenarios, their schemes do not perform well based

on aforementioned COTS devices. This critical issue motivates

us to propose a scheme that is not only suitable for theoretical

results/analysis, but also feasible in practical applications.

In our network scenario (as shown in Figure 1), when

a sensor is being charged, the sensing behavior will be

suspended until the charging process ends, which indicates

that charging and sensing cannot co-exist simultaneously on a
COTS rechargeable sensor, which is called charging exclusiv-
ity phenomenon. If the charging exclusivity issue is not appro-

priately resolved, some critical events will be missed, leading

to catastrophic consequences, which is extremely prohibited

especially in real-time and safety-critical applications, such as

health caring [16]. In this paper, we focus on how to effectively

improve the charging utility (see definition in Section III-B)

while introducing the effect of charging exclusivity.

Specifically, we form a practical monitoring model for s-

tochastic events in which each sensor has a specific monitoring



probability for each Point of Interest (PoI) within its sensing

range. On this basis, we present a practical event model

and a utility model which takes charging exclusivity into

account and propose the Charging Exclusivity Optimization

(CEO) problem. We try to select appropriate sojourn spots for

a single WCV to charge surrounding sensors such that the

charging utility under the influence of charging exclusivity is

maximized, while ensuring that the energy cost of WCV will

not exceed its budget.

However, when solving the CEO problem, we are con-

fronting with several critical challenges:

• First, the charging exclusivity problem may lead to inci-

dental utility loss when WCV conducts charging tasks.

It is non-trivial to quantitatively leverage the utility gain

vs. utility loss yielded by the charging behavior of WCV.

• Second, the solution space of CEO problem is infinite

since the sojourn spots are chosen in the continuous

space which has infinite candidate locations, leading to

extremely high computational complexity.

• Third, our proposed practical monitoring model increases

the nonlinearity of the objective function in CEO problem

(see Equation (13)) and introduces extra difficulty to

analyze its monotonicity and submodularity.

• Fourth, scheduling the traveling tour of WCV among

selected sojourn spots is similar to solving a Traveling

Salesman Problem (TSP), which is NP-Hard. Thus CEO

problem is the coupling of multiple challenging problems

that cannot be solved straightforwardly.

To tackle these challenges, we design a charging utility

model in which the utility gain and loss are simultaneously

considered. We approximate the charging power through area

discretization and investigate the routing problem of WCV.

Through theoretical analysis of the objective function, an

approximation algorithm is proposed which selects appropriate

sojourn spots for WCV to maximize the charging utility. The

main contributions of this paper are listed as follows:

• To the best knowledge of the authors, this is the first

time the charging exclusivity issue is investigated. To

tackle the exclusivity problem with COTS equipment in

stochastic event monitoring, we trade off charging benefit

and incidental loss and formalize the CEO problem to

maximize the charging utility.

• By considering the charging exclusivity constraint, we

propose a practical-application-oriented stochastic event

monitoring model for WRSNs in which events are detect-

ed by surrounding sensors with probabilities less than 1.

Through our strenuous efforts on theoretical analysis, it

is proved that monotonicity and submodularity are still

held for the objective utility function U(X).
• To solve the proposed CEO problem, we reduce the

candidate locations from infinite to finite with bounded

error and transform the initial problem into maximization

of a submodular function. We prove that with a slightly

relaxed budget, the output of our proposed approximation

algorithm is better than (1−ε)(1−1/e)/2 of the optimal

solution to the original problem with a smaller WCV

charging radius (1− ξ)Dc.

II. RELATED WORK

In this section, we mainly review the related work on mobile

charging, which concentrated on different charging patterns.

Existing research works mainly fall into two categories: online

scheduling [17]–[20] and offline scheduling [9], [21], [22].

In online scheduling, rechargeable sensors send charging re-

quests when their energy level falls below a certain threshold.

Then the WCV schedules its traveling and charging behavior

in a timely manner to serve the panic sensors. Lin et al. [23]

explored the scheduling scheme for multiple WCVs based on

joint temporal and spatial priorities of charging requests to

maximize the survival rate of sensors. Fu et al. [18] tackled

the unique design challenge for WRSN deployment through

minimizing the charging delay by planning the optimal move-

ment strategy of the mobile charger.

In offline scheduling [10], [11], one or more WCVs plan

their traveling and charging behaviors through known sensors’

information (such as energy status, locations, and energy

consumption rate) in a priori. Wu et al. [21] focused on

the collaborated tasks-driven mobile charging to improve

the task utility. Liang et al. [24] investigated the charging

rewards maximization problem utilizing a mobile charger with

different amount of energy charged to sensors. Zhang et
al. [25] minimized the energy cost due to the mobile chargers’

movement and wireless charging loss so as to serve more

charging requests.

Prior arts have made extraordinary contributions to WRSN

performance improvement. However, the common problem of

these prior works is that they did not take charging exclusivity
into consideration which exists in COTS applications.

III. MODEL AND PROBLEM STATEMENT

A. Network Model

As shown in Figure 1, there are m practical Point of

Interests (denoted as O = {o1, o2, ..., om}) in a 2D plane

network. Each PoI has a stochastic event arrival rate λi, which

indicates the frequency of event that happens at its location.

We consider n stationary rechargeable sensors (denoted as

S = {s1, s2, ..., sn}) deployed randomly in the network to

monitor the occurrence of stochastic events of PoIs. Sensors

are equipped with rechargeable batteries with capacity c and

are implemented with S-MAC [26] and DD [27] protocols.

