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Abstract—Wireless technologies are increasingly diversified to
serve various Internet-of-things applications. Yet, our mobile
devices (e.g., smartphones) are manufactured with limited types
of wireless radio, making it challenging to access the data in the
heterogeneous IoT devices. To address this fundamental problem,
this work proposes XFi, which enables mobile devices to use
commodity WiFi radio to directly and simultaneously collect data
from diverse heterogeneous IoT devices. Our critical insight is
that when an IoT frame collides with an ongoing WiFi transmis-
sion, its IoT data is captured by WiFi receiver and retained even
after the demodulation procedures in WiFi hardware. Motivated
by this observation, XFi proposes a general approach to obtain
IoT data by analyzing the decoded WiFi payload. The method
is fully compatible with existing commodity WiFi hardware and
generally applicable to various IoT protocols. We implement XFi
on commodity devices (e.g., RTL8812au, CC2650, and SX1280).
Our comprehensive evaluation demonstrates that XFi can collect
data from 8 IoT devices in parallel with over 97% accuracy,
offering reliable cross-technology data collection.

Index Terms—WiFi, ZigBee, LoRa, Internet-of-Things

I. INTRODUCTION

Internet of things (IoT) are rapidly expanding to every
aspect of our daily life with the unprecedented proliferation
of heterogeneous wireless devices (e.g., ZigBee sensors, LoRa
smart meters, Bluetooth smart wearable, and wireless baby
monitors). Naturally, people desire to use their mobile devices
(e.g., smartphones) to interact with the diverse IoT devices,
manage IoT data, and conduct data fusion operations. How-
ever, the increasing diversity of wireless technologies adopted
by IoT devices brings about a unique challenge: due to the
constraints in the size and complexity, mobile devices are
manufactured with limited types of wireless radios such as
WiFi and Bluetooth, which inhibits them from directly collect
data from heterogeneous IoT devices (e.g., ZigBee and LoRa).

To alleviate this issue, we study the possibility to extend
the pervasively available radio in mobile devices, i.e., WiFi,
to support heterogeneous IoT techniques in the overlapping
ISM spectrum. By doing this, we envision that with a moderate
software upgrade, mobile devices can collect data from various
types of heterogeneous IoT devices directly, which paves the
way for a lot of novel IoT applications.

However, it is technically challenging to enable data ex-
change between WiFi and heterogeneous IoT radio due to their
distinct physical layers. Recent advances in cross-technology
communication [9], [30], [31] propose signal emulation, i.e.,

manipulating high-speed WiFi radio to emulate low-speed Zig-
Bee signal, which allows WiFi to deliver messages to ZigBee.
Nevertheless, this series of techniques are not applicable to
the communication from low-speed IoT radios back to WiFi
because IoT radios generally have very limited capabilities -
it is impossible for a ZigBee radio with a 2 MHz bandwidth
to produce a 20 MHz WiFi signal.

To address this problem, there are a few previous attempts
[18], [39]. Yet, they are fundamentally limited in compatibility
and generality. Specifically, they need to modify the WiFi
demodulation procedure for customized decoding of raw IoT
signal, making them incompatible with billions of existing
commodity WiFi radio in the smartphone. In addition, they are
inherently restricted to only support ZigBee without serving
other IoT techniques that are being increasingly diversified.

This paper presents XFi - the first design that achieves
data collection from diverse heterogeneous IoT devices using
commodity WiFi radio with only a software upgrade. The basic
idea is signal hitchhiking - when a smartphone is receiving a
WiFi packet from an AP, IoT devices transmit simultaneously,
leading to intentional collisions with the WiFi packet in the air.
In this way, low-speed IoT data hitchhikes on the high-speed
WiFi packet and enters the WiFi radio of the smartphone.

The most critical question XFi needs to address in this paper
is how to obtain the IoT data hitchhiking on the received
WiFi packet. With our goal of serving diverse IoT techniques
with distinct physical layers in minds, XFi proposes a general
approach: reconstruct and decode, i.e., 1) reconstruct the
I/Q waveform of hitchhiking IoT data and then 2) decode
the reconstructed IoT waveform. Although the idea sounds
straightforward, it is extremely challenging to accomplish in
a commodity WiFi device with only a software upgrade. In
particular, commodity WiFi hardware does not expose raw I/Q
data to the software - It only returns the decoded WiFi payload
after WiFi demodulation. To reliably retrieve IoT data from the
decoded payload, XFi has to tackle several critical challenges
imposed by WiFi demodulation procedures.
• Waveform Reconstruction: Commodity WiFi receiver ap-

plies forward error correction (FEC) algorithm to correct
errors incurred by wireless interference. Consequently,
the hitchhiking IoT signal could be considered by FEC
as interference and eliminated amid error correction,
rendering it challenging to reconstruct IoT waveform
from the decoded WiFi payload. Counter-intuitively, we978-1-7281-6992-7/20/$31.00 ©2020 IEEE



observe that IoT waveform is retained even after error
correction, so that XFi manages to reconstruct a large
portion of IoT waveform from the decoded payload.

• Robust Decoding: Commodity WiFi receiver discards in-
formationless segments of WiFi signal (e.g., guard inter-
vals between WiFi symbols). Thus, IoT signal hitchhiking
on these discarded segments cannot be recreated in the
reconstructed waveform. To cope with the challenge and
reliably obtain IoT data, we enhance IoT decoders, which
provides them robustness against discarded waveform.

Importantly, our proposed methods are generally applicable
to various types of IoT techniques, which is essential for our
motivation for supporting diversified IoT devices. We demon-
strate the applicability to two representative IoT techniques
using highly distinct physical layers: ZigBee and LoRa while
they can be extended to other techniques.

In summary, our intellectual contributions are as follows:
• XFi is the first work that enables data collection from

diverse IoT techniques with a commodity WiFi radio,
without compromising WiFi demodulation.

• Our design simultaneously features generality to various
IoT techniques and compatibility with commodity WiFi
hardware. To achieve this, XFi obtains IoT data only
using decoded payload while tackling critical challenges,
e.g., waveform construction and robust decoding.

