
Adaptive Addresses for Next Generation
IP Protocol in Hierarchical Networks

Haoyu Song, Zhaobo Zhang, Yingzhen Qu, James Guichard
Futurewei Technologies, USA

Abstract—We propose the adaptive addresses under a hier-
archical network structure, which can be realized in a newer
generation of IP protocol (i.e., IPvn). It minimizes the commu-
nication overhead, enables arbitrary address space extension,
simplifies both the network data-plane and control-plane, and
supports better network security. More importantly, it supports
incremental deployment from the network edge and gradual
growth towards the core. A clear boundary between IPvn domain
and the existing IPv4/IPv6 networks enables transparent cross-
domain communication. The clear evolution path makes pre-
standard deployment possible. We design both control plane and
data plane, prototype the routers within and on the edge of an
IPvn domain, and evaluate the performance. We open source the
project to encourage further investigation and development.

I. INTRODUCTION

Internet of Things (IoT) and 5G introduce to the Internet
a huge number of addressable entities (e.g., sensors, ma-
chines, vehicles, and robots). The connected IoT devices are
projected to reach 75.44 billion worldwide by 2025 [1]. As
of November 2019, the unallocated IPv4 address blocks are
depleted [2]. Apart from the interim remedies of Network
Address Translation (NAT) and address recycling, an acceler-
ated transition to IPv6 is expected. While the 128-bit address
of IPv6 was considered large enough and future-proof, the
current IPv6 practice has several issues. First, the long IP
addresses inflate the packet header size. 80% of a basic IPv6
header is consumed by addresses. Second, IPv6 addresses
are allocated with large blocks (e.g., a perfix length of /48
or /56 is recommended [3]). The extravagance may raise
another address exhaustion concern. Third, there is a trend
toward extending the meaning of the IPv6 address beyond
connectivity (e.g., SRv6 network programming [4]) leading to
further address usage.

Address Overhead: In IoT networks, thing-to-thing com-
munication through wireless connections is dominant, which
presents several distinct characteristics. (1) The communi-
cation pattern is mainly frequent short-message exchanges
(e.g., industry robots and networked vehicles). (2) The com-
munication is often energy sensitive (e.g., battery-powered
sensors). (3) The communication often requires low latency
(e.g., industry control). (4) The precious wireless channels
demand high bandwidth utilization (e.g., ZigBee, Bluetooth,
Wi-Fi, and 5G). These characteristics render a large header
overhead unfavorable and even prohibitive.

The address overhead also takes its toll on Data Center Net-
works (DCN), especially when large scale containers are de-

ployed and their prevailing communications are comprised of
short messages (e.g., key-value pairs) and conducted through
virtual switches. The performance hit is hard when packets
tunnel through host machines [5].

On the other hand, in IoT and DCN, most communications
happen between adjacent and related entities. It is a good prac-
tice to locally confine communication, computing, and storage
due to performance, efficiency, and security considerations, as
advocated by Edge Computing [6]. This pattern provides an
opportunity to overcome the overhead problem.

Address Space Extension: A fixed length address scheme
only defines one monolithic address space. Each entity (i.e.,
any Internet addressable device) is assigned a flat address as
its global identifier, which is used for communication with
other entities. Because of this structure, the only way to
combat future address exhaustion is to migrate to a larger
address space and reassign longer addresses to all entities.
This disruptive process requires an overhaul on applications,
protocol stack, and global networks.

A better approach is to allow any entity to keep its base ad-
dress unchanged even when the address space is expanded. As
far as an entity is concerned, nothing needs to be updated and
it is business as usual. Address space expansion is transparent
to all entities and even to most parts of the networks.

Adaptive Address in Hierarchical Networks: In the era of
Internet of everything, it is preferred to contain and organize
the directly related entities in isolated and hierarchical net-
works. Doing so not only ensures a securer network environ-
ment but also allows more efficient communications. Although
it is necessary for an entity to be globally identifiable, the
entity itself does not need to own a full address. A locally
unique address (i.e., the global address suffix) is enough for
it to communicate with others as long as a strict hierarchical
network structure is maintained.

The hierarchical network and address assignment are not
unfamiliar (e.g., ATM PNNI [7]). For the Internet. the original
IPv4 address is designed to be classful [8]. However, due to
the inefficiency of the coarse class granularity, the Internet
resorted to Classless Inter-Domain Routing (CIDR)—the de-
sign philosophy is also inherited by IPv6—to slow down the
address exhaustion [9]. It is no longer possible to maintain a
cleanly organized network hierarchy.