A wireless charging vehicle (WCV) with a limited energy

budget B, is employed as a mobile charger for providing

energy replenishing service for sensors. Each time, a WCV

starts from the base station and travels at a constant speed

v along a number of selected sojourn spots (denoted as

X = {x1, x2, ..., xp}) to replenish sensors wirelessly and

returns to base station before its energy approaches exhausted.

B. Event Model and Utility Computation

In this subsection, we introduce our stochastic event model

and corresponding event monitoring utility computation.



TABLE I
SYMBOLS AND DEFINITIONS

Symbols Definitions

oi, O a PoI, set of PoIs
sj , S a sensor, set of sensors
xk, X a sojourn spot, set of selected sojourn spots
e(sj , x) Charging power from WCV at x to sensor sj
α Traveling cost of WCV per unit length
β Charging power of wireless charger on WCV
τk Charging time at sojourn spot xk

C
(c)
k Charging cost of WCV at sojourn spot xk

C(t)(X) Traveling cost of WCV with sojourn spot set X
L(X) Length of the path formed by spots in X
Pij Monitoring probability of sensor sj to PoI oi
Si Monitoring sensor set of oi
Pi(t) Monitoring probability of oi
P ′
i (X, t) Monitoring probability of oi after WCV charging at

sojourn spot set X
Ti Lifetime of oi
Ui Monitoring utility of oi
U ′
i(X) Monitoring utility of oi after WCV charging at sojourn

spot set X
U(X) Charging utility with respect to sojourn spot set X
c Energy capacity of sensor
B Energy capacity of WCV
σ Number of edges of polygons
zk, Z Discrete subarea zk , set of subareas

In our scenario, for a PoI, stochastic events occur with equal

probability on it. In addition, we assume that event occurs

independently with each other in both temporal and spatial

dimensions [28], [29]. Under this assumption, the event gen-

eration process at a single PoI follows a Poisson process [30].

We assume that each sensor continuously perceives informa-

tion from surrounding environment and generates utility when

events occur within its coverage area during its lifetime.

The number of events that occur at a PoI within time interval

[s, s+ t] obeys Poisson distribution

P (N(t) = n) =
(λt)ne−λt

n!
, (1)

where λ is the arrival rate, which represents the number of

events that occur per unit time.

Additionally, each event endures a certain period of time

after its occurrence at a PoI. The duration time is considered

as a random variable whose probability density function is

denoted as f(·). For instance, we have f(x) = ψe−ψx when

event duration follows exponential distribution.

Afterwards, we introduce the utility computation for our

stochastic event model. In the network, sensor nodes are con-

sidered to monitor events at PoIs independently with certain

probabilities during its lifetime. Specifically, the monitoring

probability of sensor sj to PoI oi is Pij . When a sensor

exhausts its energy, it no longer conducts sensing tasks and

thereby the monitoring probability is 0. Consequently, we

denote Pij(t) as the monitoring probability:

Pij(t) =

{
Pij , working,

0, exhausted.
(2)

Here, Pij is a known value which is determined by hardware

configurations and the distance from the sensor to PoI as well

as environmental characteristics.

Constrained by the charging exclusivity issue, sensors can-

not conduct sensing tasks while being charged. Thus, the

monitoring probability after charging scheduling is

P ′
ij(t) =

{
Pij , working,

0, being charged or exhausted.
(3)

For each PoI, we define a monitoring set of sensors as Si =
{sj |d(sj , oi) ≤ Ds}, which represents the sensors that are able

to monitor PoI oi. Here, d(sj , oi) is the distance between sj
and oi and Ds is the sensing range of sensors.

Since sensors monitor events independently with each other,

the probability that events occurring at oi are monitored

by sensors in set Si can be calculated by multiplication of

monitoring probabilities of sensors in Si. Thus, the probability

Pi(t) that events occurring at oi are monitored is denoted as

Pi(t) = 1−
∏
sj∈Si

(1− Pij(t)). (4)

After WCV has finished charging tasks at all sojourn spots

in X , some nodes in Si may have non-working periods since

they cannot conduct monitoring tasks while being charged.

Taking this issue into account, the probability of monitoring

oi by Si is
P ′
i (X, t) = 1−

∏
sj∈Si

(1− P ′
ij(t)). (5)

We define the lifetime Ti of a PoI oi as the longest lifetime

of all sensors that can monitor it. In other words, when all

sensors around the PoI are exhausted, the PoI will not be

monitored, leading to event missing. Thus we have

Ti = max{tj |sj ∈ Si}, (6)

where tj is the lifetime of sensor sj .
We note that when WCV is fulfilling charging tasks, it will

charge all sensors within its charging range to the full capacity.

Thus charging performance will prolong the sensors’ lifetime

as well as the PoIs’ lifetime.

Similar to [31], in our model, the monitoring utility of

PoI oi per unit time is a monotone concave function of

Pi(t), i.e., u(Pi(t)). Suppose that an event starts at time

ts and ends at te. We denote tb = min{te, Ti} as the

time point when utility is no longer generated. Thereby, its

monitoring utility is calculated by
∫ tb
ts
u(Pi(t))dt and the event

duration time is te−ts, with corresponding probability density

f(te − ts). Since event duration follows probability function

f(x), the expectation of monitoring utility of an event is∫∞
ts

∫ tb
ts
u(Pi(t))dtf(te−ts)dte. At PoI oi whose event arrival

rate is λi, monitoring utility is generated for all events occur

within its lifetime Ti. Considering all possible events that

occur in [0, Ti], the total monitoring utility of oi through Ti is

Ui = λi

∫ Ti

0

∫ ∞

ts

∫ tb

ts

u(Pi(t))dtf(te − ts)dtedts. (7)

Accordingly, the total monitoring utility of oi (after WCV

has finished charging tasks at all sojourn spots in X) is

U ′
i(X) = λi

∫ T ′
i

0

∫ ∞

ts

∫ tb

ts

u(P ′
i (X, t))dtf(te − ts)dtedts.

