
TurboNet: Faithfully Emulating Networks with
Programmable Switches

Jiamin Cao∗†‡, Yu Zhou∗†‡, Ying Liu∗†‡, Mingwei Xu∗†‡, Yongkai Zhou§
∗Institute for Network Sciences and Cyberspace, Tsinghua University

†Beijing National Research Center for Information Science and Technology (BNRist)
‡Department of Computer Science, Tsinghua University §UnionPay

Abstract—Faithfully emulating networks is critical for verify-
ing the correctness and effectiveness of new networking-related
designs. Existing network experiment platforms either cannot
faithfully emulate functionality and performance of production
networks or cannot scale well because of cost limitations. In
this paper, we propose TurboNet , a new network emulator that
leverages one programmable switch to enable faithful emulation
of both network data plane and control plane. For data plane
emulation, we present a series of key designs such as port mapper,
queue mapper, and delayed queue to emulate network topologies
and performance metrics with high flexibility and accuracy. For
control plane emulation, we support static routing configurations,
distributed routing agents, and the centralized routing controller.
Meanwhile, we provide API for operators to simplify network
emulation tasks. We implement TurboNet on a Tofino switch.
The evaluation results show that: (1) TurboNet can flexibly
emulate various topologies such as the 8-ary fat-tree on the
data plane and support about 200 BGP agents with 25% CPU
usage on the control plane; (2) TurboNet can accurately emulate
different network performance metrics, including 400Gbps line-
rate background traffic injection, as small as 10−8 link loss, and
microsecond-level to millisecond-level link delay.

Index Terms—Network emulation, programmable switch.

I. INTRODUCTION

Verifying new networking-related designs, such as proto-
cols, routing algorithms, and proof-of-concept systems, work
correctly on real production networks is critical for both
researchers and engineers. As production networks are ossified
and cannot run unverified designs for reliability and security
concerns, researchers and engineers have to rely on modeling
or prototyping production networks to conduct experiments
and validate their designs. Then, how to faithfully mimic
networks, especially in functionality, scale, and performance,
becomes a significant problem for verifying the correctness of
networking-related designs.

Existing network experiment approaches can be categorized
into three types. First, simulators [1]–[6] leverage the compu-
tation power of CPUs to model the real networks. They support
flexible customization and can easily scale to large networks,
but their model cannot fully represent the real networks in
both functionality and performance. Second, emulators [7]–
[11] run the same code on CPUs as real platforms. They
are customizable like simulators and show great functional
fidelity. However, their experiment sizes rely on the available
CPU cycles and memory, and cannot provide accurate per-
formance results when emulating Gbps-level networks [12].
Third, we can also build test-beds composed of real devices.

Limited by costs and resources, test-beds may only support
small-scale experiments, whose results might not apply to
large production networks. There are also some public test-
beds [13]–[16]. They provide fidelity guarantees, but generally
lack customizability for topologies, forwarding behaviors, and
metrics. Furthermore, as networks evolve, test-beds shall be
upgraded correspondingly, requiring repetitive capital invest-
ment. In summary, there remains a gap between real networks
and existing network experiment approaches.

To address this gap, we explore a new direction to reform
network experiment approaches: emulating large networks
within one real switch. BNV [10] leverages multiple Open-
Flow [17] switches to emulate networks. However, due to
the inflexibility of OpenFlow switches, BNV is fundamentally
limited and fails in emulating large topologies and network
performance metrics, such as link delay. In this paper, we
propose TurboNet , a novel network emulator which leverages
the power of programmable switches [18]–[22] to faithfully
mimic functionality, scale, and performance of production net-
works. Programmable switches conduct re-configurable packet
processing on data planes with high bandwidth. The flexibility
of programmable switches enables agile customization of
emulated networks, allowing users to validate their design in
various network environments.

TurboNet aims at emulating both the data plane and control
plane. For the data plane, TurboNet needs to emulate both
the network topology and performance metrics such as back-
ground traffic, link delay, and link loss. First, to enable flexible
topology emulation, TurboNet slices the programmable switch
into multiple emulated switches via allocating separate ports
for each emulated switch and generating the respective pro-
cessing rules. Thus the networks that TurboNet emulates can
have at most the same number of ports as the programmable
switch ports. However, this design raises the first challenge:
how to emulate larger networks considering the limited ports
in one programmable switch? To solve this, we resort to
the richer queue resources and take the physical queues as
logical ports to emulate larger topologies. Further, TurboNet
should be able to emulate various performance metrics, which
brings the second challenge: the gap between the limited
data plane programmability of programmable ASIC and the
logic of emulating performance metrics, especially for link
delay. It is non-trivial to delay a packet in a programmable
switch for a fixed amount of time. To address this challenge,
TurboNet designs the delayed queue with fixed queue length
and queuing time via dynamically packet injection, and then978-1-7281-6992-7/20/$31.00 ©2020 IEEE

proposes the delayed queue-based link delay emulation. To
accurately emulate network behaviors on the control plane,
TurboNet provides both static and dynamic routing emulation.
In particular, as for dynamic routing, TurboNet supports both
distributed control plane, such as BGP agents, and centralized
control plane, such as the SDN controller [23].

TurboNet is a practical network emulator that can be fully
implemented by commodity programmable switches. In this
paper, we make four major contributions.
• TurboNet is the first one that leverages the power of new-

generation programmable switches for network emulation,
which aims at helping users efficiently and faithfully verify
their designs work correctly on production networks.

• We provide TurboNet API for operators to describe their
emulation tasks (§III).

• We present the TurboNet design. On the data plane,
TurboNet introduces port mapper, queue mapper, delayed
queue, and so on to faithfully emulate network topologies
and performance metrics (§IV). On the control plane,
TurboNet supports static routing configurations, distributed
routing agents, and centralized routing controller (§V).

• We implement TurboNet on a Tofino [21] switch. Evalu-
ation results show that: (1) TurboNet API can effectively
simplify network emulation tasks and reduce the code size
by 10x; (2) TurboNet can flexibly emulate various topolo-
gies, including the 8-ary fat-tree and 260 real-world Internet
topologies, and support almost 200 BGP agents with 25%
peak CPU usage on the control plane; (3) TurboNet can
accurately emulate different network performance metrics,
such as 400Gbps background traffic injection, 10−8 loss,
and µs-level to ms-level link delay (§VII).

II. MOTIVATION AND RELATED WORK

A. Motivation

Operators rely on conducting network experiments to verify
new network protocols, testify new routing algorithms, eval-
uate the performance of new proof-of-concept systems, and
so on. The network experiment platforms should satisfy three
requirements to verify the new networking-related designs can
work correctly on production networks, as listed in Table I.
Functionality Fidelity. Functionality fidelity means that the
experiment platforms should have the same implementation as
the actual production networks. Unlike test-beds and emulators
which run real devices or the same code as real devices,
simulators model the real environment as a result of simulated
events. As simulators cannot correctly model all details of
real networks [24], the simulation results cannot represent real
network environments and cannot guarantee fidelity.

TABLE I
NETWORK EXPERIMENT PLATFORMS.

Simulator Emulator Test-Bed NetProver
Functionality Fidelity ✖ ✔ ✔ ✔

Performance Fidelity ✖ ✖ ✔ ✔

Scale ✔ ✖ ✖ ✔

Performance Fidelity. Based on functionality fidelity, perfor-
mance fidelity further requires that experiment results should
match the performance in real networks. Test-beds, which
run on real devices, can achieve performance fidelity, while
Emulators cannot since they typically run on CPUs. For
example, in Mininet [7], resources are multiplexed in time
by the default scheduler, which cannot guarantee that a host
that is ready to send a packet will be scheduled promptly, or
that all switches will forward at the same rate [25].
Scale. Besides emulating network behaviors with high preci-
sion and accuracy, the experiment platforms should also be
scalable to support larger networks. Simulators achieves high
scalability via modeling networks. While the experiment size
of emulators usually depends on the available CPU cycles and
memory [12]. Similarly, test-beds rely on hardware infrastruc-
tures to conduct experiments and are difficult to scale. Only
expanding to more machines can solve this scalability issue
under a fidelity premise.

In summary, none of the existing network experiment plat-
forms can satisfy the above three requirements simultaneously.
In this paper, we propose TurboNet , a network emulator which
leverages programmable switches to reconcile functionality,
performance, and scale for network emulation.