• We implement XFi on COTS WiFi devices (e.g.,
RTL8812au) and evaluate XFi across various scenarios.
The results demonstrate that XFi can concurrently receive
2 streams of ZigBee or 8 streams of LoRa with 97%
accuracy while reaching a throughput of 1.8 Mbps.

II. MOTIVATION
This section presents the motivation of cross-technology IoT

data collection using commodity WiFi radio in a smartphone.
Deficiency of IoT Support in Smartphone: Internet of

Things (IoT) has been widely deployed, where a large number
of heterogeneous IoT devices are generating more than 500
zettabytes IoT data per year [13]. A natural way for peo-
ple to interact with these ubiquitous IoT devices is through
their mobile devices (e.g., smartphones), which brings several
unique benefits. For example, a smartphone can provide a
friendly user interface for visualizing and managing IoT data,
while the powerful computing capability of the smartphone
also offers an ideal platform for analyzing heterogeneous IoT
data through sensor fusion and machine learning operations.

The challenge, however, is that wireless techniques adopted
in IoT devices are increasingly diversified while our mobile
device is constrained to provide limited options of wireless
techniques. For instance, environmental sensors are commonly
equipped with ZigBee, while smart meters could adopt LoRa.
There are also a large number of IoT devices (e.g., health
wearable and baby monitors [34]) that use proprietary wireless
protocols. In contrast, restricted by the size and complexity,
a smartphone is only equipped with radios such as WiFi,
while cramming additional IoT interfaces (e.g., ZigBee) into
smartphones [14] has been proved commercially inviable.

Conventionally, a smartphone has to indirectly access the
data in heterogeneous IoT devices via extra IoT gateways
[3]. However, the dedicated gateway incurs additional hard-
ware cost, deployment complexity, and administration burden,
which prevents it from being ubiquitously deployed. In addi-
tion, an IoT gateway with a specific wireless radio cannot
serve other emerging IoT techniques. As a result, there is
an emergent need for a low-cost and general method for the
heterogeneous IoT data collection on mobile devices.

Cross-technology Data Collection via Commodity WiFi:
We propose to directly collect data from heterogeneous IoT
devices with commodity WiFi radio available in every smart-
phone. With a moderate software upgrade, smartphones can
access diversified IoT devices without extra gateways.

Although direct communications from heterogeneous IoT
radio to WiFi have been studied in recent works [18], [39],
they commonly work on physical layers requiring a redesign
of WiFi decoder. Therefore, they are incompatible with com-
modity WiFi hardware in mobile devices. Furthermore, their
designs are tightly coupled with unique features of ZigBee
signal, which cannot be generalized to other types of IoT
techniques that are increasingly diversified.

In XFi, we simultaneously address the challenges in both
compatibility and generality, enabling mobile devices to obtain
IoT data of various heterogeneous techniques using only the
decoded WiFi payload that is accessible from WiFi software.

Fig. 1: (a) XFi Enables a WiFi Smartphone to Collect Data
from Heterogeneous IoT Devices. (b) XFi Analyzes the De-
coded WiFi Payload to Obtain ZigBee or LoRa Data.

III. XFI IN A NUTSHELL

Overview. XFi enables a commodity WiFi radio in mobile
devices to collect data from diversified narrowband IoT de-
vices (e.g., ZigBee and LoRa1) with only a software upgrade.
The high-level idea is signal hitchhiking demonstrated in
Fig.1(a): a mobile device downloads a standard WiFi data
packet from the associated WiFi AP. When the WiFi packet is
being delivered by AP, IoT devices send data in the overlapped
spectrum such that low-speed IoT data can hitchhike on the

1Note that while LoRa initially operates on the sub-GHz band, 2.4GHz
LoRa transceivers (e.g., SX1280/SX1281) have been deployed since 2017.



high-speed WiFi packet in the air and enter the WiFi radio
of the mobile device. In the rest of paper, we will refer to
ZigBee or LoRa radios as “IoT devices” and ZigBee or LoRa
data frames as “IoT frames”.

Applicable scenarios. XFi is applicable in a wide range
of scenarios since WiFi APs have been ubiquitously deployed
for Internet service. For example, over 79% US households
get WiFi at home [6] while there are 432 million public
APs worldwide [21]. Additionally, XFi is also possible to
be applied in mobile scenarios without WiFi APs. It is an
increasingly common situation that people carry more than
one mobile device. For instance, 60 million US people are
using smartwatches in addition to smartphones [15], which
can serve as WiFi transmitters with only a software upgrade.

System architecture. The critical component of the system
is XFi software installed in mobile devices. As depicted in
Fig.1(b), it is able to obtain the hitchhiking IoT data without
accessing raw I/Q signal. Specifically, XFi software only uses
the decoded WiFi payload returned by commodity WiFi hard-
ware as the input. To retrieve IoT data, it first reconstructs IoT
waveform by analyzing the decoded WiFi payload (Section
§V) and then reliably decodes the reconstructed IoT waveform
with our enhanced IoT decoders (Section §VI).

XFi has three unique features:
• Compatibility: XFi retrieves heterogeneous IoT data

only via the decoded payload available in WiFi software.
Therefore, it is fully compatible with commodity WiFi
devices and does not require any hardware modification.

• Generality: XFi manages to reconstruct raw RF wave-
form of hitchhiking IoT data regardless of the wireless
technique it uses. This capability makes XFi generally
applicable to various IoT protocols that coexist with WiFi
on ISM band. We demonstrate the generality with two
popular techniques (i.e., ZigBee and LoRa) with highly
different physical layers.

• Efficiency: XFi allows the wide-band WiFi receiver to
concurrently receive and decode multiple heterogeneous
narrowband IoT transmissions, significantly improving
the network efficiency of densely-deployed IoT devices.
Taking Fig.1(a) for example, XFi is able to simultane-
ously decode the transmissions from two ZigBee devices
and four LoRa devices allocated at different channels.

IV. BACKGROUND AND CHALLENGES

This section introduces the background of commodity WiFi
receiver and then analyzes the challenges of obtaining IoT data
under the constraints of WiFi demodulation procedures.
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Fig. 2: Demodulation Procedures in WiFi Receiver.

