High Speed Route Lookup for Variable-Length IP
Address

Wanli Zhang, Xiangyang Gong, Ye Tian, Jifan Tang
State Key Laboratory of Networking and Switching Technology
Beijing University of Posts and Telecommunications
Beijing, China
{zhangwanli, xygong, yetian, tangjftom} @bupt.edu.cn

Abstract—Since the advent of the Internet, IP addresses have
been the core of the Internet. However, with the rapid devel-
opment of the Internet in recent years, IP addresses are facing
more and more problems, such as address exhaustion, low packet
efficiency and low flexibility. The reason is that IP addresses use
a fixed-length design and lack extensibility. The New IP network
architecture and addressing method were born to solve these
problems. Based on this architecture, the addressing scheme
adopts variable-length and structured addresses. The address
space can be smoothly expanded according to the network scale
without modifying the old network address configuration. But
there are some challenges about New IP, and the greatest one
lies in the route lookup of variable-length IP addresses. Content
Addressable Memories (CAMs) are widely used in high speed
routers to find matching routes for packets in a routing table.
They enable the longest prefix matching on fixed-length addresses
to be completed in a single clock cycle. However, they can
not deal with New IP prefixes with variable lengths directly.
In this paper, we propose a mechanism using Binary CAMs
(BCAMs) and Ternary CAMs (TCAMs) to efficiently store New
IP addresses and complete a route lookup in constant time.
Moreover, we combine the hash scheme and CAMs matching
scheme to shorten the extremely long New IP addresses and
reduce TCAM storage space consumption. The simulation results
show that our mechanism can provide high speed route lookup
with low power consumption.

Index Terms—New IP, Route Lookup, TCAM, BCAM, Hash

I. INTRODUCTION

The data network has experienced rapid development for
more than 40 years. As its core, Internet Protocol (IP) ad-
dresses are used to identify hosts and provide locations in the
network. However, with the explosive growth of Internet and
the emergence of multiple heterogeneous networks, the current
IP address system is facing more and more problems.

The biggest problem is the address exhaustion of IPv4
address. By February 2011, the last IPv4 address were as-
signed and no more IPv4 addresses are available from the
Internet Assigned Numbers Authority (IANA) [1]. Although
the birth of IPv6 can temporarily solve the problem of address
exhaustion, it has poor compatibility with IPv4. Moreover,
IPv6 limits the address space, and will also fall into the
dilemma that IPv4 once faced. In addition, the demand for
heterogeneous network interconnection is increasing rapidly,
especially in the Internet of Things (IoT) field. Most IoT
devices have limited hardware resources. Short IP addresses

978-1-7281-6992-7/20/$31.00 ©2020 IEEE

are more suitable for them. Therefore, there is an urgent need
to break the design constraints of fixed-length, delimited, and
ordered network protocols.

New IP is a new network protocol suite [2] [3]. Under
this architecture, the protocol uses variable-length, structured
address design [4]. Network addresses of different lengths
will coexist in the data packet. The address space can be
smoothly expanded according to the network scale without
modifying the old network address configuration. Network
interconnection and expansion do not depend on protocol
conversion or address mapping gateway devices, making the
network formation more flexible.

A New IP address consists of several address segments, as
shown in Fig. 1. Each segment is a natural number without
an upper limit theoretically. We use dots to separate different
segments. For example, 53.17.319.106.228 is a New IP address
with five segments.

New IP address

‘Segmentl‘ . ‘ Segment2 | | Segment3

~_] _—

variable-length

Fig. 1. Structure of the New IP address.