B. Related Work

This part presents related work on network experiment
platforms.
Network Simulators. ns-2 [1] and ns-3 [2] are popular open-
source network simulators and target primarily for research
and educational use. NS4 [3] is a discrete-event network
simulator for modeling a network containing P4-enabled [26]
devices. OMNet++ [4] is another open-source C++-based sim-
ulator for modeling communication networks, multiprocessors,
and other distributed or parallel systems. There are also some
commercial simulators, e.g., OPNET [5] and QualNet [6].
Compared with simulators which rely on CPUs to model
networks, TurboNet provides more accurate performance em-
ulation via emulating networks on real hardware.
Network Emulators. Mininet [7] is a popular container-based
SDN emulator but faces scalability issues. Using a server with
3GHz of CPU and 3GB memory, Mininet can create at most
30 hosts connected with 100Mbps links and works poorly
for 1Gbps links [12]. Compared with Mininet, TurboNet can
emulate much larger networks with higher speeds. TurboNet
makes full use of the high bandwidth of programmable switch
via splitting one programmable switch into multiple emulated
switches. Thus, the networks that TurboNet emulates can
have at most the same total bandwidth as the programmable
switch, which can be up to several Tbps. CrystalNet [8] is a
cloud-scale network emulator by running real network device
firmware in containers and virtual machines, but it cannot em-
ulate real hardware forwarding behaviors for lack of data plane
emulation. Emulab [9] is a time- and space- shared network
emulation test-bed which provides emulation services through
consistent use of virtualization and abstraction. BNV [10]

Emulation Task Description

Switch CPU

TurboNet Compiler

TurboNet Runtime

Routing AgentsTable
Entries

P4
Program

Switch
Configs

Work Flow PacketRouting Message

Emulated Link
Switch ASIC Emulated Switch

Emulated SwitchEmulated Switch

Fig. 1. Architecture and workflow of TurboNet .

aims to emulate arbitrary topologies using OpenFlow switches.
OpenFlow assumes the switches have fixed behaviors and
protocols. Thus BNV is not suitable for validating many new
network designs, especially the ones requiring new protocols.
Besides, limited by the inflexibility of OpenFlow switches,
BNV cannot emulate some critical performance metrics, such
as link loss and link delay.
Network Test-beds. CloudLab [13] provides an SDN environ-
ment with three moderately-sized data centers inter-connected
with 100Gbps links. PlanetLab [14] is a geographically dis-
tributed network test-bed, which uses Linux vservers [27] to
provide security isolation and a set of schedulers to provide
resource isolation. GENI [15] is an integrated federation
of testbeds throughout the United States. These hardware
test-beds provide fidelity guarantees, but they are costly to
scale and lack the flexibility for customizable topologies and
forwarding behaviors. Compared with test-beds, TurboNet
leverages the flexibility and high bandwidth of programmable
switches to improve the customizability and scalability of
network experiments.

III. DESIGN OVERVIEW

A. Architecture and Workflow

Figure 1 shows the architecture and workflow of TurboNet .
First, operators describe their network emulation tasks with
given TurboNet API (§III-B). Then, for data plane emulation,
TurboNet Compiler generates the P4 program, switch configu-
rations, and table entries to construct topologies with specified
performance metrics (§IV). Next, for control plane emulation,
TurboNet may add or delete routing entries for static routing,
create containers as routing agents for distributed routing, or
establish control channels between TurboNet Runtime and a
remote controller for centralized routing (§V). Finally, opera-
tors can conduct experiments on the emulated topology.

B. TurboNet API

TurboNet introduces a set of APIs to specify network
emulation tasks, as listed in Table II.
Topology Construction. Operators can flexibly construct
whatever topologies they want via adding switches, ports,
and links. Meanwhile, they can specify the corresponding
configurations, such as port bandwidth and queue number.

We intentionally distinguish the switch-ports and host-ports,
which are connected with switches and hosts, respectively, be-
cause they are differently treated when emulating topologies.
Metric Configuration. The network metrics include common
link characteristics, e.g., link delay and link loss, and back-
ground traffic injection. For link metrics, besides the specific
link index and metric value, operators can also specify when
the emulation will take effect, i.e., the start time and end time.
The background traffic emulation is used as a substitute for
hosts. Based on a template packet, operators can inject traffic
to a switch with specified injecting interval, jitter, start time,
and end time. Moreover, any packet header field can be a
constant value, a random value, a value from a given list, or
an arithmetic regression. With these configurations, operators
can customize the injected background traffic, e.g., starting the
SYN flood attack on a host.
Routing Configuration. TurboNet takes the destination IP-
based routing as the default routing on each emulated switch,
while operators can also specify their own routing policies
with a P4 file. Notice that this P4 file can contain other network
functions than routing policies. Besides, TurboNet provides
convenient APIs to set the default table entry and add/delete
entries on an emulated switch.
Example. Figure 2 gives a network emulation example. The
middle portion illustrates how to describe the input topology
(left) with TurboNet API, via adding switches (Line 2∼4),
ports (Line 5∼10), and links (Line 11∼12), and then setting
the corresponding metrics (Line 13∼14). The right side of the
figure shows how TurboNet implements topology emulation,
which will be introduced in §IV.

IV. DATA PLANE EMULATION

In this section, we present how TurboNet emulates network
data planes, i.e., forwarding packets in a network with speci-
fied performance. TurboNet should answer the following two
questions. The first one is how to emulate a complex topology
within one switch (§IV-A). The second is how to emulate
performance metrics to make the emulated network behave
like real networks (§IV-B).

TABLE II
TurboNet API.

Topology Construction Description
add_switch (𝑠) Add a switch 𝑠.

add_hport (𝑠, 𝑝, 𝑞, 𝑏) Add a 𝑏	(Gbps/Mbps)	host-port 𝑝 with 𝑞 queues to switch 𝑠.

add_sport (𝑠, 𝑝, 𝑞, 𝑏) Add a 𝑏	(Gbps/Mbps) switch-port 𝑝 with 𝑞 queues to switch 𝑠.

add_link (𝑙, 𝑝0,𝑝1) Add a link 𝑙 between two ports 𝑝0 and 𝑝1 .

add_interal_host (ℎ, 𝑠𝑤) Add a internal host ℎ which connectes with switch 𝑠𝑤.

Metric Configuration Description
set_delay (𝑙, 𝑣, 𝑡0,𝑡1) Set delay of link 𝑙 as 𝑣	(µs/ms) during time [𝑡0,𝑡1].

set_loss (𝑙, 𝑣, 𝑡0, 𝑡1) Set loss rate 𝑣 on link 𝑙 during time [𝑡0,𝑡1].

inject_pkt
(ℎ, 𝑝, 𝑖, 𝑗, 𝑓 , 𝑡, 𝑣 , 𝑡0,𝑡1)

Inject specified packets to switch 𝑠 with interval 𝑖 (𝑛𝑠/µs) and
jitter 𝑗	(𝑛𝑠/µs) during time [𝑡0, 𝑡1].

Routing Configuration Description
set_route (𝑠, 𝑐) Configure routing policy 𝑐 on switch 𝑠.

set_default (𝑠, 𝑡, 𝑠𝑝𝑒𝑐) Set a default entry for routing table 𝑡 on switch 𝑠.

add_entry (𝑠, 𝑡, 𝑠𝑝𝑒𝑐) Add an entry to table 𝑡 on switch 𝑠.

delete_entry (𝑠, 𝑡, 𝑠𝑝𝑒𝑐) Delete an entry from table 𝑡 on switch 𝑠.

Network Topology

link1

link2

sw1

sw2

sw3

h1

h2

x2

Emulated Topology

Network Emulation Task Description with TurboNetAPI

1
2
3
4
5
6
7

topo = Topo ()
topo.add_switch ('sw1')

topo.add_switch ('sw2')
topo.add_switch ('sw3')

topo.add_hport ('sw1', ’x1', 8, ’40Gbps')
topo.add_sport ('sw1', ’x2', 8, ’10Gbps')

topo.add_sport ('sw2', ’x3', 8, ’10Gbps')

8
9
10
11
12
13
14

Topology Emulation

40G, 8 queues 10G, 8 queues

10G, 8 queues 10G, 8 queues

10G, 8 queues 40G, 8 queues

h1

h2

𝑦"

𝑦# 𝑦$

𝑦% 𝑦&

link1

sw2

sw1

sw3

link2

y3

y1

y5

y4

y2

y6

(3)

(2)

(4)

(5)

(6)

(1)

(7)x6

x3

x4
x5

x1

topo.add_sport ('sw2', ’x4', 8, '10Gbps')
topo.add_sport ('sw3', ’x5', 8, '10Gbps')

topo.add_hport ('sw3', ’x6', 8, '40Gbps')
topo.add_link ('link1', ’x2', ’x3')

topo.add_link ('link2', ’x4', ’x5')
topo.set_loss ('link1', 0.001, '0s', '10s')

topo.set_delay ('link2', '2ms', '0s', '10s')

Fig. 2. Network topology emulation example.