A. Background

In Fig. 2, we illustrate how the WiFi receiver works. (i)
Preamble detection searches the predefined training signal,
i.e., WiFi preamble in the received 20 MHz signal. If the
preamble is detected, WiFi receiver conducts the following
OFDM demodulation procedures. Otherwise, the signal is
rejected. (ii) For a signal t[n] that passes preamble detection,
the cyclic prefix (CP), i.e., the 0.8us at the beginning of
each 4us WiFi symbol is removed because it is an “in-
formationless” guarding interval between WiFi symbols for
eliminating the inter-symbol interference. (iii) The surviving
time-domain waveform t′[n] is transformed into the frequency
domain by Fast Fourier Transform (FFT). Each WiFi symbol
is transformed into 64 frequency components that correspond
to 64 WiFi subcarriers over 20 MHz WiFi spectrum. (v) The
QAM demapping discretizes the continuous-value frequency
components into bits. Then bits on all the subcarriers are
serialized to a sequence of coded bits (or a codeword). (vi) The
channel decoder corrects errors in coded bits using forward
error correction (FEC) algorithm and produces decoded bits
that are available in WiFi software. Note The corrupted
decoded bits with CRC check failure by default are dropped
by low-level WiFi software for efficiency. However, we can
intentionally access these data by editing the filter in the driver.

B. Challenges

The top of Fig.3 shows signal hitchhiking where the input
signal to WiFi receiver is 20 MHz WiFi signal with one or
more narrowband IoT frames that hitchhike on it. Since XFi is
compatible with commodity WiFi hardware, the mixed signal
is demodulated through the WiFi decoding pipeline, i.e., (i)-
(vi) in Fig. 2, which produces the decoded bits. Our objective
is to use these decoded bits to reconstruct IoT waveform and
then decode the waveform to obtain IoT data. To achieve this,
XFi has to address several challenges in a top-down order.
• Waveform Reconstruction. Channel decoder adopts for-
ward error correction (FEC) to protect WiFi transmissions
against interference. Presumably, FEC considers hitchhiking
IoT signal as interference and attempts to eliminate it in the
decoded output. Specifically, in the step (vi), the channel
decoder performs error correction to recover collision-free
WiFi data, which may prevent the reconstruction of IoT
waveform using the decoded bits. In Section §V, our in-depth
look into the channel decoding algorithm reveals a counter-
intuitive phenomenon that IoT waveform can survive channel
decoding because it creates an excessive number of errors.
• Robust Decoding. While a large portion of IoT waveform
can be reconstructed from the decoded payload, there are still
a lot of waveform segments erased amid WiFi demodulation.
For example, CP removal in the step (ii) erases the IoT
waveform hitchhiking on the cyclic prefix, causing problems
to IoT decoders. To reliably decode the partially reconstructed
waveform, Section §VI enhances decoder’s robustness against
signal erasure by leveraging a unique signal erasure pattern.
• Other Challenges. XFi has to address other practical
challenges. For example, WiFi receiver only decodes after



receiving WiFi preamble. For signal hitchhiking, IoT devices
need to know when to transmit in order to be simultaneous
with WiFi transmitter, which is discussed in Section §VII.

Fig. 3: FFT of WiFi Signal with Hitchhiking IoT Data.

V. WAVEFORM RECONSTRUCTION

This section presents the design to reconstruct the raw
waveform of hitchhiking IoT data from decoded WiFi payload.

A. Channel Decoding and Error Correction

As an OFDM receiver, a commodity WiFi receiver converts
the time-domain signal into the frequency domain via FFT,
so that it can demodulate the received data at each subcarrier.
Fig.3 demonstrates that each narrowband IoT signal interferes
with the WiFi data in the specific subcarriers. For example,
ZigBee signal disturbs subcarrier 13 to 20, while LoRa signal
disturbs subcarrier 6 to 9. So ideally, XFi can examine
the changes of values on the corresponding subcarriers to
reconstruct each hitchhiking IoT signal.

However, channel decoder performs error correction (FEC)
on the received data to get rid of narrowband interference,
which could potentially recover the original value on the
subcarriers and eliminate hitchhiking IoT signal. In Fig. 4,
we use a toy example to illustrate the error correction of Low
Density Parity Check (LDPC) decoder in WiFi. Specifically,
the received data on the subcarriers are first mapped to coded
bits consisting of “data bits” (d0, d1, d2) and “parity bits”
(p0, p1, p3). The hitchhiking ZigBee signal disturbs the data
bit d1 such that d1 is changed to an incorrect value: 0.

While we desire to infer the IoT data from such errors,
FEC comes in to detect and correct them. As the top of Fig.
4 shows, data bits d1, d2, and parity bits p1 are connected
to a common parity check constraint for error detection. The
binary parity check fails since the summation in gf(2), i.e.,
d1 ⊕ d2 ⊕ p1 6= 0. Similarly, the other two parity checks that
d1 is associated with also fail. Therefore, the parity checks
come to a consensus that d1 is incorrect, so LDPC decoder
might flip d1 for the parity check constraints to be satisfied.
If this happens, error correction might unfortunately eliminate
the influence of ZigBee waveform in the coded bits.

It is noteworthy that the real coded bits in WiFi are much
longer than the example (typically 1944) with the 324 parity
checks. Thus, the decoder needs to repeat the procedure above
multiple times for the coded bits to converge. Finally, WiFi
versions targeted by the paper include 802.11n/ax/ac, which
are supported in majority of commodity mobile devices.

1 0 0 0 1 0Coded bits

Parity Check

Disturbed by ZigBee 

Parity bitData bit

d0 d1 d2 p0 p1 p2d1d

Fig. 4: Error Correction in LDPC Decoder.