(8)



Thereby we obtain the monitoring utility gain through

charging process (i.e., U ′
i(X) − Ui), which represents the

charging utility. Thus, we have tackled the first challenge

described in Section I.

C. Charging Model

We consider that the wireless charging power from WCV to

sensor decreases as their distance increases [10], [14]. When

the power reduces to a certain value, it will not be obtained by

sensors. Specifically, similar to [9], [32], the charging model

is described as

e(sj , x) =

{
ϕ

(δ+d(sj ,x))2
, d(sj , x) ≤ Dc,

0, d(sj , x) > Dc.
(9)

Here, ϕ and δ are constants configured by hardware and

environment, respectively. Dc is the charging radius of WCV.

When the distance between charger and sensor exceeds this

value, the charging power can be negligible (i.e., 0).

D. Energy Consumption of WCV

The energy cost of WCV mainly consists of two compo-

nents: charging cost and traveling cost. Charging cost is the

energy consumption when the WCV serves all the sensors

nearby, which can be denoted as

C
(c)
k = β · τk. (10)

Here β is the charger’s power, τk = max
sj∈S(c)

k

c−ej
e(sj ,xk)

is the

charging time spent at spot xk, where S
(c)
k = {sj |d(sj , xk) ≤

Dc} and ej is the residual energy of sensor sj .
Traveling cost refers to the energy consumed by WCV when

traveling around selected sojourn spots, which is represented

by

C(t)(X) = α · L(X ∪ {BS}). (11)

Here L(X ∪ {BS}) is the length of the path through base

station and spots in X , α is the traveling energy consumption

per unit length.

E. Problem Formulation

Define the energy capacity of the WCV as B. In the

charging and traveling process, the total cost should not exceed

the capacity, hence we have

C(t)(X) +
∑
xk∈X

C
(c)
k ≤ B. (12)

Our problem here is how to select the appropriate sojourn
spots set X for WCV to charge surrounding sensors such
that the total charging utility of the network is maximized.

Here, total charging utility U(X) is defined as the sum of

charging utility of each PoI. Thus we formulate the Charging

Exclusivity Optimization (CEO) problem as

(CEO) max U(X) =
∑
oi∈O

(U ′
i(X)− Ui)

s.t. C(t)(X) +
∑
xk∈X

C
(c)
k ≤ B.

(13)

Fig. 2. Area discretization: (a) Draw concentric circles; (b) Replace circles
by inscribed regular polygons.

F. Difficulty Analysis

To solve the CEO problem, we face several challenges here:

• When solving the CEO problem, we need to select

several locations in the continuous space as sojourn spots.

Obviously, the number of candidate locations is infinite

(i.e., the solution space of the problem is infinite, resulting

in very high computational complexity). Therefore, the

results cannot be obtained within polynomial time.

• The proposed practical monitoring model increases the

nonlinearity of the objective function in CEO problem.

Thereby, it is quite difficult to analyze its properties.

• In addition, since we analyze the traveling cost of WCV,

we need to calculate the optimal path through selected

sojourn spots, which again introduces another TSP prob-

lem [33], which is also NP-hard.

Therefore, the CEO problem is the coupling of multiple

challenging problems that has high computational complexity.

IV. OUR SCHEME

A. Area Discretization and Problem Reformulation

To discretize the 2D continuous plane, a straightforward

method here is to utilize a piecewise constant function to

approximate the charging power (as shown in Figure 2(a)),

thereby reducing the solution space of the problem.

Our aim is to segment the continuous region into pieces.

First, to ensure the approximation rate, we need to determine

the number of segments Q. We divide the WCV charging

radius Dc into Q segments with endpoints: l(0), l(1), ..., l(Q),
which are ordered in an increasing order with l(0) as the

nearest endpoint and l(Q) as the farthest.

Firstly, similar to [34], we take the location of sensors as

the center of circles and draw concentric circles with radius

l(1), ..., l(Q) for each sensor (see Figure 2(a)). Thereby the

approximated charging power of the charger located at any

point between adjacent circles is regarded as uniform.

Afterwards, as shown in Figure 2(b), we replace the con-

centric circles (blue disks) by a series of inscribed regular

polygons with σ edges (here, σ = 6) for simplicity to solve

the routing problem (see Section IV-B). Thereby, the 2D

plane is divided into several polygon areas. For sj , we denote

these areas as Hj
1 , H

j
2 , ..., H

j
Q, correspondingly. Similar to

the above-mentioned, charging power at any point between

adjacent polygons is regarded as uniform.



Fig. 3. Convex polygon partition: (a) Divide areas into convex polygons; (b)
Touring among disjoint convex polygon areas.

We define the following approximation of charging power

and bound its approximation error.

Definition 1: Letting l(0) = 0, l(Q) = Dc, and l(q) =

δ Γq−1
Γ−1 ((1− ε)−1/2− 1), (q = 1, ..., Q− 1), where Γ =

cosπ
σ√

1−ε ,

the discrete charging power can be formally expressed by the

following piecewise constant function:

er(sj , x) =

⎧⎪⎨
⎪⎩
e(l(1)), x ∈ Hj

1

e(l(q)), x ∈ Hj
q\Hj

q−1 (q = 1, ..., Q)

0, x /∈ Hj
Q.