A. Topology Emulation

In this part, we present how TurboNet uses only one pro-
grammable switch to emulate various topologies flexibly.

Topology Emulation Architecture. The key idea is to slice
the programmable switch into multiple emulated switches.
Specifically, we map each port in the input topology to an
individual port on the programmable switch. Correspondingly,
each switch in the input topology is also mapped to an
individual set of ports with independent queues and bandwidth.
As shown in Figure 3, the topology emulation comprises two
modules. The first is Switch Emulation, which identifies the
emulated switch and implements the corresponding processing
logic. The second is Link Emulation, which connects the
emulated switches via configuring loopback ports and uses
additional match-action tables to emulate link metrics. Next,
we will introduce these two modules, respectively.

Switch Emulation: The Switch Emulation module contains
three parts to emulate switches. First, after receiving pack-
ets, Physical-to-Logical (P2L) Port Mapper matches with the
ingress port on the programmable switch and outputs the
corresponding switch and port in the input topology according
to the port mapping relationship. Second, Emulated Switch
contains match-action tables which set the egress port based
on the routing policy of the current emulated switch. Besides
routing tables, some other complex network functions, such
as load balancing and firewalls, can also be implemented in
each Emulated Switch. Third, Logical-to-Physical (L2P) Port
Mapper reverts the egress port in the input topology to the
port on the programmable switch and forwards packets.

Link Emulation: A naive method to emulate links is arti-
ficially connecting two ports on the same link with a cable,
which is troublesome and adds extra cable costs. We solve
this via subtly configuring the ports as loopback mode. Each
loopback port acts as a unidirectional link to transfer packets
to the other switch that connects to itself. Notice that only
the ports connected to other switches should be configured as
loopback mode, while the other ports are connected to hosts
with cables. We call the former switch-ports and the latter
host-ports. These two types of ports should be differentiated
when operators call TurboNet API. To emulate link metrics,
the Link Emulation module has similar processing logic to
Switch Emulation: P2L Port Mapper to identify the current
link and Emulated Link for metric emulation in §IV-B. The
difference is that Link Emulation does not forward packets,
and thus L2P Port Mapper is not needed.

Topology Emulation Workflow. The example in Figure 2

Switch Emulation

Link Emulation
Switch ASIC

P2L

Port Mapper

Emulated Switch

Emulated Link

Emulated Component

L2P

P2L

Port Mapper

Add
VLAN Tag

Remove
VLAN Tag

loopback

Packet

Fig. 3. Architecture and workflow of topology emulation.

shows how topology emulation works. We map each port in
the input network topology, i.e., x1 ∼ x6, to an individual
port on the programmable switch, i.e., y1 ∼ y6. The switch-
ports (y2 ∼ y5) are configured as loopback mode, while
host-ports (y1 and y6) should be connected to hosts with
cables. (1) When packets get into the programmable switch
from a host-port, e.g., y1, we add a VLAN tag, which will
be introduced later. (2) Packets from y1 are considered to
arrive at sw1 from x1. Assume that each emulated switch
forwards packets from one port to the other port. Then the
packets should be forwarded to x2, which is mapped to y2.
Depending on the egress port type, packets either leave the
emulated topology or get into the next emulated switch via a
link. (3) As y2 is a loopback port, packets will be received
from y2 again. Link Emulation module identifies the current
link, i.e., link1, and emulates the link metrics, i.e., 10−3 loss
rate. (4) Then packets get into the next emulated switch. As
y2 acts as a unidirectional link which transfers packets from
sw1 to sw2, packets from y2 are considered to be from x3 on
sw2. Therefore packets are forwarded to x4 which is mapped
to y4. (5) Like Step 3, packets are received by y4 and delayed
on link2. (6) Like Step 4, packets are sent to y6 by sw3. (7)
Finally, as y6 is a host-port, packets will leave the emulated
topology. Before they are sent, we restore the original packets
and remove the VLAN tag.

Emulation Optimization with Queue Mapper. A key limit-
ing factor on topology emulation is the available ports in one
programmable switch. Suppose that there are x 100G port
groups in one programmable switch, and each port group can
be subdivided to 1x100G, 2x40G, 4x25G, or 4x10G ports,
the total port number in the emulated topology can never
exceed 4x. To emulate larger topologies, we observe that the
32 queues under each port group can be taken as logical ports.
On the one hand, programmable switches support specifying
the egress queue for each packet, just like the egress port. On
the other hand, with maximum bandwidth shaping per queue,
we can configure queue bandwidth to emulate specified input
port bandwidth.

Therefore, we propose to use Queue Mapper to emulate
larger topologies. Each switch-port is directly mapped to

TABLE III
NOTATIONS OF PM AND QM PROBLEMS.

(Input) Topology emulation requirements and usable programmable switch ports:
𝑆",$ Set of switch-ports (𝑆") and host-ports (𝑆$) in the input topology.

𝑆 Set of ports in the input topology. (𝑆 = 𝑆" ∪ 𝑆$)

𝑏(Required bandwidth for port 𝑘 ∈ 𝑆.

𝑞(Required queues for port 𝑘 ∈ 𝑆.

𝑃 Set of available 100G port groups on the programmable switch.

(Output) Port mapping relationship:

𝑥/
",$,0,1	 0-1 binary variable indicating port group 𝑖 ∈ 𝑃 is occupied and configured as

1x100G (𝑥/"), 2x40G (𝑥/$), 4x25G (𝑥/0), or 4x10G (𝑥/1)

𝑥/(
",$,0,1 0-1 binary variable indicating port group 𝑖 ∈ 𝑃 is configured as 1x100G (𝑥/"),

2x40G (𝑥/$), 4x25G (𝑥/0), or 4x10G (𝑥/1) and has a sub-port mapped to port 𝑘 ∈ 𝑆.

(Output) Queue mapping relationship:

𝑦/ 0-1 binary variable indicating port group 𝑖 ∈ 𝑃 has queues occupied.

𝑦/(0-1 binary variable indicating port 𝑘 ∈ 𝑆 is mapped to queues of port group 𝑖 ∈ 𝑃.

individual queues. Notice that host-ports are connected to
hosts by cables, so they should still be mapped to the physical
ports on the programmable switch. However, after loopback
ports send packets back to the programmable switch, we
cannot know the previous egress queue, which is essential for
P2L Queue Mapper to identify the current switch and link.
Therefore, we modify the VLAN ID as the egress queue in
L2P Queue Mapper. The 12-bit VLAN ID is enough to cover
the queues under a port. Then P2L Queue Mapper can match
with both the ingress port and VLAN ID to determine the
current switch or link. Notice that VLAN is just a way to
distinguish emulated switches and we can replace it with a
variety of protocols, even using headers of our own design.

Performance Isolation Analysis: TurboNet emulates mul-
tiple switches on one programmable switch, and thus per-
formance isolation is critical for emulation fidelity. When
Port Mapper is employed, i.e., each emulated switch has its
separate set of ports, traffic among different ports cannot
affect each other since they have separate bandwidth and
buffer. The same is true for Queue Mapper when queue
bandwidth shaping is enabled and queue sizes are allocated
for each emulated switch. Our evaluation in §VII-E will show
TurboNet’s performance isolation effect.

Next, we will introduce how to map the ports in the input
topology to the ports (Port Mapper) or queues (Queue Mapper)
on the programmable switch. We formalize these two problems
as 0-1 Integer Linear Programming (ILP) problems.
Port Mapper (PM) Problem. Table III shows the related
notations of the PM problem. The input variables include
the topology emulation requirements, i.e., the bandwidth and
queue number of ports in the input topology (S, bk, qk), and
available port groups on the programmable switch (P). The
output variables are binary and contain two parts. The first is
how a port group should be configured if occupied (x1,2,3,4i).
Considering that each port group can be subdivided to various
sets of sub-ports, we should correctly configure them to match
the actual input port bandwidth. The second is the one-to-one
mapping relationship between input ports and sub-ports under
each port group on the programmable switch (x1,2,3,4ik).

Object and Constraints: To reserve more bandwidth for

TABLE IV
FORMULATION OF PM AND QM PROBLEMS.