B. Feasibility of Waveform Reconstruction

Counter-intuitively, we observe that LDPC decoder almost
keeps the corrupted coded bits intact. In specific, when
coded bits are severely disturbed by heterogeneous IoT signal,
channel decoder only flips an extremely limited number of
“coded bits” (≤ 2%). Our key insight for this phenomenon is
that the channel decoding algorithm has an Error Correction
Capability. When received coded bits have errors that exceed
the algorithm’s capacity, parity checks fail to reach a consensus
and the decoder becomes ineffective in correcting errors.
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Fig. 5: Error Correction (Flip) Ratio vs. Bit Error Ratio.

In the section, we demonstrate this observation with an
empirical experiment while the theoretical proof is given in
the Appendix. Specifically, we first generate a valid WiFi
codeword and then purposely inject varying ratios of bit errors
into the codeword such that it gradually moves away from the
correct value. We use LDPC decoder to decode each modified
WiFi codeword and calculate the percentage of errors that
are corrected (flipped) to examine the effectiveness of LDPC
decoder under different bit error ratios.

The result in Fig. 5 shows that LDPC decoder is able to
perform with a small bit error ratio (e.g., 1.5%), while it
becomes ineffective and only flips 1.8% bits when the bit
error ratio exceeds 5%. The interference created by hitchhiking
IoT signal (e.g., ZigBee and LoRa) is sufficient to make
LDPC decoder ineffective. For example, ZigBee has a 2 MHz
bandwidth, which is equivalent to 15% of bit errors, while
LoRa with a 0.8 MHz bandwidth incurs around 7% of bit
errors. Consequently, channel decoder preserves IoT signal
hitchhiking on each subcarrier, so that XFi can reconstruct
the IoT waveform by elaborately analyzing decoded bits. Since
these decoded bits are available in software, our design can
be compatible with commodity WiFi hardware.

C. Waveform Reconstruction Algorithm

In this section, we present the details of reconstructing IoT
waveform with decoded bits. As Fig.6 demonstrates, waveform
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reconstruction is a general module that recreates IoT signal
of various techniques in the separated channels by analyzing
the decoded bits returned to WiFi software. The reconstructed
IoT waveforms are then demodulated using the enhanced IoT
decoders to obtain IoT data, which we will discuss in §VI.

Specifically, XFi first approximates coded bits with decoded
bits. As discussed in §V-B, channel decoder becomes inef-
fective due to the excessive interference from IoT signal, so
decoded bits provide a close approximation of coded bits.
Second, coded bits are mapped to frequency domain, i.e,
subcarriers. Finally, each individual IoT signal resides in the
separated narrowband, so XFi aggregates the changes of values
on the corresponding subcarriers and then performs inverse
fast fourier transform (IFFT) to reconstruct IoT waveform. For
example, when a ZigBee frame is at the frequency range from
−4 MHz to −6 MHz w.r.t the center frequency of WiFi, XFi
aggregates the value changes on 13th to 20th subcarriers and
performs IFFT to compute the time-domain ZigBee waveform.

Note that decoded bits do not contain the parity bits which
are dropped by WiFi receiver as we will further discuss in
§VI-A1. In Fig.6, we mark unknown parity bits as “x” when
approximating coded bits and the corresponding IoT waveform
cannot be reconstructed. We tackle the challenge in §VI.

VI. ROBUST DECODING

Waveform construction effectively recovers a large portion
of IoT waveform. Yet, there are still a lot of waveform
segments that are erased amid WiFi demodulation, imposing
challenges to obtain the hitchhiking IoT data. This section
first analyzes two major sources of signal erasure (i.e., Parity
and CP). Then we introduce our enhanced IoT decoders that
provide robustness against signal erasure in the software.

Coded bits (after error correction) Decoded bits

Parity 
Removal

ParityData bits5/6 1/6 5/6
Lost

Fig. 7: Parity Removal Erasures IoT waveform.

A. Signal Erasure

1) Parity Removal: As we mention in §V-A, LDPC decoder
takes the data bits and parity bits as input, and then tries to
correct errors in data bits with parity bits. After that, it discards
the parity bits and only passes data bits to the software.

Although we observe that the error correction has negligible
impacts, the removal of parity bits inevitably leads to signal
erasure because parity bits also contain IoT signal. As Fig. 7
depicts, when the coding rate of LDPC is 5

6 , 1
6 of coded bits

are parity bits. Consequently, 1
6 of IoT signal is erased and

cannot be accessed by XFi via decoded bits.
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Fig. 8: (a) CP Removal of WiFi Symbol. (b) CP Removal of
IoT Waveform Erasures IoT waveform.

2) CP Removal: Besides parity removal, CP removal also
incurs signal erasure. As depicted in Fig. 8(a), for each WiFi
symbol with a duration of 4us, WiFi receiver drops the guard-
ing signal in the first 0.8us, which is called cyclic prefix (CP).
In a standard WiFi symbol, the transmitted waveform at CP
is identical to the last 0.8us of a symbol, suggesting that the
WiFi receiver will not lose any information for removing CP.
In contrast, due to heterogeneity between wireless protocols,
non-WiFi signal (e.g., ZigBee) does not have this CP feature,
as we demonstrate in Fig.8(b). As a result, when WiFi receiver
removes “CP” in IoT signal every 4us, a segment of 0.8us
IoT signal is lost, imposing challenges for obtaining IoT data.

Data bits Parity bits 

0.8us 3.2us

 CP Removal Parity Removal

4us

24us

Reconstructed

Fig. 9: Overall Pattern of Signal Erasure.

3) Summary of Signal Erasure Pattern: The overall signal
erasure pattern is illustrated in Fig.9 where 1

3 of IoT wave-
forms are erased by WiFi hardware. The erased waveform
partitions are marked by red ‘x’, which can not be accessed
from decoded bits. Specifically, In every 24us, XFi suffers
from the one 3.2us signal erasure due to parity removal. In
addition, XFi also suffers from 0.8us signal erasure due to
CP removal every 4us. These two factors are the dominating
waveform loss in XFi, while XFi also suffers from the quan-
tization error when QAM demapping discretizes subcarriers
and the bit flippings (< 1.8%) during error correction (§V-B).



Our evaluation (§IX) shows both quantization and bit flippings
have limited impacts and do not lead to decoding errors.