However, if we group entities into hierarchical networks
based on location, ownership, or logical relationship, we
will end up with a clean network architecture and can use
addresses as short as possible for communication. All the978-1-7281-6992-7/20/$31.00 ©2020 IEEE

entities attached to the same network share a same super-net
prefix, which can be prepended before their local addresses
to make them uniquely addressable in the network one level
higher. This recursive process can be repeated until the top-
level network. A full and unique global address for each entity
only reveals at the top level of the hierarchy.

Such an architecture makes it easy to expand the address
space by adding a new level of super-net on top of the
original top-level network. Now the original top-level network
is demoted to a second level network, and other new networks
with independent address space can be created alongside.
Meanwhile, the existing network hierarchy remains intact
and the existing entities are oblivious to the change, except
that the global addresses are effectively extended. Moreover,
any entity’s local address update is confined in the entity’s
immediate network and any prefix update is confined in the
immediate super-net. Such features are ideal for maintaining
a stable and evolvable network infrastructure.

To make such an idea work, however, we need to redesign
the Internet protocol header (at least for the address part) and
the way routers process and forward packets. We also need
to consider the compatibility with IPv4 and IPv6, conceive a
feasible deployment strategy, and present provable benefits.In
this paper, we provide the system design and P4-based data-
plane implementation and evaluation. We demonstrate a clear
evolution path for pre-standard incremental deployment, so
IoT and DCN can enjoy its benefits instantly.

Related Work: Although ATM PNNI [7] adopts hierarchical
network and addressing but full addresses are always used.
The link-based IP header compression techniques and proto-
cols [10], [11] are not designed for network-wide application.
Cross-layer optimizations such as 6LoWPAN [12] is not
general enough for other network environments. Different
variable-length IP address schemes was proposed in [13],
[14] with the similar motivations, but these works did not
describe the network data-plane and control-plane functions,
and deployment strategy as in this paper. NAT, L3 tunnelling,
SRv6 [15], and RSIP [16] all modify the L3 header or
addresses in routers during the packet forwarding, but none
of these modifies the address length.

II. ADAPTIVE ADDRESS SCHEME

IPT A

LGR B

LGR F LGR E

x
y z n

m

Level 1

Level 2 Level 3 Level 2

2001::/96
IPv6 domain

IPvn domain

aaaa/16

bb/8 cccccc/24

0001
0002 01 01

00000001

ILR C

Fig. 1. Hierarchical network and address example.

To begin with, we eliminate the maximum length restriction
of a complete address. One may argue that 128-bit address as

in IPv6 is more than enough if used with prudence. However,
it is better to be flexible in address space size and be prepared
for the extensibility in advance when designing new addressing
schemes. Consider a scenario that the 128-bit address is used
exclusively for entities on earth, and we allocate addresses
for extraterrestrial entities in different address spaces. We
can consider all the terrestrial entities to be in a single 128-
bit network. Another unique super-net prefix needs to be
appended to this local 128-bit address before a terrestrial entity
can communicate with an extraterrestrial entity.

In an expandable hierarchical network, the “local” address
of an entity is the shortest possible address assigned to it which
allows the entity to be uniquely identifiable in its immediate
network. The entity does not know the number of network
levels above it as well as the super-net prefixes.

TABLE I
EXAMPLE NETWORK CONFIGURATIONS

Host Address Length Level Gateway Super-net Prefix
x 0x0001 2B 2 B 0xaaaa/16
y 0x0002 2B 2 B 0xaaaa/16
z 0x01 1B 3 F 0xbb/08
m 0x00000001 4B 1 A 0x2001::/96
n 0x01 1B 2 E 0xcccccc/24

Figure 1 shows a hierarchical network example and Table I
summarizes the corresponding configurations. The example
contains 5 hosts and 4 networks in 3 levels. The Level 1
network has a 32-bit address space and interfaces with an IPv6
network. The two Level 2 networks below it have a 32-bit and
16-bit address space, respectively. The Level 3 network below
the left Level 2 network has an 8-bit address space.

The example shows the variable-length addresses are used.
Current IP protocols only use fixed-length addresses. The
header of the next generation IP protocol (e.g., IPvn) therefore
needs to be amended to support variable-length addresses.
In addition to the Source Address (SA) and the Destination
Address (DA), it also needs the corresponding Source Address
Length (SAL) and the Destination Address Length (DAL).
One possible field layout is shown in Figure 2.