PM Problem 𝒙𝒊
𝟏,𝟐,𝟑,𝟒, 𝒙𝒊𝒌

𝟏,𝟐,𝟑,𝟒	 = 𝑷𝑴 𝑺,𝒃𝒌, 𝒒𝒌,𝑷

Objective 𝑚𝑖𝑛:	4(𝑥78 + 𝑥7: + 𝑥7; + 𝑥7<)
�

7∈@

Constraints

𝑪𝟏:	𝑥78 + 𝑥7: + 𝑥7; + 𝑥7< ≤ 1, ∀𝑖 ∈ 𝑃

𝑪𝟐:	4𝑥7F8
�

F∈G

≤ 𝑥78,4𝑥7F:
�

F∈G

≤ 2 I 𝑥7:,4𝑥7F;
�

F∈G

≤ 4 I 𝑥7;,4𝑥7F<
�

F∈G

≤ 4 I 𝑥7<,∀𝑖 ∈ 𝑃

𝑪𝟑:	4(𝑥7F8 + 𝑥7F: + 𝑥7F; + 𝑥7F<)
�

7∈@

= 1, ∀𝑘 ∈ 𝑆

𝑪𝟒:	4(100 I 𝑥7F8 + 40 I 𝑥7F: + 25 I 𝑥7F; + 10 I 𝑥7F<)
�

7∈@

≥ 𝑏F , ∀𝑘 ∈ 𝑆

𝑪𝟓:	4𝑞7F I (𝑥7F8 + 𝑥7F: + 𝑥7F; + 𝑥7F<)
�

F∈G

≤ 32𝑥7,∀𝑖 ∈ 𝑃

QM Problem 𝒚𝒊,𝒚𝒊𝒌,𝒙𝒊
𝟏,𝟐,𝟑,𝟒, 𝒙𝒊𝒌

𝟏,𝟐,𝟑,𝟒 = 𝑸𝑴(𝑺𝟏, 𝑺𝟐, 𝒃𝒌,𝒒𝒌,𝑷)

Objective 𝑚𝑖𝑛:		4𝑥78 + 𝑥7: + 𝑥7; + 𝑥7< + 𝑦7

�

7∈@

Constraints

𝑪𝟏:	𝑥78 + 𝑥7: + 𝑥7; + 𝑥7< + 𝑦7 ≤ 1, ∀𝑖 ∈ 𝑃 𝑪𝟒:	4𝑦7F

�

7∈@

= 1,∀𝑘 ∈ 𝑆8

𝑪𝟐:	𝑥7
8,:,;,<,𝑥7F

8,:,;,< = 𝑃𝑀 𝑆:,𝑏F, 𝑞F, 𝑃 𝑪𝟓:	 4 𝑞F𝑦7F

�

F∈GX

≤ 32𝑦7,∀𝑖 ∈ 𝑃

𝑪𝟑:	 4 𝑏F𝑦7F

�

F∈GX

≤ 100𝑦7,∀𝑖 ∈ 𝑃	

other purposes such as link delay emulation in §IV-B, we hope
to minimize the number of used ports on the programmable
switch. Table IV lists the constraints. C1 ∼ C3 guarantee the
one-to-one mapping relationship between the input ports and
sub-ports on the programmable switch. C4 requires that the
mapped port bandwidth on the programmable switch should
not be smaller than the input port bandwidth. Bandwidth
shaping will be employed if more bandwidth is allocated.
C5 gives the queue constraint and is based on the fact that
programmable switches support arbitrary queue distribution
for each sub-port under a port group.

Queue Mapper (QM) Problem. The QM problem takes
the same input as PM but has different outputs. For host-
ports, which are mapped to physical ports, QM has the same
output as PM. For switch-ports, we define another two binary
variables (yi, yik) to represent the queue mapping relationship.

Object and Constraints: Similar to PM, QM also hopes to
minimize the utilized port groups. The constraints are listed
from two aspects, i.e., host-ports and switch-ports. C1 requires
that a port group can be mapped to either switch-ports or host-
ports. C2 represents the mapping relationship of host-ports.
C3 ∼ C5 give the constraints for switch-ports. Specifically,
C4 requires that each switch-port should be mapped to queues
from the same port group. C3 and C5 constrain that each
port group has at most 100Gbps bandwidth and 32 queues
to allocate for the input ports.

We take PuLP [28], which is an open-source linear program-
ming modeler in Python, to solve the PM and QM problems.
Then TurboNet Compiler will generate the corresponding
table entries and switch configurations for topology emulation.

B. Emulating Network Metrics

In this part, we present how TurboNet emulates perfor-
mance metrics to make the network behave like real networks.
Table V summarizes the emulating capability of TurboNet in
terms of background traffic, link loss, and link delay.

1) Background Traffic: An important motivation is that
sometimes operators only need to monitor the traffic behaviors
from a small number of hosts. In contrast, many other hosts
are used to generate background traffic. Therefore, we provide
background traffic emulation as internal hosts to lower emu-
lation costs. A side benefit of background traffic emulation is
that some host-ports, which should have been connected with
hosts, are saved, and thus larger topologies can be emulated.

Programmable switches provide a way to inject packets
into switch pipelines. Each pipeline has a 100Gbps packet
generator engine capable of injecting packets periodically [29].
The control plane can configure the packet injection interval
and jitter, and decide when the injection starts and ends.
However, all injected packets are from fixed packet templates.
To flexibly customize background traffic, we define match-
action tables on the data plane to modify user-specified parsed
packet fields. We refer to Editor in [30] and support four
types of header field modification, i.e., a constant value, a
random value, a value from a given list, and an arithmetic
regression. The implementation is similar to [30] and omitted
here. Then operators can flexibly customize the injected traffic,
e.g., emulating the SYN flood attack.

To inject packets to specified switches like real hosts, we
allocate a unique VLAN ID for each target switch. Before
packets are injected into the pipeline, we add a VLAN
tag and set VLAN ID as the corresponding target switch.
The P2L Mapper can identify the current emulated switch
based on this VLAN ID. Then the injected packets can be
processed like normal packets in the emulated topology, i.e.,
forwarded/received by emulated switches and finally sent to a
host. However, if the destination host is another internal host,
L2P Mapper in the last emulated switch will not find any
matched egress port on the programmable switch, and thus
packets will be dropped. That is, using background traffic to
emulate hosts can only send but cannot receive packets. With
100Gbps packet generator bandwidth each pipeline, TurboNet
provides at most 400Gbps background traffic bandwidth on a
4-pipe switch. Therefore, TurboNet can emulate at most 400/x
internal hosts if each host requires xGbps bandwidth.

2) Link Loss: P4 has no direct method to perform an action
according to a probability. However, it provides a primitive
modify field rng uniform to generate a random integer num-
ber v from a given range between a lower bound 0 and an

TABLE V
SUMMARY OF METRIC EMULATING CAPABILITY OF TurboNet .

Network Metric Emulating Capability

Background
Traffic

Up to 400Gbps line-rate customizable traffic injection, i.e., emulating 𝑦
hosts, each with ())

*
Gbps throughput.

Link Loss As small as 10,- link loss emulation with relative error < 1%.

Link Delay µs-level to ms-level link delay emulation with per-ms deviation < 9µs.

upper bound 2n − 1. Therefore, v can be one of 2n equally
possible values, and the probability of v < λ is λ/2n for a
given threshold λ. To drop packets with a probability p, we
just need to let λ/2n = p. For each packet, we generate a
random number v, compare v with a threshold λ, and drop the
packet if v < λ. Larger n means higher link loss emulating
accuracy. Our evaluation will show that n = 32 is enough,
and the emulated loss can be as low as 10−8 with relative
error < 1%. To emulate different loss rates for various links,
we need to set different thresholds and compare the generated
random value with the corresponding threshold.

3) Link Delay: Link delay varies a lot in real networks,
which can be from nanosecond-level in data center networks to
millisecond-level in wide-area networks [31]. Therefore, how
to emulate link delay for different networks is a challenge.
In TurboNet , loopback ports act as links to transfer packets
between switches with nanosecond-level delay tl. To emulate
larger link delay tp, we should bridge the delay gap τ = tp−tl.
A key observation is that the queuing time is in propor-
tion to the queue depth in programmable switches (§VII-C).
Therefore, we can maintain the queue depth to achieve target
queuing time. The high-level idea is to (1) implement delayed
queues with desired queuing time, and (2) send packets to the
delayed queues to emulate target link delay. Notice that delayed
queues should be from reserved ports, which are not used in
topology emulation, to isolate delayed traffic with other traffic.