To reliably decode the reconstructed waveform with signal
erasure, XFi customizes the IoT decoder to incorporate the
signal erasure pattern with the symbol-level (§VI-B) and
chip-level (§VI-C) redundancy of IoT signal. To make our
description concrete, our discussion focuses on ZigBee while
the idea generally applies to other techniques (e.g., LoRa). In
§IX, we provide evaluation results for both techniques.

B. Combat Signal Erasure: Symbol-level

ZigBee symbols contain redundant information for the
protection against interference In the section, we combine
the signal erasure pattern observed in §VI-A3 with this re-
dundancy to offer ZigBee decoder robustness against signal
erasure. Note that symbol-level redundancy is widely provided
by various IoT techniques, e.g., LoRa spreads symbols into
chirps. Although our description focuses on ZigBee, this idea
is applicable to other IoT protocols.

1) ZigBee Symbol: ZigBee adopts direct sequence spread
spectrum (DSSS) which spreads each ZigBee symbol (4 bits)
into 32 binary chips following the DSSS table (Table 1). This
inherent redundancy introduced by DSSS helps XFi to decode
partially reconstructed ZigBee signal, as discussed later. In
a standard ZigBee receiver, a set of 32 ZigBee chips are
then mapped to a ZigBee symbol by comparing the hamming
distances between the demodulated chip sequence and the 16
standard DSSS sequences in Table 1. The symbol with the
smallest hamming distance is selected.

Symbol (4 bits) Chip Sequence (32 bits)
0 0 0 0 11011001110000110101001000101110
0 0 0 1 11101101100111000011010100100010

... ...
1 1 1 1 11001001011000000111011110111000

TABLE I: Symbol-to-chip Mapping in ZigBee (802.15.4)

2) Erasure-Aware Symbol Decoding: As analyzed in
§VI-A, the reconstructed IoT waveform suffers from the signal
erasure in specific sections, i.e., CP and parity. This knowl-
edge motivates us to design an erasure-aware DSSS decoding
algorithm adapted to the unique signal erasure pattern.

x1011001x1000011x1010010xxxxxxxxReceived DSSS 

CP Data Bits Parity Bits

11011001110000110101001000101110Standard DSSS 

Hamming Distance          =        0

xor

Blacklist

Fig. 10: Decoding ZigBee Symbol with Blacklist.

In specific, XFi can use the signal erasure pattern to identify
which ZigBee chips are undetermined and thus cannot be
trusted in DSSS decoding. Therefore, when XFi calculates
the hamming distance, it blacklists these undetermined chips,
and only utilizes the remaining chips for improving symbol
decoding reliability. As Fig.10 shows, XFi blacklists the chips
which are missing due to CP removal and parity removal,

while it only relies on the chips that can be reconstructed from
data bits. In this example, the chip sequence has the smallest
hamming distance to ZigBee symbol 0, and is thus decoded as
symbol 0. By doing this, XFi offers the decoder robustness to
missing chips. Note that this procedure is after the detection
of ZigBee preamble, which is discussed in §VII-A.

C. Combat Signal Erasure: Chip-level

In addition to symbol-level redundancy, XFi explores the
resilience in ZigBee chip to enhance the decoder’s robustness.

1) ZigBee Chip: ZigBee chips are modulated by offset
quadrature phase-shift keying (OQPSK) where each ZigBee
chip is encoded by a 0.5us phase shift. Specifically, as
Fig.11(a) depicts, chip 1s are modulated by positive phase
shifts (π2 ) while chip 0s are represented by negative phase
shifts (−π2 ). The standard OQPSK demodulator uniformly
samples the signal every 0.5us (e.g., S1 and S2) and calculates
phase shifts between samples.

S1

S2
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Q

I

Q

(a) Standard ZigBee Samples (b) CP-aware ZigBee Samples

1S¢

2S¢

Erased by 

CP removal

Fig. 11: ZigBee Chip. (a) Uniform Samples of Standard
ZigBee Chip. (b) Erasure-aware Samples of Partially Recon-
structed ZigBee Chip.

2) Erasure-aware Chip Demodulation: ZigBee chips may
partially suffer from signal erasure as the dashed line in
Fig.11(b) indicates. To decode these chips, XFi introduces the
erasure-aware chip decoding by elaborately benefiting from the
feature of ZigBee chip. Specifically, in one chip, the phase is
monotonically increasing or decreasing, so the sign of phase
shift can be calculated by any two distinct samples. Therefore,
as Fig.11(b) shows, instead of sampling uniformly in 2 MHz,
XFi carefully chooses the two samples, i.e., S′1 and S′2 in the
reconstructed waveform to avoid the signal erasure.

VII. PRACTICAL SIGNAL HITCHHIKING

Section §V and §VI demonstrate the feasibility of decoding
IoT signal, when it collides into an ongoing WiFi frame. This
section further discusses two additional issues for realizing
XFi in practical scenarios. Specifically, §VII-A introduces how
to notify IoT devices, so that they could utilize the signal
hitchhiking opportunity. In §VII-B, we discuss the design of
WiFi payload that maximizes the signal hitchhiking reliability.

A. Coordination

To achieve signal hitchhiking, IoT devices must send data to
a WiFi device when the WiFi device is receiving an ongoing
frame from WiFi AP. Interestingly, such coordination can be



WiFi AP

WiFi Device

TX

RX

Rx TX

WiFi Preamble Cross-tech Polling Carrier of IoT Frames

t0 t1 t2t2+∆t t3

t0 t1 t2 t3

ZigBee/LoRa

Fig. 12: The downlink WiFi frame from AP consists of a cross-
technology polling notification to IoT devices (t1 − t2) and a
carrier of IoT signal (t2 − t3).

achieved by the WiFi frame itself. More specifically, we elab-
orately select the WiFi payload such that the corresponding
WiFi frame delivered by AP can simultaneously accomplish 3
critical goals: (1) polls IoT devices to send data, (2) carriers
IoT data into WiFi receiver, and (3) allocates IoT devices to
distinct channels for avoiding collisions.