Devices in the same Local Area Network (LAN) differ
only in the last segment. The gateway device of a LAN
stores the same prefix of the devices in the LAN. Therefore,
devices in the same LAN can use very short addresses for
communication. Also, a device can communicate with devices
in different LANs using a long address with more address
segments. As shown in Fig. 2, only the last segment of the
complete address is used for communication between devices
A and B within the LAN. When the device A communicates
with an external server, the destination IP address of the
data packet is a complete address, and the source IP address
still reserves the last segment. When data packets passes
through the gateway device, it supplements the source IP
addresses to complete addresses. And the data packets are
routed to the server through the backbone network. Similarly,
the destination IP addresses of data packets constructed by the

IP: 53.17.319.106.228

Source IP Address: 228
Destination IP Address: 16.445.9

Source IP Address: 228
Destination IP Address: 165

&

Gateway

IP: 16.445.9

Source IP Address: 53.17.319.106.228
Destination IP Address: 16.445.9

Server

Fig. 2. New IP variable-length addresses communication.

server is complete addresses, and the source IP addresses only
retain the last segment.

While New IP brings many conveniences, it also faces some
challenges. One of them is a high speed and efficient routing
table lookup algorithm. In New IP, the routing table stores
New IP address prefixes of different lengths and corresponding
next-hop addresses. When a data packet arrives, the router will
perform the longest prefix matching (LPM) on the destination
address carried in the packet to find the best next hop address.
For example, a New IP address 1.2.3.4.5 consists of five
address segments. It can match four address prefixes 1.%,
1.2.*%, 1.2.3.%, 1.2.3.4.%, where * is a wildcard. The longest
prefix 1.2.3.4.*% is the result returned by the LPM algorithm.
Compared with the route lookup of traditional IP addresses,
New IP route lookup has the following two challenges:

o First, the length of the IPv4 address prefix is less than 32
bits, and the key (i.e. the destination IP address) input by
the LPM algorithm must be 32 bits. Therefore, the IPv4
LPM algorithm only needs to handle IP addresses with
a length of less than 32 bits. But the LPM algorithm of
New IP has to deal with structured address with unfixed
length.

o Second, New IP has enormous address space and good
compatibility, resulting in many times more addresses
than existing IP addresses. As the number of addresses
increases, the size of the routing table will expand,
resulting in a significant increase in router manufacturing
and operating costs. Therefore, it is very challenging to
design a New IP route lookup algorithm that is both high-
speed and cost-saving.

In order to solve the above two challenges, we mainly made
the following contributions in this paper:

1) Although the New IP address space is huge, the routing
table of each router only stores a small part of it. By
analogy with IPv4, the IPv4 address space is 232 =~ 4 x
10%, and the routing table size of backbone routers is
about 9x10° [5]. Considering that the structured design of
New IP addresses can make routes aggregated on a larger
scale, we can believe the New IP address prefixes in the
routing table to be quite sparse. Therefore, we propose
a New IP address route lookup mechanism using Binary

Content Addressable Memories (BCAMs) and Ternary
Content Addressable Memories (TCAMs).

2) Since there is no upper limit for the length of New IP
addresses theoretically, there may be some extremely long
addresses. The algorithm proposed in 1) requires that
the TCAM width should not be less than the length of
the longest address, which results in a waste of TCAM
storage space. Considering that most addresses are much
shorter than the longest address, we can map these
long addresses to a short address space through a hash
function. Therefore, we propose a long address shortening
method combining the CAMs matching scheme and the
hash scheme to reduce TCAM storage space consump-
tion.

The rest of this paper is organized as follow. In Section II
we briefly review the traditional IP and name route lookup
methods. Section III details the New IP address route lookup
algorithm, as well as the hash scheme to shorten long ad-
dresses. In section IV, two measurements are employed to
evaluate the proposed lookup algorithm from the perspective of
time complexity and space consumption. Finally, we conclude
this article in Section V.

II. RELATED WORK

There are few researches on New IP route lookup today.
Given that the content name in NDN [6] has a similar
structure to New IP address, we can refer to the researches
of name route lookup. Name route lookup algorithms are
mainly divided into three categories: Trie-based algorithms,
hash-based algorithms and hardware-based algorithms. The
most Trie-based algorithms construct all entries in the routing
table into a Trie [7] with component granularity. Some papers
have proposed improved methods [8] [9], but the time required
to complete a search still depends on the depth of the tree.
When the lengths of names increase, the lookup performance
decreases significantly.