SAL DAL

SA (variable length)

DA (variable length)

Fig. 2. A possible layout of address related fields in IPvn header.

SAL and DAL have fixed length. To simplify the imple-
mentation, SA and DA are preferred to be byte-aligned. It is
possible to define the length of address in the unit of byte,
nibble, or bit. Each has its own pros and cons. The unit of
byte can help reduce the size of the SAL/DAL but results
in coarse network granularity which might be inefficient in
address allocation. For example, a 4-bit SAL/DAL is enough
to encode 16 possible address lengths (one to 16 bytes) for
networks. In this design, each super-net is at least 256 times
greater than the networks below it. On the other extreme, the

unit of bit allows fine network granularity but requires more
space for SAL/DAL. For example, 8-bit SAL and DAL can
support an address length up to 256 bits and a super-net is
only twice larger than a lower level network below it. With
a few bits, it is also possible to design a more sophisticated
encoding scheme that supports variable address length steps
and adapts to the ideal network sizes at different levels.

III. ROUTER ROLE AND FUNCTION

In the hierarchy, each network has one or more Level
Gateway Routers (LGR) which are responsible for forwarding
packets in or out of this network. The LGRs are the only
interface between a network and its super-net.

A network can be in a single L2 domain, which means all
the entities in this network (excluding those in lower level
networks) and all the network devices (including the LGRs to
the super-net and the lower level networks) are L2 reachable.

A network can also be a pure L3 network in which no
L2 device is allowed. Each entity in a network is directly
connected to either an LGR or some Intra-Level Router (ILR)
which is solely responsible for packet forwarding within the
network. In this case, the entities need to partially participate
in the routing process (e.g., advertising its address).

The scale of an intra-level network can be used to guide the
L2/L3 selection. Small networks prefer the L2-based solution
and large networks prefer the L3-based solution. In the higher
level networks, since the number of entities is usually small, it
is free to choose between L2 or L3-based solution. The lowest
level network is usually L2-based.

Unlike IPv4 and IPv6, the address related fields in IPvn
header can be modified in network by LGRs. An LGR of a
network keeps a prefix that can augment the SAs from this
network to an address in the super-net. If an LGR needs
to forward an internal packet outside (i.e., DAL>SAL), it
augments the packet’s SA and updates its SAL accordingly.
Reversely, if an LGR receives a packet destined for the lower
level network it serves from the super-net (i.e., the super-net
prefix matches the DA’s prefix), it strips off the super-net prefix
from the packet’s DA and updates its DAL accordingly.

In contrast, within an L3-based level network, ILRs do
not modify the address fields. An ILR can decide the packet
forwarding direction by examining the DAL. If DAL>SAL,
the packet needs to be forwarded to an LGR of this network;
otherwise, the packet needs to be forwarded within the current
network, and possibly into a lower level network.

We use Figure 1 to illustrate some packet forwarding
examples. We allocate 8 bits to encode the address length in
bytes. Figure 3 shows that entity x sends a packet to y. This
type of communication may account for most of the traffic for
IoT or DCN. The size of the address-related fields is kept to
the minimum and there is no address transformation involved.

Figure 4 shows a more complicated and interesting example
for which x sends a packet to n. Since DAL>SAL, the
packet is forwarded to LGR B, at which SA of the packet
is augmented and the packet enters the Level 1 network.
Now since SAL=DAL, the packet is forwarded in the current

0x02 0x02

x y

0x0001

0x0002

0x02 0x02

0x0001

0x0002

0x02 0x02

0x0001

0x0002

ILR C

Fig. 3. x sends a packet to y, both in the same L3-based network.

0x02 0x04

0x0001

0xCCCC

0xCC01

0x04 0x04

0x0001

0xAAAA

0x04 0x01

0x01

x LGR B LGR E n

0xCCCC

0xCC01

0x0001

0xAAAA

0x04 0x01

0x01

0x0001

0xAAAA

Fig. 4. x sends a packet to n in a different network.

network and eventually reaches LGR E. LGR E prunes DA
of the packet and forwards the packet into the Level 2 network
and eventually to n. n can directly talk back to x because from
the packet, n has acquired x’s “global” address.