The WiFi frame structure and the complete signal hitch-
hiking procedures are demonstrated in Fig.12. First, as a
legitimate WiFi frame, the frame starts with WiFi preamble
at t0. Upon the detection of the preamble, the WiFi radio
begins receiving and decoding, which provides an opportunity
to capture the IoT signal. Second, the segment of WiFi payload
from t1 to t2 notifies the IoT devices of the opportunity of
signal hitchhiking. In specific, XFi adopts WiFi→IoT CTC
techniques recently proposed in [30] to embed a legitimate
ZigBee or LoRa packet in the WiFi frame that contains a list
of IoT devices to be queried and their allocated channels. After
receiving the notification, IoT devices tune the transmitter
to the allocated channel, temporarily disable collision-avoid
mechanism (e.g., CSMA), and then start transmissions at
t2 + ∆t. Narrowband IoT frames collide with the rest part
of the WiFi frame, which carries them into the WiFi device.

Note that the WiFi frame and IoT frames do not need to
be strictly synchronized, as Fig.12 depicts. XFi reconstructs
the complete narrowband signal from t2 to t3, which is then
match-filtered with the predefined ZigBee or LoRa preamble
to detect the beginning of IoT frames (i.e., t2 + ∆t).
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Fig. 13: Power Spectrum and Channel Allocation.

B. Power Control

An issue arises immediately: High energy of WiFi can
saturate the WiFi subcarriers, leading to the corruption of IoT

frames. To address the problem, XFi introduces a power con-
trol mechanism - by elaborately selecting the WiFi payload,
we can minimize the WiFi energy on specific subcarriers. In
particular, XFi carefully chooses the payload that produces
WiFi signal from t2 to t3 in Fig.12, so that the subcarriers
capturing IoT signal take minimal values. By doing this, XFi
effectively minimizes the WiFi energy at the frequency ranges
where IoT frames hitchhike. Fig.13 depicts the visual power
spectrum density, where blue indicates low energy and yellow
refers to high energy. Obviously, several narrowbands with
visibly lower energy than other subcarriers (e.g., pilots) are
produced, thus improving the IoT signal’s signal-to-noise ratio.

With the power control, XFi utilizes WiFi spectrum with ex-
tremely high efficiency. As the top of Fig.13 shows, we create
two continuous 4 MHz channels and four 2 MHz channels
that can pack 2 ZigBee frames or 8 LoRa frames. Besides,
XFi carefully allocates guarding bands between channels to
mitigate the interferences between channels. The evaluation
demonstrates that the power control mechanism effectively
carries IoT data over WiFi transmission.

VIII. LIMITATION AND DISCUSSION

Implementation of XFi on smartphones. XFi works in
WiFi software, so it is compatible with commodity WiFi
hardware in smartphones, requiring only a moderate driver
upgrade. As a proof of concept, we prototype and evaluate
XFi with commodity WiFi NIC in a Linux PC because it
is convenient to patch Linux open-source WiFi drivers and
obtain corrupted WiFi frames. WiFi drivers of smartphone are
close-source and need be patched with special patch tools (e.g.,
NexMon [33]), which is left to future works.

Limitation of communication Range: XFi cannot support
long range communications with IoT devices, which is because
XFi can reconstruct IoT signals only when the signal is strong
enough to corrupt WiFi packets. For long ranges, IoT signals
cannot significantly interfere with WiFi packets due to the
limited transmission power of low-power IoT transmitters and
uncertainty of the channel. As a result, IoT signals will be
eliminated by error correction of LDPC decoder.

Generalization of XFi. The proposed approach in XFi
generally applies to other IoT techniques. To extend XFi to
another technique, one can directly adopt signal hitchhiking
and waveform reconstruction to capture and reconstruct its
waveform while replacing the decoder (Section §VI) to one
specific to target technique. Additionally, it is possible to
extend XFi to scenarios in other frequency bands, e.g., com-
munication among WiFi 802.11ah and sub-GHz IoT devices.

XFi overhead. XFi introduces little overhead to WiFi and
IoT network. Due to WiFi’s collision avoidance mechanism,
i.e., CSMA, other WiFi traffic will back off when IoT frames
are in transmission. Besides, XFi allows parallel data col-
lection from multiple IoT devices to make efficient use of
WiFi’s wide spectrum. Finally, our coordination design in
Section §VII is compatible with the receiver-initiated ZigBee
and LoRa protocol (e.g., [35]), so IoT devices can perform
duty cycle to minimize the overhead of idle listening.



IX. PERFORMANCE EVALUATION

This section evaluates XFi on commodity IoT and WiFi de-
vices across various scenarios for demonstrating the reliability,
efficiency, and generality of XFi.

CC2650

SX1280

RTL8812au

RTL8812auA6210 AR9380

ZigBee (COTS)

LoRa (COTS)

WiFi AP (COTS)

WiFi Device (COTS)

Fig. 14: Experimental Setting for XFi.

A. Evaluation Setup

We prototype XFi on the commercial off-the-shelf WiFi
and IoT devices. The evaluation settings are depicted in
Fig.14. To demonstrate XFi’s compatibility, we evaluated it
on Ubuntu 16.04 PC with three representative WiFi chipsets
from different brands: Mediatek A6210, Realtek RTL8812au,
and Atheros AR9380. WiFi devices operate on channel 3 (2422
MHz). ZigBee performance is evaluated with CC2650 ZigBee
SoC [38]. We develop ZigBee program using TI-RTOS SDK.
Finally, LoRa is evaluated with SX1280 SoC [36] running
default PINGPONG example.

The evaluation starts with the overall performance of XFi.
Then the detailed measurements of physical layers (i.e., Zig-
Bee chip error rate and symbol error rate) are provided,
followed by the link-layer experiments (i.e., frame reception
ratio). To demonstrate the generality of XFi, we also evaluate it
on LoRa. Each experiment is repeated 10 times, while 10000
frames are received and the statistical results are obtained.
Without further explanation, the distance between WiFi trans-
mitter and receiver is 5 meters and the transmitter adopts 64
QAM modulation, 5/6 coding rate, and 15 dBm transmission
power. The distance between IoT devices and WiFi receiver
varies from 2 meters to 15 meters, while the transmission
power of IoT devices is 0 dBm.