(14)

With er(sj , x), the approximated charging power can

achieve (1 − ε) approximation ratio to the actual charging

power. Here, ε is a given error threshold. Relevant proof are

given in Section V.

Naturally, the (1 − ε) approximation ratio holds for the

inner polygon areas (Hj
1 , H

j
2 , ..., H

j
Q−1). For the outermost

polygon area Hj
Q, when σ is large enough, although Hj

Q

cannot cover the whole charging range (the outermost blue

disk in Figure 2(b)), our scheme’s performance is better than

the case where Dc is slightly reduced to (1− ξ)Dc (the green

disk), where ξ is a small positive number.

Without loss of generality, we further partition the non-

convex polygon areas into smaller convex polygon subareas.

Taking Figure 3(a) as an example, non-convex areas A, B,

and C are divided into convex subareas, i.e., (A1, A2), (B1,

B2, B3), and (C1, C2, C3), respectively. After partition, the

2D plane is finally divided into several convex polygon areas,

which are denoted as Z = {z1, z2, ..., zh}. We note that the

charging power of each convex subarea is the same as the

original area, e.g., charging power in B1, B2, and B3 is the

same as B.

After area discretization, we convert the CEO problem

into selecting subareas from a finite subarea set Z rather

than directly selecting locations in the continuous 2D plane,

which greatly reduces computational overhead. Thereby, our

proposed CEO problem can be reformulated as

(CEO-R) max U(Z ′) =
∑
oi∈O

(U ′
i(Z

′)− Ui)

s.t. C(t)(Z ′) +
∑
zk∈Z′

C
(c)
k ≤ B.

(15)

Here, Z ′ is the set of selected subareas.

The CEO-R problem is a nonlinear combinatorial opti-

mization problem, which falls into the scope of maximizing

a submodular function with general routing constraints and

can be approximately solved through our proposed algorithms

(see Section IV-B and Section IV-C). Related definitions and

proofs are given in Section V. Thereby, we have successfully

solved the second and third challenges described in Section I.

B. Traveling Path Construction

To solve the last challenge, a compulsory work is to con-

struct the shortest Hamiltonian cycle among selected sojourn

spots, ensuring that the traveling cost is no more than an ener-

gy threshold. In fact, this problem is similar to the Traveling

Salesman Problem (TSP). However, after area discretization,

we should deal with the issue of scheduling WCV’s traveling

path among selected sojourn areas rather than spots. Thereby,

the TSP problem is converted into a Touring Polygons Problem

(TPP) [35], [36]. As shown in Figure 3(b), we try to find a

path of minimum length that starts from a given spot (i.e.,
base station), visits each of the disjoint convex polygons (i.e.,
z1 to z5), and returns to the spot.

Without loss of generality, we assume that WCV will not

stop at the boundaries of selected sojourn subareas. Thus, the

areas can be regarded as pairwise disjoint convex areas. We

use the geometric center of each subarea as a representative

point to determine the traversal sequence. Afterwards, we can

obtain the optimal path among them in this sequence within

polynomial time referring to [36]. Afterwards, we randomly

select a point within each sojourn area as the WCV’s sojourn

spot, which should locate in the intersection of the obtained

path and the corresponding area.

The traveling cost is calculated corresponding to the ob-

tained traveling path. We denote the total cost of WCV with

selected sojourn area set Z ′ as

C(Z ′) = C(t)(Z ′) +
∑
zk∈Z′

C
(c)
k . (16)

C. Approximation Algorithm

Obviously, the two subproblems of our reformulated CEO-

R problem (i.e., WCV’s sojourn areas selection problem and

routing problem) are mutually coupled. In essence, different

sojourn areas z1, z2, ..., zh will produce different traveling

paths, while generating different traveling cost, which in turn

affects the selection of sojourn areas. Thus the two subprob-

lems need to be solved simultaneously.

In our solution, through area discretization, CEO-R problem

falls into the scope of maximizing a submodular function

with general routing constraints, which allows us to solve the

problem by utilizing an approximation algorithm referring to

the idea in [37]. In our proposed approximation algorithm, the

two subproblems are considered simultaneously and a greedy

strategy is adopted to iteratively select sojourn areas. In the

k-th iteration, a sojourn area zk is selected and added into the

current set such that the cost-benefit ratio is maximized, i.e.,

zk = argmax
z∈Z\Z′

k−1

U(Z ′
k−1 ∪ {z})− U(Z ′

k−1)

C(Z ′
k−1 ∪ {z})− C(Z ′

k−1)
. (17)



Algorithm 1 Approximation Algorithm for CEO-R Problem

1: Input: The monitoring probability Pij(t) of sensor sj to PoI oi, the
arrival rate λi of PoI oi, the parameters of charging model ϕ, δ, energy
consumption coefficient α, β, sensors’ battery capacity c, residual energy
ej of sensor sj and energy budget B.