Interfacing with IPv4/IPv6 Networks: The difficulty of
introducing new architectures and protocols into Internet is
partially due to the lack of a backwards-compatible incre-
mental deployment strategy [17]. An end-to-end overhaul is
economically unjustifiable. Instead, we need to incrementally
bring it to the Internet and make it seamlessly work with exist-
ing IPv4 or IPv6 networks. Fortunately, this is straightforward.

We discuss two scenarios. First, the whole IPv4 (IPv6)
network space is considered a 32-bit (128-bit) lowest level
network in IPvn (i.e., IPv4/IPv6 in IPvn). Within the IPv4
(IPv6) network, the communications continue to use the IPv4
(IPv6) protocol. However, if an entity in the IPv4 (IPv6)
network needs to communicate with outside entities, they need
to switch to use the IPvn protocol at the gateway between
the two types of networks. This approach keeps the current
IPv4 and IPv6-based networks intact and grows the IPvn-
based networks alongside. The second scenario (i.e., IPvn in
IPv4/IPv6) allows the support of IPvn within the IPv4 (IPv6)
address space. In this scenario, the IPv4 (IPv6) network is
considered the top level super-net and the 32-bit (128-bit)
addresses cover the entire address space, in which we can
construct hierarchical lower level networks to support IPvn.
This scenario contains two sub cases.

Case 1: Each top-level IPvn network is assigned a unique
prefix to extend the local addresses of the entities in it to full
IPv4/IPv6 addresses. The LGR of the top-level IPvn network
(named IP Translator or IPT) is responsible for protocol
translating between IPvn and IPv4/IPv6. IPT A in Figure 1
illustrates such an example.

Case 2: Each top level IPvn network is assigned one or
more public IPv4/IPv6 addresses. The entities in IPvn domain
use private addresses. In this case, LGR of the top-level IPvn
network conducts both protocol translation and NAT.

The Case 1 is especially attractive because it supports a
simple, straightforward, and incremental deployment strategy,
that helps to introduce IPvn into the current Internet with the
least resistance and the most benefits. For successful protocol

translation, the IPvn header needs to maintain other informa-
tion than the address-related fields to match the IPv4/IPv6
header. The specification of the IPvn header is beyond the
scope of this paper.

IV. CONTROL PLANE DESIGN

It is conceivable that all the control plane functions and
protocols need to be modified or redesigned due to the hierar-
chical network architecture of IPvn. Fortunately, the updates
are often incremental and the results are usually simpler than
their counterparts in IPv4 and IPv6. We discuss a few essential
protocols that are sufficient to implement a system prototype.

A. Address Configuration and Resolution

DHCP: An entity can be manually configured or dynam-
ically acquire its address when booting up. Each network
may contain a Dynamic Host Configuration Protocol (DHCP)
server responsible for assigning addresses to the entities in the
same network. The protocol is almost identical to that for IPv4
and IPv6, except that the assigned address length is adaptive
to the network size.

DNS: For an entity to acquire the address of a peer entity
in order to initiate a communication, Domain Name System
(DNS) is still the prominent approach but with a new service
model. Any network can provide name service. Each entity
is configured with the address of the closest DNS server.
The hierarchical network architecture allows a scoped domain
name service. That is, a name registered in a network is only
valid in this network and the lower level networks covered by
it. It is possible that a same name is registered in two networks
and one network is the other’s super-net. Such name conflict
is not a bug but a feature for name reuse, which is transparent
to the name query process.

Each network may contain a DNS server (the notation is
only logical. The actual implementation may follow the same
hierarchical and distributed architecture of today’s DNS). Each
DNS server knows the nearest DNS server in a higher level
network and the nearest DNS servers in lower level networks.
This essentially organizes the DNS servers in the network
hierarchy into a tree structure rooted at the top-level network.
Each named entity in a network is registered with the DNS
server that covers its scope, which is basically a subtree.

We have several methods to populate the name to support
the scoped name queries, each with different storage and
performance trade-off: 1) register the name in all the DNS
servers in its scope (i.e., all the subtree nodes); 2) recursively
register the name in every parent DNS server until the scope
root; and 3) register the name only in the DNS server in its
scope root. The address for a name returned by a DNS server
is on a “need-to-know” basis. In a network, if the address’s
prefix matches it super-net prefix, the prefix is removed. This
can be easily done by the original or the relay DNS servers. If
a query crosses the IPvn domain and enters into the IPv4/IPv6
domain, the protocol translation is also needed.