Delayed Queue with Target Queuing Time. The key idea
for delayed queue implementation is to dynamically inject
backup packets to the delayed queue for target queuing time.
In particular, we inject backup packets to the switch and decide
whether to send these packets to the delayed queue based on
the up-to-date queuing time. However, the queue information
can only be obtained in the egress pipeline, while the egress
port and egress queue must be specified in the ingress pipeline.
To address this challenge, we first specify another reserved
loopback port as the egress port for these injected packets.
These packets will read the queuing time of the delayed queue
in the egress pipeline and decide whether to go to the delayed
queue when they return to the switch again. Figure 4 shows the
implementation of a delayed queue. We place a register, i.e.,
QTime, in the egress pipeline to record the up-to-date queuing
time of the delayed queue. When packets are dequeued from
the delayed queue, they update QTime as their queuing time.
Meanwhile, we use the internal packet generator to inject
backup packets to another reserved loopback port R0. In the
egress pipeline, the backup packets read QTime, compare the
register value q with the desired queuing time τ , and record the
result in a 1-bit header field. When they return to the switch
via R0, they may be sent to the delayed queue based on this
1-bit value. If q < τ , they should go to the delayed queue and
also update QTime. Otherwise, they go to R0 to continually
check the queuing time.

Link Delay Emulation. As the queuing time has upper
limits, packets may go to multiple delayed queues for higher
delay. Figure 5 shows how TurboNet emulates link delay with

Delayed Packets Backup Packets

Egress PipelineIngress Pipeline Traffic Manager

B R1
DelayedQueue

Write

loopback

𝑦𝑒𝑠

R0𝑞 < 𝜏?Read

loopback𝑛𝑜

Packet Generator

R1 D
Normal Queue loopback

BackupQueue
dropQtime (q)R0 𝑞 < 𝜏?

Fig. 4. Delayed queue with target queuing time τ .

LinkEmulation

A B B DR2

R1

Rn

R2

R1

Rn
nst Delay

2st Delay
1st Delay

Cabel Loopback P4 Program

sw1

sw2

Fig. 5. Link delay emulation.

delayed queues. Normally, the loopback port B acts as a link
to transfer packets from the emulated switch sw1 to sw2. To
emulate the target link delay, packets received from port B
are sent to n delayed queues in turn before they get into
sw2. R1 ∼ Rn are n reserved loopback ports and each has a
delayed queue with queuing time τi. Then the total emulated
delay includes queuing time

∑n
i=1 τi, pipeline time except

queuing time tp ∗ n, and port loopback time tl ∗ n. As tl and
tp of a P4 program are fixed (§VII-C), to bridge the delay gap
τ , the queuing time of these n delayed queues should satisfy∑n

i=1 τi = τ − n ∗ (tl + tp). When packets finish link delay
emulation and go to the next emulated switch sw2, the ingress
port becomes Rn instead of B. However, the emulated switch
relies on the ingress port for port mapping in P2L Mapper. To
make the delayed packets identified by sw2, we add a table
entry, which matches with Rn and outputs the corresponding
switch and port index.

Accuracy and Resource Analysis: Stable queuing time guar-
antees that all delayed packets obtain the same link delay,
and thus throughput is not affected. There are three premises
for stable and accurate queuing time. First, the delayed queue
bandwidth should not be smaller than the emulated link band-
width. Otherwise, the queue depth might keep increasing, even
if no backup packets are enqueued. Second, the bandwidth
of backup packets should be larger than the delayed queue
bandwidth. This guarantees that enough backup packets can be
injected to maintain queue depth, even if there are few delayed
packets on the link. Third, the time from reading queuing time
to getting into the delayed queue should be small enough
to make timely decisions. According to our measurements
in §VII-C, the time from dequeuing to enqueuing again via
a loopback port is no more than 620ns. Therefore, queue
depth and queuing time variations are minimal, when the
target queuing time is much larger than 620ns. Based on the
above, each delayed queue implementation requires double
emulated link bandwidth for reserved ports. Therefore, we
should minimize the used ports in topology emulation to sat-
isfy delay emulating requirements for more links. According
to our evaluation in §VII-C, one 10Gbps delayed queue can
provide 1ms delay emulation with deviation < 9µs. TurboNet
can further utilize multiple delayed queues to emulate µs-level

Switch CPU

Switch ASIC

Routing Message

Routing Entry

TurboNet Runtime

Routing Agent

sw1

Routing Agent

sw3

Routing Agent

sw2
Programmable Switch

Fig. 6. Distributed routing emulation.

sw1 sw2

TurboNet Runtime sw1-control sw2-control sw3-control

sw3

Control Channel
Routing Entry Routing Program

Controller

Switch CPU

Switch ASIC

Programmable Switch

Fig. 7. Centralized routing emulation.

to ms-level link delay with per-ms deviation < 9µs.

V. CONTROL PLANE EMULATION

Control plane emulation is also important and mimics how
routing protocols or programs control the production networks.
To accurately emulate the network behaviors on the control
plane, TurboNet provides both static and dynamic routing.

The routing tables reside at Emulated Switch in Figure 3.
Each emulated switch takes the destination IP-based routing by
default. Users can also define their own routing policies, e.g.,
ECMP and MPLS, for each emulated switch via specifying
routing tables. For each received packet, TurboNet performs
the corresponding routing policies based on the current switch
index acquired from P2L Mapper.

Static Routing. For static routing, routing entries are added or
deleted manually. Operators need not know how the ports in
the input topology are mapped to ports on the programmable
switch, but just need to call the routing configuration APIs in
Table II to manage table entries in emulated switches.

For dynamic routing, operators can run any routing algo-
rithms in a centralized or distributed manner as they desire.

Distributed Routing. To enable distributed routing, TurboNet
creates a separate container as a routing agent for each emu-
lated switch, as shown in Figure 6. Operators can specify the
routing protocol, e.g., OSPF, and run their routing algorithms,
e.g., Dijkstra, in routing agents. The routing agents inject
routing messages to the emulated switch and manage routing
entries on the emulated switch. TurboNet Runtime on the
switch CPU acts as a proxy to transfer routing messages and
add/delete routing entries on emulated switches.

Centralized Routing. TurboNet supports centralized routing
with a real remote controller, as shown in Figure 7. Operators
can run their routing program on the controller. Each emulated
switch has a local control plane on TurboNet Runtime to
establish a control channel with the controller. The controller
collects network status from local control planes, calculates
routing entries, and distributes the entries to different local
control planes. Then the control planes add or delete routing
entries on the corresponding emulated switches.

VI. DISCUSSIONS

In this part, we discuss four issues related to further ex-
tension of TurboNet . The first issue is about the scalability of
TurboNet , i.e., how to emulate larger networks which requires
massive switch resources. Since TurboNet emulates a whole
network on one programmable switch, the limited switch
resources becomes a bottleneck for emulation. There are four
types of resources required by different emulated components
of TurboNet and may become the emulation bottleneck. First,
the available switch bandwidth or ports is the key resource for
topology and link delay emulation. Emulating larger topolo-
gies means fewer switch ports for delay emulation, and the
insufficient switch ports may cause the emulation to fail.
Second, the SRAM and TCAM may be the key resources for
routing when routing tables contain massive entries. Third,
the packet generator bandwidth is important for background
traffic generation and link delay emulation. Fourth, the CPU
and memory on the control plane may become scarce resources
required by the dynamic routing, either to create distributed
routing agents or to establish control channels with a remote
controller. In general, not all emulation tasks can be performed
by TurboNet for resource limitations, but there are some
approaches to overcome these limitations. For example, we can
use external memory to extend no-chip memory [32], combine
multiple programmable switches for more switch ports, and
replace the original switch CPU with a more powerful CPU.

The second issue is about the fidelity of TurboNet , i.e.,
whether the emulation are accurate when switch resources
are insufficient. Given an emulation task, TurboNet Compiler
will check whether there are adequate hardware resources for
network emulation and whether the generated P4 program
can be deployed on the programmable switch. TurboNet can
guarantee emulation fidelity with enough resources, while the
emulation will not be performed if resources are insufficient.