2: Output: The selected sojourn area set Z′, total charging utility U(Z′).
3: Discretize the network plane into subareas by drawing concentric circles

with radius l(1), ..., l(Q) for each sensor;
4: Let Z′

0 ← ∅, C(Z′) ← 0, and Z ← argmax{U(zk)|zk ∈
Z,C(Z′

k) ≤ B};
5: while Z �= null do
6: for ∀z ∈ Z do
7: Compute the charging utility U(Z′

k−1 ∪ {z}) and U(Z′
k−1) with

corresponding monitoring utility;
8: Compute the total cost C(Z′

k−1 ∪ {z}) and C(Z′
k−1) with the

obtained path among corresponding sojourn areas;
9: end for

10: zk ← argmaxz∈Z\Z′
k−1

U(Z′
k−1∪{z})−U(Z′

k−1)

C(Z′
k−1

∪{z})−C(Z′
k−1

)
;

11: if zk ≤ 0 then
12: break;
13: end if
14: if C(Z′

k ∪ {zk}) ≤ B then
15: Z′

k ← Z′
k ∪ {zk};

16: k ← k + 1;
17: end if
18: Z ← Z\{zk};
19: end while
20: Z′ ← Z′

k;
21: if U(Z) ≥ U(Z′) then
22: Z′ ← Z;
23: end if
24: Output Z′, U(Z′);

We define Z ′
0 = ∅ as the initial sojourn area set and Z ′

k =
{z1, z2, ..., zk} as the selected set in iteration k. We note that

the cost C(Z ′
k) is calculated in each iteration. Every time a

new sojourn area is selected and added into the current set

Z ′
k−1, the Hamiltonian cycle among current areas is generated

and traveling cost is obtained correspondingly.

The iteration process will continue until the energy con-

straint is exceeded. We obtain the sojourn area set Z ′
k, satisfy-

ing: C(Z ′
k) ≤ B and C(Z ′

k+1) ≥ B. Z only contains a single

sojourn area. We compare U(Z ′
k) with U(Z) and choose the

maximum one as the result set. The details of the algorithm

are described in Algorithm 1. Thereby, we have tackled all

the challenges of CEO problem and the performance of our

scheme is verified theoretically in the followings.

V. THEORETICAL ANALYSIS

In this section, we describe how charging behaviors can

increase the monitoring utility of PoIs by affecting the lifetime

of sensors, and thereby prove the properties of the charging

utility function U(X).
When WCV is performing charging tasks, it will charge

all sensors within its charging range to full capacity. Con-

straint by the charging exclusivity issue, monitoring events

and harvesting energy cannot be conducted simultaneously by

a sensor. Thereby, as shown in Figure 4, charging behavior

will cause temporary monitoring loss during the charging

process, meanwhile prolonging the PoI’s lifetime, and the

overall monitoring utility is raised. To quantitatively describe

the influence produced by charging exclusivity, we define the

charging utility function U(X), which is the objective function

of the proposed CEO problem. Then we deeply explore the

characteristic of U(X) which enables us to transform the

original problem into a submodular function maximization

problem with routing constraints.

Definition 2: (Nonnegativity, Monotonicity, and Submod-
ularity) Given a finite ground set V , a real-valued set function

is defined as f : 2V → R, f is called nonnegative, monotone
(nondecreasing), and submodular if and only if it satisfies

following conditions, respectively.

• f(∅) = 0 and f(A) ≥ 0 for all A ⊆ V (nonnegative);
• f(A) ≤ f(B) for all A ⊆ B ⊆ V or equivalently: f(A∪

{e})−f(A) > 0 for all A ⊆ V and e ∈ V\A (monotone);
• f(A)+f(B) ≥ f(A∪B)+f(A∩B), for any A,B ⊆ V

or equivalently: f(A∪{e})−f(A) ≥ f(B∪{e})−f(B),
A ⊆ B ⊆ V , e ∈ V\B (submodular);

Through profound analysis of the characteristics of U(X),
we have the following theorem:

Theorem 1: The charging utility function U(X) in CEO

problem is nonnegative, monotone, and submodular.

Proof: Apparently, U(∅) = 0, as no charging means no

charging utility. Due to the monotonicity of U(X), we have

U(X) ≥ 0. Thus the nonnegativity holds for U(X).
Since the total charging utility of the network is the sum

of utility of each PoI and Ui is a constant (see Equation (7)),

we prove the monotonicity and submodularity of U ′
i(X) to

represent the total utility U(X).
Without loss of generality, we reformulate the objective

function U ′
i(X) into the form of h(U(X)), in which h(·) is

a monotone concave function. Then we prove Theorem 1 by

indicating the nonnegativity, monotonicity and submodularity

of substitute function U(X).
For a stochastic event, we consider its duration as a random

variable whose expectation is E =
∫∞
ta

(tb − ta)f(tb − ta)dtb,
and U ′

i(X) is reformulated as

U ′
i(X) ∝

∫ T ′
i

0

∫ t+E

t

u(P ′
i (X,x))dxdt (18)

∝ E

∫ T ′
i

0

u(P ′
i (X,x))dx (19)

∝ h(

∫ T ′
i

0

P ′
i (X,x)dx). (20)

Since arrival rate λi is a constant for PoI oi and function

u(·) is a monotone concave function, we have Equation (18).

It is noted that P ′
i (x) is a piecewise constant function,

thus Equation (19) can be proved. We omit this proof due

to the space limitation. Based on the above derivation, we

have Equation (20) in which U(X) =
∫ T ′

i

0
P ′
i (X,x)dx and

U ′
i(X) = h(U(X)).
Actually, for a PoI whose lifetime is T ′

i , events occurring

within time period [−E, T ′
i ) can be monitored. For simplicity,

we only consider the events that occur in [0, T ′
i ) since E is

significantly shorter than T ′
i .

Here we prove the monotonicity and submodularity of

function U(X). Without loss of generality, we assume that



Fig. 4. Probability gain and probability loss in different time periods.

all charged nodes have the same length of lifetime as they

own identical energy capacity.