TABLE II: Summary of XFi Performance.
Commodity ZigBee LoRa

XFi Yes 285.7 Kbps 1.8 Mbps
Lego-Fi [18] No 213 Kbps Not Support
SymBee [39] No 31.25 Kbps Not Support

ZiFi [17] Yes 215.9 bps Not Support

B. Overall Performance

As we demonstrate in Table II, XFi is the first IoT→WiFi
communication design that simultaneously features 1) com-
patibility with commodity WiFi hardware, 2) generality to
various IoT technologies, and 3) high throughput. Specifically,
XFi obtains IoT data entirely from decoded WiFi payload,
whereas the state-of-the-art designs (e.g., Lego-Fi [18]) require
raw signal, which is incompatible with commodity devices.

Additionally, in contrast to previous works that are specific
to ZigBee, XFi is first to be generally applicable to several
distinct wireless techniques (e.g., LoRa), which is extremely
beneficial since IoT techniques are increasingly diversified.

With the capability of retrieving the legitimate payload data
of multiple IoT frames in parallel, XFi achieves a maximum
throughput of 285.7 Kbps for ZigBee and 1.8 Mbps for LoRa.
The throughput of XFi significantly outperforms SymBee [39]
and ZigFi [17] which rely on coarse-grained information of
signal (e.g., correlation and CSI). Note that the latest WiFi
standard (i.e., IEEE 802.11ax) provides 160 MHz bandwidth,
which allows XFi to supports 16 parallel ZigBee devices and
potentially improves the overall throughput by 8 times.
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Fig. 15: Reconstructed ZigBee vs. Standard ZigBee.

C. PHY Layer Performance

XFi introduces waveform reconstruction (Section §V) to
recover raw IoT waveforms from decoded WiFi payload. To
evaluate the accuracy, we compare the reconstructed ZigBee
signal with the standard one. As Fig.15 illustrates, the narrow-
band signal recovered by XFi approximates the standard one
well for the most of the time except those signal erased by
the WiFi receiver amid CP removal and parity removal.
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Fig. 16: Chip Error Distribution in ZigBee Symbols.

We quantify the accuracy of the reconstructed waveform
by examining the demodulated chips. In this experiment, two
ZigBee devices transmit on parallel channels in Fig.13, while
the distance between ZigBee transmitters and WiFi receiver is
2 meters. The distributions of chip errors are depicted in the
Fig.16. Over 90% of symbols have less than 3 chips errors,
which can be tolerated by DSSS. In addition, these two streams
of Zigbee signal demonstrate similar chip error distribution,
showing that XFi can obtain multiple ZigBee transmissions
from WiFi payload and independently decode them in parallel.
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Fig. 17: Symbol Error Ratio vs. Distances.

D. Symbol Error Rate

This section evaluates the symbol error rate (SER) of Zig-
Bee. To demonstrate the performance gain from our enhance-
ments to the IoT decoder, we compare the symbol error ratios
to the ones without our blacklist design (Section (§VI-B).
Fig.17 demonstrates that blacklisting undetermined chips can
significantly improve the decoding accuracy. For example, in
the first channel, it reduces the SER from 12% to 0.61% at 2
meters while it keeps the SER under 5% at 15 meters, which
dramatically enhances the robustness of the decoder.
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E. Frame Reception Rate

We evaluate ZigBee frame reception ratios (FRR) in two
sites: laboratory room and corridor. Fig.18 plots the average
FRR of ZigBee frames with 4 symbols in varying distances.
In the noisy lab environment, FRR drops slowly to 75% when
increasing distances from 2 to 8 meters, while in the corridor
XFi achieves more than 70% FRR at a distance of 10 meters.

To further improve the reliability, we transmit ZigBee
frames with 4/7 Reed-Solomon (RS) Code. As demonstrated
in Fig.19, XFi achieves ≥ 97% FRR in varying sites and
distances after the RS code is adopted, showing that XFi can
reliably collect data from heterogeneous IoT devices.
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Fig. 19: Frame Reception Ratio with RS code.

F. XFi:LoRa

XFi also enables WiFi radio to receive 8 parallel LoRa
frames. Note that LoRa uses chirp spread spectrum (CSS) in
the physical layer, which is dramatically different from the
physical layer of ZigBee, demonstrating that XFi is applicable
to various types of IoT techniques. In Fig.20, we depict
the spectrum of reconstructed LoRa waveform where LoRa
chirps can be identified visibly, which shows the generality of
waveform reconstruction to diverse physical layers.

Preamble SFD Payload

Fig. 20: Spectrum of Reconstructed LoRa Waveform.

Fig.21(a) shows symbol error ratios (SER) of LoRa in
various seettings. XFi achieves low error ratio (< 0.5%)
within 15 meters. We observe that LoRa signals with a smaller
bandwidth are most robust because a longer symbol duration
provides more resilience to signal erasure. When the range is
further increased, the communications become less reliable.
For example, at 25 meters, we receive a lot of WiFi frames
containing no errors from which we can reconstruct IoT signal.
As we discussed in Section §VIII, IoT radios are limited in
signal strength and thus cannot corrupt WiFi frames at a long
range. The ranges of XFi is comparable to previous designs
such as ZigFi (15 meters), Lego-Fi (20 meters), and SymBee
(25 meters). Note that LegoFi and SymBee are implemented
on software-defined radios, whereas XFi completely uses
commodity WiFi radios. Finally, as Fig.21(b) plots, XFi offers
similar reliability and throughput for 8 parallel LoRa channels,
significantly improving the spectrum efficiency when LoRa
devices are densely deployed.
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X. RELATED WORK
The coexistence and communication among heterogeneous

wireless devices have been studied in the literature. The
existing works can be categorized as follows.
• Wireless Coexistence Traditional researches on wireless
coexistence mainly focus on interference avoidance [4], de-
tection [2] and cancellation [5], [27], [29], [32], [45]. XFi is
distinct from these works in two aspects. First, XFi purposely
leverages interference among WiFi and IoT as an opportunity
for cross-technology data collection. Second, these works
commonly work in the physical layer, thus requiring access to
raw I/Q data and customized receivers. In contrast, XFi uses



the decoded WiFi payload, so it is only a software upgrade
that is compatible with commodity WiFi devices.
• Cross-technology Communication Cross-technology com-
munication technologies (CTC) enable direct data exchanges
among heterogeneous wireless techniques. Early CTC designs
manipulate sparse packet-level information (e.g., the packet
duration [8], [20], [43], interval [26], energy pattern [10],
[16], [23], [41], and energy level [11], [17], [19], [44]) to
deliver messages among heterogeneity. Among these works,
B2W2 [11] and ZigFi [17] enable low-power IoT radios to
send messages to WiFi by intentionally interfering WiFi CSI.
However, due to the sparsity of CSI information, these designs
are intrinsically restricted in the data rate.