Hash-based algorithms classify name prefixes by length [10]
[11]. Name prefixes with the same number of components are
placed in the same hash table. During route lookup, it searches
each hash table in decreasing order of length until finding a
matching prefix. To improve performance, Wang et al. [12]
proposed a greedy name lookup method called Greedy-SPHT,

which is combined with the string-oriented perfect hash table.
The authors use a greedy strategy to choose the lookup order
of name prefixes based on their length distribution. However,
the hash-based algorithms will cause hash collisions when the
routing table is getting larger, resulting in incorrect packet
forwarding. And its time complexity is also related to the
length of the name.

Most hardware-based algorithms use CAMs, which are
divided into BCAMs and TCAMs. There can be two states in
the memory cell of BCAMs: 0 or 1, so that exact match can be
performed. In addition to 0 and 1, TCAMs memory cells can
also have a third state called “don’t care”. A memory cell with
“don’t care” status can match both 0 and 1. Because of the
existence of the third state, TCAMs can achieve the longest
prefix matching. The architecture of TCAMs used for LPM is
shown in Fig. 3.

Input Register (key)
Match Priority
vector encoder
Entry 0 1 bit
Entry 1 1 bit
Output
Entry N-1 1 bit

Fig. 3. Architecture of TCAMs used for LPM.

A key (i.e. destination IP address) is stored in the input
register and each address prefix is stored in an entry of
TCAMs. When matching, the key is compared with all prefixes
in parallel and the results are stored in the match vector, where
1 represent the corresponding prefix that matches the key. Then
the priority encoder selects the longest one among the prefixes
that can be matched. At last, the output signal is used to find
the corresponding outgoing port. A TCAM-based routing table
takes very little time to perform a lookup because it allows the
input key to compare all the entries stored in TCAMs at the
same time in one clock cycle.

While the TCAM-based lookup is very fast, TCAMs have a
major disadvantage: high power consumption. It results from
the circuit complexity of each TCAMs memory cell. A typical
TCAMs memory cell requires two SRAM memory cells to
store both the value bit and the mask bit, and four transistors
for the match logic. A typical SRAM memory cell requires six
transistors, meaning that each TCAMs memory cell requires
16 transistors, which is about 2.7 times that of a typical SRAM
memory cell.

Therefore, many solutions have been proposed to use
TCAMs more efficiently and to reduce the required amount
of TCAMs memory cells [13] [14]. Sun et al. [15] pro-
posed a name-based longest prefix matching algorithm for
information-centric networks using TCAMs. The algorithm

uses a hash function to convert the name prefix into many
fixed-length binary strings, which can be stored in fixed-width
BCAMs and TCAMs for lookup. However, due to the need
for multiple lookups based on the length of the name, the time
complexity is difficult to meet the requirements.

Overall, the Trie-based and hash-based algorithms in the
content name route lookup can be used in New IP routers
that do not require high forwarding speed due to their low
cost. Hardware-based algorithms is not suitable for New IP
routing because the name is more complex and diverse than
New IP address. In order to meet the high-speed and low-
energy forwarding requirements of backbone routers, we need
to design a dedicated route lookup algorithm for New IP.

III. NEwW IP LOOKUP AND LONG ADDRESS SHORTEN

In this section, we first introduce the New IP address
prefix storage and lookup algorithm that combines BCAMs
and TCAMs. After that, we will present the long addresses
shortening method using the hash function.

A. Storage and Lookup

Considering the structure of New IP addresses, we can
not handle the complete address uniformly to achieve LPM.
Therefore, we first split the New IP address into segments and
set up a separate BCAM for each segment. For a BCAM, we
assign a binary digital label for each entry from small to large.
In this way, we rename a label for each segment address so
that a long segment address can be replaced by a short label.
After replacing each segment with a label, we splice these
labels in the order of the segments. Finally, a complete binary
digital label address is obtained and can replace the original
New IP address unambiguously.