Monotonicity: Comparing with the lifetime of a sensor, the

time duration of charging scheduling is rather short. Thereby

we consider that no sensor will exhaust its energy during the

charging scheduling period.

For easy proof, we assume that when WCV charges at

sojourn spot xk, the charging power is 0 and one sensor

sc is charged. Under this assumption, charging behavior is

equivalent to turning the sensor off for a while (charging

time tc) and reopening it. In other words, the time at which

the sensor exhausts its energy is delayed by tc and the total

working time does not change, as shown in Figure 4. Time

slot tc is moved from the beginning of charging to the end

of its lifetime, thus generating probability loss (area A) and

probability gain (area B) at corresponding time periods.

We denote P (S) as the total monitoring probability when

sensors in set S are monitoring a PoI simultaneously. Intu-

itively, P (S) is a submodular function. The probability loss

in charging period is P (S)−P (S\{sc}) (the height of area A).

When sc exhausts its energy, sensors that are still alive form a

subset of S\{sc}, which is denoted as Sc. The probability gain

in prolonged lifetime tc is P (Sc∪{sc})−P (Sc) (the height of

area B). Since Sc is a subset of S\{sc}, according to Equa-

tion (4), we have P (Sc∪{sc})−P (Sc) ≥ P (S)−P (S\{sc})
due to submodularity of function P (S), which indicates that

the probability gain is greater than probability loss. This

inequality still holds when multiple sensors are charged. We

omit the proof due to space limitation. Thereby, we have

U(X ∪ {xk})− U(X) ≥ 0.

Since the monotonicity holds for U(X) under the consump-

tion of zero charging power, it is obvious that this property

still holds when charging power is greater than 0.

Therefore, we prove that U(X) is monotone.

Submodularity: We consider two conditions A and B,

under which the sojourn area sets are A and B respectively

(A ⊆ B ⊆ V). Moreover, a newly added area e ∈ V\B
is considered. Let SA, SB , and Se denote the sensor set that

WCV can charge at areas A, B, and e respectively. Apparently,

there is SA ⊆ SB .

(Case 1) Firstly, we consider the case where Se ⊆ SA,

which means that all sensors in Se have been charged under

condition A and B. We note that charging the same sensor

once and multiple times are equivalent. Thus we have

U(A ∪ {e})− U(A) = U(B ∪ {e})− U(B) = 0.

Fig. 5. Detailed charging process in (Case 3).

(Case 2) Secondly, we consider the case where Se ⊆ SB
and Se � SA. In this case, all sensors in Se have been charged

under condition B. Thus, we have U(B ∪ {e}) − U(B) = 0.

Some sensors in Se have not been charged under condition A.

Due to the monotonicity, U(A∪{e})−U(A) ≥ 0 is satisfied.

Thereby we have

U(A ∪ {e})− U(A) ≥ U(B ∪ {e})− U(B).

(Case 3) Thirdly, we consider the case where Se � SB and

give an example in Figure 5. We assume that there are seven

sensors in Se, and two of them (s1 and s2) are charged in A
while four of them (s1, s2, s3, and s4) are charged in B. Since

SA ⊆ SB , we have ‖Se−SA‖ ≥ ‖Se−SB‖, which indicates

that when WCV charges at sojourn area e, the number of newly

charged sensors under condition A (s3 to s7) is more than that

under condition B (s5 to s7). We separate the charging process

into two parts. In part one, sensors in set (Se−SA)\(Se−SB)
(s3 and s4) are charged. In part two, the residual sensors in

set Se − SA (s5 to s7) are charged.

In the first part of the charging process, sensors in set (Se−
SA)\(Se − SB) (s3 and s4) are charged. Charging utility is

generated for A due to the monotonicity of the utility function.

Nevertheless, there is no charging utility for B since no sensor

is newly charged.

Therefore, the charging utility in part one for A is greater
than that for B.

We analyze the second part of the charging process, in

which the same sensors (s5 to s7) are charged under both

condition A and B. For a given PoI oi, which is monitored

by sensors in set Si = {s1, s2, ..., sn}, some sensors in Si
have been charged under condition A and more sensors have

been charged under condition B. Meanwhile, a subset of Si is

newly charged for both A and B, which is denoted as Scharge
(in our example, Scharge = {s5, s6, s7}). The probability

loss in charging period is P (Si) − P (Si\Scharge), which is

equivalent under condition A and B. Their probability gains

in prolonged lifetime are P (SAc ∪ Scharge) − P (SAc ) and

P (SBc ∪ Scharge) − P (SBc ), respectively. Since SA ⊆ SB ,

which means that more sensors’ lifetime are prolonged under

condition B, SAc ⊆ SBc is proved. Thus, we have

P (SAc ∪ Scharge)− P (SAc ) ≥ P (SBc ∪ Scharge)− P (SBc ).

Therefore, the charging utility in part two for A is greater
than that for B.