ARP: In a L2-based network, the operation of Address
Resolution Protocol (ARP) or Neighbor Discovery Protocol

(NDP) is almost identical to that for IPv4 and IPv6. In an L2-
based network, each immediate entity should be configured
with a default gateway address to its super-net. If no default
gateway is configured, a network LGR should be configured
as an ARP proxy to respond to all internal ARP requests for
addresses out of the network. Similarly, the LGRs of any lower
level network in this network are also needed to be configured
as ARP proxy to response all ARP requests for addresses in
the lower level network. Due to the multi-homing gateway
routers, an ARP request may receive multiple responses. It is
up to the requester to determine which one to cache.

Routing Protocol: The address aggregation due to the
hierarchical network architecture also benefits the routing
protocols. A lower level L3-based network may belong to
a single organization or Autonomous System (AS), so the
interior gateway routing protocols (IGP) such as OSPF and
IS-IS can be used. Other lower level networks in this network
can be considered OSPF stub areas or IS-IS levels. A simpler
way is that each network run an independent instance of OSPF
or IS-IS. Specially, an LGR runs two OSPF/IS-IS instances:
one for the super-net and the other for the lower level network.

On the other hand, a higher level L3-based network may
contain multiple ASes and forms the backbone of the lower
level networks. Like today’s Internet, the ASes could come
from multiple Internet Service Providers (ISP) with peering
relationship. Each lower level network becomes a stub AS. In
this case, the exterior gateway routing protocol (EGP) such
as BGP can be used. The hierarchical architecture solves the
routing protocol scalability issue, and simplifies the proto-
col implementation by removing unnecessary features. The
clean routing scope helps to secure the infrastructure and
troubleshoot the networks.

V. DATA PLANE DESIGN

IPvn Socket for End Entities: To enable IPvn as a new
network layer protocol in end entities, we could add the pro-
tocol implementation in the OS Kernel and allow applications
to invoke the socket API using the address family parameter
AF_INETN. The L4-L7 protocol stack and the application
logic remains the same, allowing direct communication be-
tween entities in IPvn domain and in IPv4/IPv6 domain.

Forwarding Table Lookups in Networks: The adaptive
address simplifies the router forwarding table structure in
L3-based networks. A forwarding table only contains the
addresses to local entities and the prefixes to the lower level
networks. Since there is no nested prefixes, the Longest Prefix
Matching (LPM) is not necessary. The small number of unique
prefix lengths allows the prefixes to be grouped on lengths and
each group to be implemented as a hash table. A lookup can
search all the hash tables in parallel, and at most one table can
result a positive match. This design avoids the use of expensive
TCAM or other complex trie-based algorithms.

An LGR has two types of interfaces: one faces a lower
level network and the other faces the super-net. One LGR
may serve more than one lower level network. Hence, an LGR
may contain multiple logical forwarding tables, with each for

a network. For a packet in LGR, once its target network is
determined and the address related fields are processed, the
proper forwarding table can be searched.

VI. IMPLEMENTATION & EVALUATION

Prototype: We draft an IPvn header format as shown in
Figure 5. The header contains enough information to allow
the IP header translation to and from IPv4 and IPv6.

Ver(8)

Payload Length

Header

Length

SAL

SA

ToS/TC Next Header Hop Limit/TTL

DA

DAL

Padding

Fig. 5. A proposed header format of IPvn prototype.

We use P4 [18] for prototyping. Compared to IPv4 and IPv6,
the variable-length addresses in IPvn pose the main challenge
in the implementation due to the limited support of variable-
length header in P4 language. One dynamic-size data type
offered by P4 is “varbit”, but most operations like addition,
subtraction, arithmetic shift are not applicable to it, which
limits its usability. Alternatively, we use the header stack,
an array of fixed-length headers [19]. The dynamic address
and padding are split into multiple 8-bit elements, which can
be pushed and popped in a header stack, and the complete
address can be recovered by concatenating those multiple 8-
bit elements. Different lengths supported in the router are all
declared in the header (e.g., one-/two-/four-byte addresses), so
an address extraction takes just one state transition.

The implementation framework for our P4-based prototype
is shown in Figure 6. The routers, including ILR, LGR,
and IPT, are written in P4-14 language [18]. Through the
P4 compiler, p4c, the programs are compiled and installed
to the BMv2 software switch. Forwarding tables and switch
parameters can be pre-loaded or dynamically changed using
Simple Switch CLI during runtime. The customized switches
run on a configured network topology in the Mininet emulation
environment [20]. The whole environment runs as a docker
container from the open-source tool p4app [21].