XFi belongs to recent advances of physical-layer CTC [9],
[12], [30], [31], [40], [42], which significantly improve the
data rate by directly delivering messages via payload. The pi-
oneering work (WEBee [30]) introduces signal emulation that
enables WiFi radio to send legitimate ZigBee frames. Despite
its success, signal emulation only applies to high-speed radios
(e.g., WiFi), so it cannot enable a WiFi radio to collect data
from ZigBee. To tackle the problem, SymBee [39] and LEGO-
Fi [18] propose to decode ZigBee signal in the WiFi device.
However, they modify WiFi demodulation procedures, thus
cannot be deployed on commodity WiFi hardware. Besides,
their designs are tightly coupled with the unique features
of ZigBee signal and thus cannot be generalized to other
wireless techniques (e.g., LoRa). In contrast, XFi is the first
“IoT→WiFi” CTC that entirely uses commodity WiFi radios
and our “reconstruct and decode” technique is also the first
general method that can be extended to other IoT technologies.
CTC among various IoT technologies (e.g., ZigBee, BLE and
LoRa) [22], [24], [28], [37] and CTC between WiFi and
LTE [7] are also proposed. These works are either based on
signal emulation or unique features of these wireless protocols.
Therefore, they cannot be generalized to “IoT→WiFi CTC”
(i.e., address communication from low-speed radio to high-
speed WiFi). They also do not address the unique challenges
of a WiFi radio (e.g., channel decoding and signal erasure).
Finally, using mobile devices as IoT gateways is discussed in
[1], which only considers homogeneous wireless techniques.

XI. CONCLUSION
This paper proposes XFi, the first work that achieves cross-

technology data collection using commodity WiFi hardware.
We envision that XFi will inspire ubiquitous interactions
between mobile devices and heterogeneous IoT systems.
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APPENDIX

This section theoretically proves our observation in the
section V-B that LDPC decoder is ineffective when decoding
hitchhiking IoT signal that incurs excessive bit errors.

Proof. The proof is based on sum-product algorithm [25],
which is commonly used in LDPC decoder for its high effi-
ciency. Sum-product calculates the a posteriori log-likelihood
ratio (LLR) Li for each bit i as defined in Equation 1 where
bit i is decided to be one when Li ≤ 0 and zero when Li ≥ 0.

Li = log
p(xi = 0)

p(xi = 1)
= ri +

∑
j∈Ai

Ej,i (1)

Li is the sum of ri (the initial LLR from the input) and Ej,i
(the extrinsic LLR from the jth parity check to bit i). Since a
bit is flipped when the sum of extrinsic LLRs is large enough
so that the initial LLR (ri) and a posteriori LLR (Li) take
different signs, the probability of flip (Pe) can be expressed
as a conditional probability in Equation 2. The decoder is
ineffective if Pe is extremely small for any bit.

Pe = P (Li ≤ 0|ri ≥ 0) = P (Li ≥ 1|ri ≤ 1) (2)

As Equation 3 shows, the initial LLR ri only depends on
the received value of bit i denoted as x̂i, where the crossover
probability p is prior knowledge of the decoder.

ri = log
P (xi = 0)

P (xi = 1)
=

{
log p

1−p x̂i = 1

log 1−p
p x̂i = 0

(3)

Since ri ≥ 0 is equivalent to x̂i = 0 and vice versa, Pe in
Equation 2 can be deduced into Equation 4.

Pe = P (ri +
∑
j∈Ai

Ej,i ≤ 0|x̂i = 0)

= P (
∑
j∈Ai

Ej,i < log
p

1− p
)

(4)

log p
1−p is constant, so the calculation of Pe is reduced to

find the distribution of
∑
j∈Ai

Ej,i. As Equation 5 shows, each
extrinsic LLR Ej,i is computed from all bits associated with
jth parity check except for bit i (denoted as bit i′), where
pi′ = P (xi′ = 1) is the probability that the true value of bit
i′ is one.

Ej,i = log(

1
2 + 1

2

∏
i′∈Bj ,i′ 6=i(1− 2pi′)

1
2 −

1
2

∏
i′∈Bj ,i′ 6=i(1− 2pi′)

) (5)

Our key insight is that coded bits in severely corrupted WiFi
payload are almost uncorrelated from each other, meaning that
p′is are i.i.d random variables that take value either p or 1−p
with 1

2 probability. Therefore, Ej,i is simply a discrete random
variable shown in Equation 6, where e is a constant calculated

as e = log(
1
2+

1
2

∏
i′∈Bj,i

′ 6=i(1−2p)
1
2−

1
2

∏
i′∈Bj,i

′ 6=i(1−2p)
).

f(Ej,i) =

{
1
2 Ej,i = e
1
2 Ej,i = −e

(6)

Importantly, e � log p
1−p . Typically, p = 0.9 and log p

1−p
= 2.2, while e is less than 0.001. Since corrupted coded bits
are highly uncorrelated, Ej,is are approximately independent
of each other and can also be modeled as i.i.d. Thus, the sum
of extrinsic LLR is very unlikely to be large enough to flip
the sign of LLR. When p = 0.9, Pe ≈ 0.1%. Note that the
experiment shows a slightly higher probability because Ej,is
are not completely independent. Our observation in Section
§V-B is proved.
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