Combining with the two parts of the charging process, in

Case 3, we have

U(A ∪ {e})− U(A) ≥ U(B ∪ {e})− U(B).
In summary, we prove that U(X) is submodular. Conse-

quently, Theorem 1 is proved. �
Theorem 2: With er(sj , x), the approximation error of

charging power in area discretization is subject to

1− ε ≤ er(sj , x)

e(sj , x)
≤ 1, (x ∈ Hj

Q). (21)

Proof: To achieve the (1−ε) approximation ratio, we should

ensure that within a subarea, the actual minimum charging

power should not be lower than 1− ε of the actual maximum

charging power. Thus the charging power of adjacent subareas

has the following relationship:

ϕ

(δ + l(q) · cos πσ )2
· (1− ε) =

ϕ

(δ + l(q + 1))2
. (22)

The maximum and the minimum charging power within the

charging range are ϕ
(δ+0) and ϕ

(δ+Dc)
accordingly. Combining

these two expressions with Equation (9) and Equation (22),

we can get the following equation:

l(q) = δ
Γq − 1

Γ− 1
((1− ε)−1/2 − 1), (23)

where Γ =
cosπ

σ√
1−ε . Thereby, we prove the (1−ε) approximation

ratio of charging power in area discretization. �
Theorem 3: With a slightly relaxed budget, the output of our

proposed approximation algorithm is better than (1−1/e)/2 of

the optimal solution to CEO problem with a smaller charging

radius (1 − ξ)Dc, and its time complexity is bounded to

O(n6ε−6ν).
Proof: According to Section IV-A, we have transformed

the CEO problem into the maximization of a submodular

function with routing constraints through area discretization.

Therefore, according to [37], Algorithm 1 has a (1 − 1/e)/2
approximation ratio compared to the optimal solution.

Considering the approximation error induced by area dis-

cretization (see Section IV-A), the charging cost of WCV is

higher than the actual charging cost but does not exceed 1
1−ε of

it. Together with the traveling cost error in path construction,

therefore, we can obtain (1 − 1/e)/2 of the optimal solution

with a slightly relaxed budget [37]. Finally, the output of our

algorithm is better than (1−1/e)/2 of the optimal solution to

CEO problem with a smaller charging radius (1− ξ)Dc.
It is noted that the number of polygon areas partitioned by

all concentric polygons is N = O(n2ε−2). Due to the space

limitation, we omit the proof here. Although we further divide

the non-convex polygon areas into convex subareas, we note

that for each non-convex area, at most one of its subareas

can be selected in Algorithm 1 since different subareas have

different positions but own the same charging power. As a

result, the maximum size of the selected sojourn area set is

N = O(n2ε−2). Hereby, Algorithm 1 has at most N iterations.

In each iteration, the TPP problem is solved referring to [36],

whose time complexity is O(Nν), where ν is the total number

of vertices of the given polygon areas. Thus the overall time

complexity is O(n6ε−6ν). �

VI. SIMULATION ANALYSIS

We carry out extensive simulations to evaluate the perfor-

mance of our proposed algorithm from various aspects. Several

baseline algorithms are introduced for comparison.

A. Simulation Setup

As it is quite difficult or sometimes unreliable to generate

stochastic events with simulators, we utilize real statistical

data of epilepsy patients as the stochastic events data in our

simulations [38]. Specifically, frequency and duration time of

the pathogenic behavior of epilepsy patients are utilized as

event frequency and event duration time in our simulation.

In our simulation, we assume that there are 40 POIs

randomly distributed in a 100m∗100m area with one epilepsy

patient represents each. We deploy 100 rechargeable sensors

around the PoIs to detect the stochastic event occurring at

them. A WCV travels within the area to charge sensors at

selected sojourn areas. Meanwhile, we try to guarantee that all

the stochastic events of the PoIs are detected by surrounding

sensors, and try to avoid the monitoring failure due to charging

exclusivity. The energy capacities of sensors and WCV are

c = 50 and B = 10000, respectively. Relative parameters are

set as: ϕ = 15, δ = 10, α = 4, β = 0.5, σ = 10, Dc = 10m,

v = 1.5m/s, and f(x) = e−x.

B. Baseline Setup

We compare our algorithm (CEO for short) with four

baseline algorithms: ME, CCO, CHASE, and CHASE-C. ME

(maximum energy algorithm) selects the sojourn areas at

which WCV can achieve the largest amount of energy trans-

mitted to surrounding sensors, regardless of incidental utility

loss due to charging exclusivity. CCO (charging compatibility

optimization) follows the same scheduling strategy as CEO

and the only difference between them is CCO ignores the

charging exclusivity issue (i.e., charging and sensing can be

conducted simultaneously) while CEO takes it into account.

CHASE [39] is a state-of-the-art algorithm and CHASE-C is

its ideal version. In CHASE algorithm, charging and sensing

cannot be conducted simultaneously (leading to utility loss),

while in CHASE-C, we assume that charging and sensing can

take place simultaneously.

C. Simulation Results and Analysis

Generally, through extensive simulations, the numerical

results (See Figure 6 to Figure 11) shows that if charging and

sensing can be conducted simultaneously, CHASE-C and CCO

both achieve higher charging utility than other three algorithm-

s. However, when we take charging exclusivity into account,

the results of CHASE and CEO are lower than CHASE-C and

CCO, respectively. We note that although charging exclusivity

leads to performance decline, the performance of CEO is

obviously better than CHASE and ME by 21.3% on average

in terms of charging utility.

Firstly, we analyze the impact of error threshold ε. As

shown in Figure 6, when ε increases from 0.1 to 0.5, the

charging utility of CHASE-C, CCO, CEO, CHASE, and
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ME decreases gradually. It is noted that we discretize the

area through charging power segmentation. In fact, practical

charging power is approximated to a lower constant value.

As ε rises, the discretization is getting more coarse-grained.

Thereby charging power is more likely to be approximated to

a much lower value, leading to the utility loss. With respect to

the charging utility, CEO algorithm outperforms CHASE and

ME by 20.6% on average.