Fig. 6. Implementation and simulation environment.

We open source the entire project [22]. Currently, it contains
the network data-plane prototype and simulation environment.
New work on the new L3 support in end entities, hardware-
based prototypes, and control-plane implementations, will be
included in the project.

Environment: The evaluations run on an Ubuntu 18.04
server with 10-core CPU at 2.2GHZ and 64GB RAM. Since

BMv2 is not meant to be a production-grade software switch
and the whole network simulation runs as a docker process, we
focus on the relative performance under different implemen-
tations rather than the the absolute performance. Scapy [23]
is used to generate and sniff packets. New protocols can be
easily defined using the Packet class provided by Scapy, and
the function sendp is used to send layer 2 packets.

Software Switch Performance: We use the timestamps on
interfaces from the Pcap Tool to calculate the packet process-
ing time. The forwarding performance of ILR, LGR, and IPT
is shown in Fig. 7. The first column is for ILR forwarding
within a network; the second one is for ILR forwarding toward
super-net (it is faster because no table lookup is needed); the
third one is for LGR forwarding to a lower level network; the
fourth one is for LGR forwarding to a super-net; the last two
are for IPT conversions between IPv6 and IPvn.

Fig. 7. Processing time per packet of ILR, LGR and IPT

Fig. 8 shows the processing time for one hundred IPv4,
IPv6, and IPvn packets sent in sequence. The longer pro-
cessing time of IPvn is due to the lack of efficient support
on variable-length header fields in P4. Our experiments use
a small forwarding table with a few entries, so the table
lookup cost is negligible. In reality, forwarding table lookup is
the most time-consuming for packet processing where IPvn’s
unique address structure can help achieve a much higher
overall forwarding performance.

Fig. 8. Packet processing time for IPv4, IPv6, and IPvn.

The above evaluation only applies to the software switch
and router. In the more prevailing hardware, the extra header
processing in ILR and LGR only needs a few extra pipeline
stages which slightly increase the forwarding latency but have
no influence on throughput. The chip die size saved due to the
compact forwarding table size and efficient forwarding table
implementation for IPvn can directly translate into higher I/O
bandwidth and/or deeper buffer.

Overhead: Compared with IPv6, the address-related over-
head saving by using the adaptive address is from 87.5% to
68.8% when the network size is from 1 Byte (i.e., up to 256
entities) to 4 Bytes (i.e., up to 4 billion entities). If the entire
IP header is considered, the overhead saving is between 70%
and 60%, as shown in Figure 9.

0

5

10

15

20

25

30

35

1 2 3 4

A
d

d
re

ss
 O

v
e

rh
e

a
d

 (
B

y
te

s)

Subnet Size (Bytes)

IPvn

IPv4

IPv6

0

5

10

15

20

25

30

35

40

45

1 2 3 4

IP
 H

e
a

d
e

r
O

v
e

rh
e

a
d

 (
B

y
te

s)

Subnet Size (Bytes)

Fig. 9. Overhead comparison: address fields only and IP header.

Power: Networking is responsible for more than 80% of the
total power consumption for wireless IoT devices due to the
radio and processing [24]. It is difficult to measure the actual
networking power consumption without a production environ-
ment. However, it is well established that, at a bandwidth C,
the networking power consumption is, P (C) = Pi +EbC, in
which Pi is the idle power and Eb is the energy for per-bit
transmission [25]. Pi usually consumes less than 10% of the
power [24] and for a highly shared IoT networking device, Pi

is negligible [25]. As shown in Figure 10, given the majority
packet payload size ranges from a few bytes to a few tens of
bytes, the power saving is between 20% to 50%.

1%

2%

4%

8%

16%

32%

64%

1 2 4 8 16 32 64 128 256 512 1024 1500

P
o

w
e

r
S

a
v
in

g

Packet Payload Length (Byte)

Fig. 10. Power saving over IPv6-based IoT, with the assumption of a 14-byte
MAC header and up to 64K IoT entities in a network.