The third issue is about the generality of TurboNet , i.e.,
whether TurboNet can accommodate to other programmable
devices. Besides re-configurable match-action tables in P4,
TurboNet also requires three other hardware capabilities in-
cluding port/queue bandwidth shaping, port loopback modes,
and packet generator. The former two capabilities are widely
supported by programmable switches [33], [34], while the
third one, i.e., packet generator, is not. We admit that packet
generator is a requisite to emulate background traffic and link
delay, but it will not affect topology and link loss emulation.
For programmable switches without internal packet generator,
we can resort to external packet generator if necessary.

The fourth issue is about TurboNet’s two inherent short-
comings. First, TurboNet mainly focuses on emulating the
intermediate network, i.e., the switches, while host emula-
tion is beyond programmable switches. Although we provide
background traffic injection as an alternative, the background
traffic only supports sending packets with simple header field
modification but cannot receive packets. Therefore, TurboNet
cannot emulate client/server applications. In other words, we
have to rely on external packet generator for complex traffic

patterns. Second, since TurboNet emulates network-related
designs via P4 programs, TurboNet cannot reflect device-
dependent details. Thus, TurboNet may miss some hardware
failures, e.g., faulty memory modules, processors, and ports,
which can be found by test-beds composed of true devices.

VII. EVALUATION

A. Overview

We evaluate TurboNet with one Barefoot Tofino switch and
two servers. Equipped with an Intel Pentium 4-core 1.60GHz
CPU and 8GiB memory, the switch has two packet processing
pipelines for 3.2Tbps port bandwidth and 200Gbps packet
generator bandwidth. The servers both have a 12-core Intel
Xeon E5-2620 2.40GHz CPU and connect to the switch via an
Intel XL710 (40Gbps) and two Intel 82599ES (10Gbps) NICs,
respectively. To evaluate TurboNet , we first emulate various
data center and Internet topologies to prove TurboNet’s topol-
ogy emulating capability. Then we take the 4-ary fat-tree as an
example and demonstrate TurboNet’s emulation capability for
various network components. In total, we have the following
five evaluation goals.
• Topology emulating capability: How large are the topolo-

gies that TurboNet can emulate (§VII-B)?
• Metric emulating accuracy: How accurately can TurboNet

emulate various network metrics, including link delay, link
loss, link bandwidth, and background traffic (§VII-C)?

• Control plane emulating capability: How complex are the
control plane TurboNet can emulate with limited CPU and
memory resources (§VII-D)?

• Performance isolation: How much isolation can TurboNet
guarantee (§VII-E)?

B. Topology Emulating Capability

In this part, we evaluate the topology emulating capability
of TurboNet and compare TurboNet with BNV [10]. We
take various real-world topologies as input. The topologies
include data center topologies, e.g., fat-tree [35] and VL2 [36],
and 261 Internet topologies from [37]. For TurboNet , we
evaluate both PM-based and QM-based topology emulation
(hereafter referred to as PM and QM). For BNV, we present the
emulating capability with static loopback links and software-
configurable loopback. The results are shown in Table VI.
PM and QM Comparison for TurboNet . The topology
emulating capability can be divided into two aspects: topology
size and link bandwidth. We compare the emulation capability
of PM and QM by changing the input topology size and link
bandwidth, respectively. First, we change k in the fat-tree, i.e.,
the topology size, and show the maximum link bandwidth that
TurboNet can emulate. A k-ary fat-tree has k3/4 host-ports
and k3 switch-ports [35]. We can see that on a 4-pipe switch,
PM can only emulate the 4-ary fat-tree, while QM can emulate
the 8-ary fat-tree. As the total available port bandwidth is
fixed, the maximum link bandwidth for QM decreases with
k increasing. Second, we change the link bandwidth in VL2
and show the maximum DAD1, i.e., the topology size, that

TABLE VI
TOPOLOGY EMULATING CAPABILITY COMPARISON.

Topology

TurboNet BNV

2-Pipe (32*100G)
Programmable Switch

4-Pipe (64*100G)
Programmable Switch 64*100G SDN switch

PM QM PM QM Static
Loopback L2-Switch

Fat-
Tree

𝑘 = 4 𝐿𝑖𝑛𝑘 ≤ 25𝐺 𝐿𝑖𝑛𝑘 ≤ 25𝐺 𝐿𝑖𝑛𝑘 ≤ 40𝐺 𝐿𝑖𝑛𝑘 ≤ 40𝐺 𝐿𝑖𝑛𝑘 ≤ 40𝐺 𝐿𝑖𝑛𝑘 ≤ 40𝐺

𝑘 = 6 × 𝐿𝑖𝑛𝑘 ≤ 8.3𝐺 × 𝐿𝑖𝑛𝑘 ≤ 20𝐺 × ×

𝑘 = 8 × × × 𝐿𝑖𝑛𝑘 ≤ 6.2𝐺 × ×

VL2
𝐿𝑖𝑛𝑘 = 1𝐺, 10𝐺 𝐷3𝐷4 ≤ 16 𝐷3𝐷4 ≤ 20 𝐷3𝐷4 ≤ 36 𝐷3𝐷4 ≤ 44 𝐷3𝐷4 ≤ 24 𝐷3𝐷4 ≤ 36

𝐿𝑖𝑛𝑘 = 10𝐺, 40𝐺 𝐷3𝐷4 ≤ 20 𝐷3𝐷4 ≤ 20 𝐷3𝐷4 ≤ 40 𝐷3𝐷4 ≤ 40 𝐷3𝐷4 ≤ 32 𝐷3𝐷4 ≤ 40

261 Internet Topologies 199	(76.2%) 259	(99.2%) 248	(95.0%) 260	(99.6%) 248	(95.0%) 248	(95.0%)

TurboNet can emulate. According to [36], a VL2 topology has
5DAD1 host-ports and 2DAD1 switch-ports when the server
links and switch links are 1Gbps and 10Gbps, or 2DAD1 host-
ports and 2DAD1 switch-ports when the links are 10Gbps and
40Gbps. We can see that when link bandwidth is small, QM
can emulate larger topologies than PM. However, when link
bandwidth increases to 10Gbps and 40Gbps, the bandwidth
instead of port number becomes the limiting factor, and thus
QM presents no improvement compared with PM.

We also compare the emulating capability of PM and QM
over 261 Internet topologies. The link bandwidth is 10Gbps
by default if not specified in the input topology. As the table
shows, QM can emulate 60 more topologies than PM on
a 2-pipe switch. This is because that these 60 topologies
have many links with small bandwidth, which can be further
mapped to queues using QM. The only topology that cannot
be emulated using QM on a 4-pipe switch is the Kdl topology,
which contains 899 links, and each link bandwidth is 10Gbps
by default. The total port bandwidth then comes to 18Tbps
and is beyond the programmable switch. In summary, the
above results prove that compared with PM, QM improves
the topology emulating capability in terms of topology size,
especially for smaller link bandwidth.
TurboNet and BNV Comparison. To achieve fairness, we as-
sume that BNV has the same port bandwidth as TurboNet , i.e.,
one SDN switch with 64 100Gbps port groups, instead of five
1Gbps SDN switches in the original BNV test-bed. BNV sup-
ports two types of loopback links. The first is static loopback
links. We take the original configuration in the BNV test-bed.
Half of the ports are connected to servers, and the remaining
half is used to form loopback links. As the loopback links
are fixed, the topology that BNV can emulate is smaller than
TurboNet PM. The second is software-configurable loopback,
which requires another L2 intermediate switch to dynamically
configure loopback links. With dynamical loopback links,
BNV achieves the same emulating capability as TurboNet PM.
However, whether utilizing static or dynamic loopback links,
BNV’s topology emulating capability is always not at par with
TurboNet QM.

C. Metric Emulating Accuracy

In this part, we evaluate the network metric emulating
accuracy of TurboNet in terms of background traffic, link
delay, link loss, and link bandwidth.

TABLE VII
TOPOLOGY EMULATING CAPABILITY WITH HOST EMULATION.