Secondly, we analyze the impact of WCV’s energy budget

B. As shown in Figure 7, when B increases from 5, 000 to

50, 000, the charging utility of the five algorithms increases

rapidly at the beginning and gradually stabilizes. Apparently,

when the energy budget of WCV is promoted, it can select

more sojourn areas and charge more sensors, leading to an

increasing trend of charging utility. However, when the budget

reaches a certain value, most sensors will be charged. As a

result, enlarging the budget will not produce significant utility

gain. On average, CEO algorithm outperforms CHASE and

ME by 11.4% in charging utility.

Thirdly, we analyze the impact of the edge number of

regular polygons σ. As shown in Figure 8, when σ increases

from 4 to 13, the charging utility of the five algorithms

rises dramatically at first and later grows stabilized. In area

discretization, we draw concentric σ-edge regular polygons to

segment the continuous charging power. When σ is larger, the

polygon is more similar to a disk and thereby the approximated

charging model is closer to the practical model. When the

number of edges is more than 10, the increasing trend gradu-

ally weakens. CEO algorithm achieves 20.1% higher charging

utility than CHASE and ME on average.

Fourthly, we analyze the impact of event arrival rate λ. As

shown in Figure 9, when λ increases from 0.5 to 3, the charg-

ing utility of the five algorithms increases rapidly, since more

frequent event occurrence provides more monitoring utility.

Although the utility loss caused by charging exclusivity rises

since there will be more event missing during charging, in the

prolonged lifetime, sensors will produce more utility gain than

aforementioned utility loss. Thereby the total charging utility

is raised. Under this condition, CEO algorithm outperforms

CHASE and ME by at least 22.9% in charging utility.

Afterwards, we analyze the impact of sensor number n. As

shown in Figure 10, when n increases from 40 to 160, the

charging utility of five algorithms shows an obvious growth

trend. The reason is that with higher sensor density, WCV

can charge more sensors at a time, thereby generating more

charging utility. When sensor density increases to a certain

extent, the monitoring probabilities of PoIs are close to 1.

Then the growth trend slows down since charging more sensors

will not significantly increase the monitoring probability and

monitoring utility. From the aspect of sensor number, CEO

algorithm outperforms CHASE and ME by at least 21.7%.

Finally, we analyze the impact of charging radius Dc. As

shown in Figure 11, when Dc increases from 5 to 15, the

charging utility of the five algorithms shows almost linear

growth at the beginning, since WCV can charge more sensors

within its charging radius, which increases the charging utility.

However, it is noted that the charging power decreases with

distance rapidly. Thereby, if the charging radius is too large,

charging a faraway sensor to full capacity will spend a long

time and waste large amounts of energy. As a result, the growth

trend slows down when Dc increases to a certain value. We

conclude that CEO algorithm outperforms CHASE and ME
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Fig. 15. Practical charging process. Fig. 16. Soccer field scenario.

by at least 24.9% in terms of charging utility.

VII. TEST-BED EXPERIMENTS

To demonstrate the feasibility of our scheme in realistic

scenarios, we conduct test-bed experiments to evaluate its

performance.

Our WRSN test-bed consists of several rechargeable sensors

and one WCV, which are built with COTS devices. In detail,

we utilize Powercast P2110-EVB as the power harvest module

of sensor which can convert RF signal into DC power. The

WCV is equipped with a TX91501 RF transmitter which can

send out RF signals on 915MHz (see Figure 15).

In our experiment, we imitate the fire monitoring network.

Specifically, we set 10 key monitoring spots in different

locations within a soccer field (see Figure 16) as PoIs and

deploy 25 rechargeable sensors around them. Sensors conduct

sensing tasks by collecting temperature data of PoIs within its

sensing range and send back packets to the base station. For

comparison, we take the local temperature statistics (average

temperature, maximum temperature, and extreme temperature)

as a guideline (see Figure 12), and select the maximum

temperature (the blue curve) as the judgment criteria of a

critical event. When the temperature of a PoI falls in the

shaded area in Figure 12, it is considered as an imitated fire.

The network deployment is shown in Figure 16. Our ex-

periments were conducted in different weather conditions and

lasted 45 days, during which charging utility was calculated

and recorded under different WCV budget.

We compare the differences among theoretical, simulation,

and experimental results on energy budget in Figure 13. In

the theoretical analysis, the WCV traveling time is ignored,

leading to the 3−15% gap between theoretical results and sim-

ulation/experimental results. Our simulation and experimental

results fit well with theoretical analysis, which demonstrates

the feasibility of our scheme in realistic scenarios.

Then we analyze the charging utility obtained by three

algorithms: Ours, RAN, and ME under different settings of

energy budget. The RAN algorithm randomly selects sojourn

areas for WCV to charge surrounding sensors until the energy

budget of WCV is exceeded. As shown in Figure 14, when

energy budget rises from 50 to 450, our proposed algorithm

apparently outperforms ME and RAN.

VIII. CONCLUSIONS

In this paper, we propose the first scheme that quantitatively

leverages the utility gain vs. incidental utility loss yielded by

charging behavior of WCV and trades off charging and sensing

to deal with the effect of charging exclusivity in stochastic

events monitoring. Through critical discretization techniques

and theoretical analysis, we transform the formulated CEO

problem into maximization of a submodular function with

routing constraints. With a slightly relaxed budget, our pro-

posed approximation algorithm can achieve the solution better

than (1−1/e)/2 of the optimal solution to CEO problem with

a smaller charging radius (1−ξ)Dc. Extensive simulations are

conducted based on practical data and numerical results show

that our proposed algorithm outperforms baseline algorithms

by 19.7% on average. Our test-bed experiments indicate the

feasibility of our scheme in realistic scenarios.
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