VII. CONCLUSION

To combat the Internet ossification, a new layer 3.5 was
proposed to provide an evolution path by allowing new proto-
cols at AS edges [17]. Our principle differs in that we start the
evolution from the network edge, because each edge network
is by nature a single management domain and has a clean
interface with external networks. Our solution does not stop
at the edge. We provide a clear evolving path to expand the
scope of the new protocol towards the core and make the entire
Internet extensible. Such an approach allows the pre-standard
deployment at edge and the use of IPT gateways to interface
with existing IPv4 or IPv6 networks in the core. The places
where the new address scheme is mostly appreciated can enjoy
the benefits immediately.

The advantages of the new address scheme include, but not
limited to, power saving, effective bandwidth improvement,

simplified data plane, simplified control plane, and boundless
address space extension. The benefits of a hierarchical network
architecture, because of the adaptive IP address, is more
profound. It introduces scope to the domain name system
(DNS) and hierarchy to the autonomous system (AS), which
provide better system scalability, security isolation, policy
management, and network robustness. Due to space limitation,
more details can be found in [22]

The change of Internet architecture, even just partially and
incrementally, is a daunting task. This paper just scratches the
surface. It leaves many issues untouched (e.g., IP mobility and
multi/broad/anycast), and many details yet to be explored. By
releasing the open source project and sharing our preliminary
results, we hope to trigger more debates as well as quality
research and development from academia and industry.

REFERENCES

[1] Statista Research Department, “Internet of Things (IoT)
connected devices installed base worldwide from 2015 to 2025.”
https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/, 2019.

[2] RIPE NCC, “The RIPE NCC has run out of IPv4 Addresses.”
https://www.ripe.net/publications/news/about-ripe-ncc-and-ripe/the-ripe-
ncc-has-run-out-of-ipv4-addresses, 2019.

[3] T. Narten, et al., “IPv6 Address Assignment to End Sites,” RFC 6177,
IETF, 2011.

[4] A. Mayer, et al., “The Network as a Computer with IPv6 Segment
Routing: a Novel Distributed Processing Model for the Internet of
Things,” in NGOSCPS, 2019.

[5] D. Zhuo, et al., “Slim: OS kernel support for a low-overhead container
overlay network,” in NSDI, 2019.

[6] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[7] ATM Forum, “Private NetworkNetwork Interface Specification, Version
1.0,” af-pnni-0055.00, 1996.

[8] ISI, “Internet Protocol,” RFC 791, IETF, 1981.
[9] Y. Rekhter, et al., “An Architecture for IP Address Allocation with

CIDR,” RFC 1518, IETF, 1993.
[10] V. Jacobson, “Compressing TCP/IP Headers for Low-Speed Serial

Links,” RFC 1144, IETF, 1990.
[11] M. Degermark, et al., “IP Header Compression,” RFC 2507, IETF, 1999.
[12] J. Hui, et al, “Compression Format for IPv6 Datagrams over IEEE

802.15.4-Based Networks,” RFC 6282, IETF, 2011.
[13] S. Ren, et al., “Routing and Addressing with Length Variable IP

Address,” in NEAT, ACM, 2019.
[14] J. Tang, et al., “A Flexible Hierarchical Network Architecture with

Variable-Length IP Address,” in IEEE International Workshop on New
IP: The Next Step, 2020.

[15] C. Filsfils, et al., “IPv6 Segment Routing Header (SRH),” RFC 8754,
IETF, 2020.

[16] M. Borella, et al., “Realm Specific IP: Framework,” RFC 3102, IETF,
2001.

[17] J. McCauley, et al., “Enabling a Permanent Revolution in Internet
Architecture,” in SIGCOMM, ACM, 2019.

[18] P4 Language Consortium, “P4 Language and Related Specifications.”
https://p4.org/specs/.

[19] P4 Variable Length Header. https://github.com/jafingerhut/p4-
guide/tree/master/variable-length-header.

[20] Mininet, “An Instant Virtual Network on your Laptop (or other PC).”
http://mininet.org/.

[21] P4app Simulation Tool. https://github.com/p4lang/p4app.
[22] Futurewei, “Adaptive Address for Next Generation IP Protocol.”

https://github.com/Fizzbb/ResearchPaper/tree/master/Adaptive-
Addresses-for-NG-IP, 2020.

[23] Python Scapy. https://scapy.readthedocs.io/en/latest/build dissect.html.
[24] S. Zhao, et al., “Understanding Energy Efficiency in IoT App Execu-

tions,” in IEEE ICDCS, 2019.
[25] C. Gray, et al., “Power consumption of IoT access network technolo-

gies,” in Workshop on Next Generation Green ICT, IEEE ICC, 2015.