Topology
Without Host Emulation With Host Emulation

PM QM PM QM

VL2
𝐿𝑖𝑛𝑘 = 1𝐺, 10𝐺 𝐷+𝐷, ≤ 36 𝐷+𝐷, ≤ 44 𝐷+𝐷, ≤ 92 𝐷+𝐷, ≤ 112

𝐿𝑖𝑛𝑘 = 10𝐺,40𝐺 𝐷+𝐷, ≤ 40 𝐷+𝐷, ≤ 40 𝐷+𝐷, ≤ 48 𝐷+𝐷, ≤ 48

Fat-Tree

𝐿𝑖𝑛𝑘 = 1𝐺 𝑘 ≤ 4 𝑘 ≤ 8 𝑘 ≤ 6 𝑘 ≤ 12

𝐿𝑖𝑛𝑘 = 10𝐺 𝑘 ≤ 4 𝑘 ≤ 6 𝑘 ≤ 6 𝑘 ≤ 6

𝐿𝑖𝑛𝑘 = 40𝐺 𝑘 ≤ 4 𝑘 ≤ 4 𝑘 ≤ 4 𝑘 ≤ 4

6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 1 5 0 00
2 0
4 0
6 0

Gb
ps

P a c k e t S i z e (B y t e)

 T u r b o N e t M o o n G e n

(a) Gbps

6 4 1 2 8 2 5 6 5 1 2 1 0 2 4 1 5 0 00

4 0

8 0

Mp
ps

P a c k e t S i z e (B y t e)

 T u r b o N e t M o o n G e n
 L i n e R a t e

(b) Mpps
Fig. 8. Background traffic throughput comparison.

0 5 1 0 1 5 2 0 2 50 . 0
0 . 4
0 . 8
1 . 2 Q u e u e B a n d w i d t h :

1 0 G 2 0 G
3 0 G 4 0 G

Qu
eu

ing
 Ti

me
 (m

s)

Q u e u e D e p t h (* 1 k)
(a) Queuing time vs. enqueue depth

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 05 9 0
6 0 0
6 1 0
6 2 0
6 3 0

B a n d w i d t h (G b p s)

Pa
cke

t D
ela

y (
ns

)

1 % ~ 9 9 % M e a n
R a n g e w i t h i n 1 . 5 I Q R O u t l i e r s

(b) Delay from dequeuing to enqueu-
ing via a loopback port

Fig. 9. Measurements of queuing time and packet delay.

Background Traffic. TurboNet introduces background traffic
emulation as a substitute for hosts to lower emulation costs.
Figure 8 compares the throughput between background traffic
emulation in TurboNet and MoonGen [38] for different packet
sizes. The throughput test of MoonGen is performed on a
40Gbps port. To guarantee fairness, we test the throughput
of TurboNet using the packet generator on a single pipeline
with bandwidth limited within 40Gbps. We can see that
TurboNet can always achieve line-rate for all packet sizes,
while MoonGen cannot generate small-sized packets at line-
rate. For 64-byte packets, the throughput of MoonGen is
21.2Mpps, 3.7x smaller than TurboNet .

Besides lowering host costs, another benefit of background
traffic emulation is that larger topologies can be emulated,
as the ports that should have been connected with hosts are
saved now. Table VII shows the topology emulating capability
improvement when using 400Gbps background traffic to em-
ulate hosts. We can see that host emulation can significantly
increase the emulated topology size especially for smaller link
bandwidth, since more hosts can be emulated. For the VL2
topology with 1Gbps server links and 10Gbps switch links,
using background traffic to emulate hosts can increase the
emulated size by > 2x.
Link Delay. Figure 9 demonstrates some measurement results,
which are the premises of link delay emulation. Specifically,
Figure 9(a) shows the proportionality relationship between
queue depth at the packet enqueue time and queuing time. We
can see that queue bandwidth also affects queuing time. At the
same enqueue depth, queuing time is inversely proportional to
queue bandwidth. Besides, the maximum queuing time of a
10Gbps queue is smaller than 1.2ms, and thus multiple delayed
queues are necessary to emulate larger delay. Figure 9(b)

0 . 2 0 . 4 0 . 6 0 . 8 10 . 0
0 . 5
1 . 0
1 . 5
2 . 0

E x p e c t e d (m s)

Pra
ctic

al
(m

s) P r a c t i c a l : M i n ~ M a x 1 % ~ 9 9 %
 M e a n

E x p e c t e d :

2 4

0
5
1 0
1 5

 S t d D e v

Std
 De

v (
us

)

(a) One-pass link delay accuracy

2 4 6 8 1 00
5

1 0
1 5

E x p e c t e d (m s)

Pra
ctic

al
(m

s) P r a c t i c a l : M i n ~ M a x 1 % ~ 9 9 %
 M e a n

E x p e c t e d :

6 8 1 0

0
5 0
1 0 0
1 5 0

 S t d D e v

Std
 De

v (
us

)

(b) Multi-pass link delay accuracy
Fig. 10. Link delay accuracy.

0 . 1 0 . 0 1 0 . 0 0 1 1 E - 4 1 E - 5 1 E - 6 1 E - 7 1 E - 8 1 E - 91 0 - 1 0
1 0 - 8
1 0 - 6
1 0 - 4
1 0 - 2
1 0 0

Pra
ctic

al

E x p e c t e d

 L o s s R a t e R e l a t i v e E r r o r

Fig. 11. Link loss accuracy.

5 1 0 1 5 2 0 2 5 3 0 3 50

2 0

4 0

Pra
ctic

al
(G

bp
s)

E x p e c t e d (G b p s)

 P o r t S h a p i n g B a n d w i d t h
 Q u e u e S h a p i n g B a n d w i d t h

Fig. 12. Link bandwidth accuracy.

shows the packet delay from dequeuing to enqueuing via a
loopback port. As the queue bandwidth ranges from 10Gbps
to 100Gbps, the packet delay always fluctuates around 600ns,
and the variations are smaller than 20ns. This small delay is
the premise for accurate link delay emulation.

We test the practical link delay when emulating different
target link delay. Figure 10(a) shows the one-pass delay, i.e.,
packets pass a 10Gbps delayed queue only once. As the
expected delay ranges from 0.2ms to 1ms, the practical delay
presents minimal difference from the expected delay with
standard deviation < 9µs. Figure 10(b) shows the multi-pass
delay, i.e., packets pass the delayed queues more than once.
To achieve from 2ms to 10ms target delay, packets pass the
delayed queues with 1ms queuing time from 2 to 10 times.
As we can see, with packets passing the delayed queues more,
delay variations also increase linearly, but the per-ms deviation
is always < 9µs, i.e., the relative deviation is < 0.9%.
Link Loss. Figure 11 shows the link loss emulating accuracy
using the 32-bit random number generation. We set different
loss rates and check the deviation of practical link losses from
expected ones. As the figure shows, when the expected loss
changes from 0.1 to 10−8, TurboNet can always accurately
emulate link loss with relative error < 1%.
Link Bandwidth. In §IV-A we employ port/queue bandwidth
shaping to achieve specified input port bandwidth, i.e., link
bandwidth. Therefore, the accuracy of port/queue bandwidth
shaping decides link bandwidth emulating accuracy. Figure 12
shows the practical port and queue bandwidth on a 40G port
when different shaping thresholds are configured. As we can
see, both the port and queue bandwidth shaping are accurate
for different shaped bandwidth.

D. Control Plane Emulating Capability

Compared with static routing and centralized routing, the
distributed routing requires more control plane resources be-
cause an individual routing agent is created for each router.
Therefore, we mainly test the distributed routing emulating
capability for control plane evaluation. We take three real
Internet topologies from [37] which represent small, median,
and large networks with router and link numbers are 50 and 73,
110 and 158, and 197 and 245, respectively. BGP is used as the
only routing policy and we assume that all connected routers

0 5 1 0 1 50
1 0
2 0
3 0
4 0 5 0 R o u t e r s , 7 3 L i n k s

 1 1 0 R o u t e r s , 1 5 8 L i n k s
 1 9 7 R o u t e r s , 2 4 5 L i n k s

CP
U U

sa
ge

 (%
)

T i m e (m i n)
(a) CPU

0 5 1 0 1 52 0
4 0
6 0
8 0

1 0 0

 5 0 R o u t e r s , 7 3 L i n k s
 1 1 0 R o u t e r s , 1 5 8 L i n k s
 1 9 7 R o u t e r s , 2 4 5 L i n k s

Me
mo

ry
Us

ag
e (

%)

T i m e (m i n)
(b) Memory

Fig. 13. CPU and memory usage of distributed routing on control plane.

0
1 0
2 0
3 0
4 0
5 0 S h a p e d B a n d w i d t h

 Q u e u e 1 Q u e u e 2

Ba
nd

wid
th

(G
bp

s)

T i m e (s)0 1 0 2 0 3 0 4 0

(a) Bandwidth

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0

Pa
cke

t D
ela

y (
us

)

T i m e (s)

 Q u e u e 1
 Q u e u e 2

0 1 0 2 0 3 0 4 0

(b) Packet Delay
Fig. 14. Queue performance isolation.

are BGP peers. Figure 13 shows the CPU and memory usage
for different topology sizes. The CPU usage peaks in the first
few minutes and then decreases but still periodically reaches
smaller peaks. The memory usage changes differently, which
increases at first to create routing agents and then remains
stable. We can see that TurboNet can easily support almost
200 BGP routing agents with 25% peak CPU usage.

E. Performance Isolation

TurboNet emulates topologies via allocating separate port
and queue resources for each switch in the input topology.
The ports are physically isolated in programmable switches,
while the queues share bandwidth resources on the same port.
Figure 14 shows the performance isolation effect with queue
bandwidth shaping. Queue 1 and Queue 2 are two queues
under the same port. We configure the maximum bandwidth
shaping to limit the bandwidth of both queues should not
exceed 20Gbps, and set the overall port bandwidth as 40Gbps.
In theory, the port should cease to schedule traffic from the
queue if the queue reaches the configured bandwidth. To
test the performance isolation effect, we always send 15Gbps
traffic to Queue 1 while changing the traffic sent to Queue
2, and observe the practical receiving bandwidth and packet
delay of both queues. We can see that the traffic variations
of Queue 1 have little impact on Queue 2. That is, queue
bandwidth shaping strictly guarantees performance isolation.

VIII. CONCLUSION

This paper presents TurboNet , a network emulator that
leverages one programmable switch to faithfully mimic func-
tionality, scale, and performance of production networks.
In our future work, we will combine more programmable
switches to emulate larger networks with more complex
network functions. Furthermore, we will consider how to
accommodate to dynamically changing network emulation re-
quirements without interrupting the current emulation process.
Acknowledgments. We thank our shepherd, Marinho Barcel-
los, and the anonymous reviewers for their valuable comments.
This research is supported by National Key R&D Program of
China (2018YFB1800405) and the National Natural Science
Foundation of China (61772307). Ying Liu is the correspond-
ing author.

REFERENCES

[1] Teerawat Issariyakul and Ekram Hossain. Introduction to network
simulator 2 (ns2). In Introduction to network simulator NS2, pages
1–18. Springer, 2009.

[2] ns-3. https://www.nsnam.org/.
[3] Jiasong Bai, Jun Bi, Peng Kuang, Chengze Fan, Yu Zhou, and Cheng

Zhang. Ns4: Enabling programmable data plane simulation. In
Proceedings of the Symposium on SDN Research, SOSR ’18, New York,
NY, USA, 2018. Association for Computing Machinery.

[4] András Varga and Rudolf Hornig. An overview of the omnet++ simu-
lation environment. In Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and
systems & workshops, page 60. ICST (Institute for Computer Sciences,
Social-Informatics and . . . , 2008.

[5] Xinjie Chang. Network simulations with opnet. In WSC’99. 1999
Winter Simulation Conference Proceedings.’Simulation-A Bridge to the
Future’(Cat. No. 99CH37038), volume 1, pages 307–314. IEEE, 1999.

[6] SCALABLE Network Technologies. Qualnet official
site. Website. https://www.scalable-networks.com/products/
qualnet-network-simulation-software-tool/.

[7] Mininet Team. Mininet: An instant virtual network on your laptop (or
other pc). Website. http://mininet.org.

[8] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapra-
gada, Nuno P. Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua
Yuan. Crystalnet: Faithfully emulating large production networks. In
Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP. ACM, 2017.

[9] Emulab. http://emulab.net/.
[10] Pravein Govindan Kannan, Ahmad Soltani, Mun Choon Chan, and Ee-

Chien Chang. {BNV}: Enabling scalable network experimentation
through bare-metal network virtualization. In 11th {USENIX} Workshop
on Cyber Security Experimentation and Test ({CSET} 18), 2018.

[11] Jelena Mirkovic and Terry Benzel. Teaching cybersecurity with deterlab.
IEEE Security & Privacy, 10(1):73–76, 2012.

[12] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz,
and Nick McKeown. Reproducible network experiments using container-
based emulation. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies, pages 253–264,
2012.

[13] Robert Ricci, Eric Eide, and CloudLab Team. Introducing cloudlab: Sci-
entific infrastructure for advancing cloud architectures and applications.
; login:: the magazine of USENIX & SAGE, 39(6):36–38, 2014.

[14] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peter-
son, Mike Wawrzoniak, and Mic Bowman. Planetlab: an overlay testbed
for broad-coverage services. ACM SIGCOMM Computer Communica-
tion Review, 33(3):3–12, 2003.

[15] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao,
Max Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni:
A federated testbed for innovative network experiments. Computer
Networks, 61:5–23, 2014.

[16] Marc Suñé, Leonardo Bergesio, Hagen Woesner, Tom Rothe, Andreas
Köpsel, Didier Colle, Bart Puype, Dimitra Simeonidou, Reza Nejabati,
Mayur Channegowda, et al. Design and implementation of the ofelia fp7
facility: The european openflow testbed. Computer Networks, 61:132–
150, 2014.

[17] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[18] Pat Bosshart, Glen Gibb, Hun-seok Kim, George Varghese, Nick Mcke-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding
metamorphosis: Fast programmable match-action processing in hard-
ware for sdn. In Proceedings of SIGCOMM, 2013.

[19] Sharad Chole, Isaac Keslassy, Ariel Orda, Tom Edsall, Andy Fingerhut,
Sha Ma, Anirudh Sivaraman, Shay Vargaftik, Alon Berger, Gal Mendel-
son, Mohammad Alizadeh, and Shang-Tse Chuang. drmt: Disaggregated
programmable switching. In Proceedings of SIGCOMM, 2017.

[20] Cavium. Xpliant ethernet switch product family. Website. https://www.
cavium.com/xpliant-ethernet-switch-product-family.html.

[21] Barefoot Networks. Tofino. Website, 2019. https://www.
barefootnetworks.com/products/brief-tofino/.

[22] Barefoot Networks. Tofino2. Website, 2019. https://www.
barefootnetworks.com/products/brief-tofino-2/.

[23] Floodlight sdn openflow controller. Website. https://github.com/
floodlight/floodlight.

[24] Stephen Naicken, Anirban Basu, Barnaby Livingston, and Sethalat Rod-
hetbhai. A survey of peer-to-peer network simulators. In Proceedings of
The Seventh Annual Postgraduate Symposium, Liverpool, UK, volume 2,
2006.

[25] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the
9th ACM SIGCOMM Workshop on Hot Topics in Networks, pages 1–6,
2010.

[26] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM Computer Communication Review, 44(3):87–95,
2014.

[27] Benoit des Ligneris. Virtualization of linux based computers: the linux-
vserver project. In 19th International Symposium on High Performance
Computing Systems and Applications (HPCS’05), pages 340–346. IEEE,
2005.

[28] Stuart Mitchell, Michael OSullivan, and Iain Dunning. Pulp: a linear
programming toolkit for python. The University of Auckland, Auckland,
New Zealand, 2011.

[29] Raj Joshi, Ben Leong, and Mun Choon Chan. Timertasks: Towards
time-driven execution in programmable dataplanes. In Proceedings of
the ACM SIGCOMM 2019 Conference Posters and Demos, pages 69–71,
2019.

[30] Yu Zhou, Zhaowei Xi, Dai Zhang, Yangyang Wang, Jinqiu Wang,
Mingwei Xu, and Jianping Wu. Hypertester: high-performance network
testing driven by programmable switches. In Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies, pages 30–43, 2019.

[31] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M Voelker,
and Amin Vahdat. Chronos: Predictable low latency for data center
applications. In Proceedings of the Third ACM Symposium on Cloud
Computing, pages 1–14, 2012.

[32] Daehyeok Kim, Yibo Zhu, Changhoon Kim, Jeongkeun Lee, and Srini-
vasan Seshan. Generic external memory for switch data planes. In
Proceedings of the 17th ACM Workshop on Hot Topics in Networks,
pages 1–7, 2018.

[33] Broadcom trident 3 - programmable, varied and volume. http://
packetpushers.net/broadcom-trident3-programmable-varied-volume/.

[34] Intel flexpipe. http://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf.

[35] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. ACM SIGCOMM
computer communication review, 38(4):63–74, 2008.

[36] Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and
Sudipta Sengupta. Vl2: a scalable and flexible data center network.
In Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, pages 51–62, 2009.

[37] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. The internet topology zoo. IEEE Journal on Selected
Areas in Communications, 29(9):1765–1775, 2011.

[38] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. Moongen: A scriptable high-speed packet
generator. In Proceedings of the 2015 Internet Measurement Conference,
pages 275–287, 2015.