A problem needs to be pointed out is that there are obvious
separators “.” between the segments of a New IP address,
and the label addresses are all represented by binary numbers.
We need to separate the labels of different segments to avoid
ambiguity. For BCAMs, we set the length of each label in the
same segment to the same. But the label length of different
segments can be different, depending on the number of stored
entries in the BCAM. As the routing table is updated and the
number of entries changes, the label length of each segment
will also change to accommodate a larger number of entries
or shorten the width of CAMs.

In this way, each segment can be separated in the label
address without the need for a separator. Through BCAMs,
we replace the hierarchical New IP address with a flat label
address. We can specify the mask length of a label address
prefix as the length of it. By storing label address prefixes in
the TCAM in order of their mask lengths, the storage of New
IP address prefixes is completed as shown in Fig. 4. Here is
an example to further illustrate the prefix storage method.

Suppose there are three New IP address prefixes in the
routing table: 23.61.147.%, 49.33.*%, 82.*. So there are three
entries in the BCAM storing the first segment address: 23, 49,
82, and the corresponding labels are 00, 01, 10, respectively.
There are two entries in the BCAM storing the second segment

53 17 319 106 28 | * |
53 17 319 106 228

BCAM, | | BCAM, | | BCAM; | | BCAM, | | BCAM;

Label, Label, | Label, | Label, Labels | * l

ﬂStore

Destination label address Longest prefix matched

TCAM

Fig. 4. New IP address prefixes storage and lookup.

address: 61, 33, corresponding to labels 0 and 1, respectively.
There is one entry in the BCAM storing the third segment
address: 147, corresponding to label 0. The New IP address
prefix 23.61.147.*% is replaced by the label 0000/4 through
BCAMs, where /4 represents the mask length. The prefix
49.33.*% is replaced by label 011/3, and the prefix 82.* is
replaced by label 10/2. After that, we can store these label
address prefixes in the TCAM.

When a New IP data packet needs to be forwarded, the
destination address is also split by segment. The corresponding
BCAMs are queried for each segment address to get label
address. And the label addresses of each segment are spliced
into the complete label address in order. Finally, the LPM
result can be obtained by entering the complete label address
into the TCAM.

However, if a certain segment address fails to match in the
BCAM, we can use a specific unassigned label to represent the
segment without matching (called the unmatched label). This
method not only ensures the correctness of the LPM result,
but also saves the storage space of BCAMs and TCAMs.

For example, for a BCAM located in the k-th segment of
the New IP address with a label length of three, we set 111 as
unmatched label. For a destination address with the number
of segments m(m>k), if the k-th segment address does not
match in the BCAM, there is no entry in the routing table with
the same k-th segment as the destination address. Therefore,
the number of segments of the prefix that the destination
address can match successfully in the routing table must be
less than k. When the destination address is converted to a

label address, the label in the k-th segment is 111. The k-
th segment of all label address prefixes with the number of
segments greater than or equal to k stored in the TCAM is
not 111. Therefore, the destination label address used as the
TCAM input key can not match these label address prefixes
whose number of segments is greater than or equal to k. For
those label address prefixes with the number of segments less
than k in the TCAM, the memory cells of the k-th segment
address are “don’t care”, which can match the destination label
address normally. We can conclude that the LPM result output
by the TCAM is a prefix whose number of segments is less
than k.

There is a problem that needs to be pointed out. Since
the third state “don’t care” in TCAMs memory cells can
match any input, if there is no input entered into the “don’t
care” memory cell, TCAMs will determine that the match is
successful. According to the LPM rule, the longest prefix that
the address 157.643.72 should be matched of is 157.643.%.
But if there is a prefix 157.643.72.* in the routing table, the
LPM result output by TCAMs is 157.643.72.* incorrectly. Our
solution is to delete the last segment of the destination address
before lookup in BCAMs. After obtaining the label address,
we fill in the unmatched label of the next segment after the last
segment. In this way, the address 157.643.72 can only match
the prefixes of no longer than two segments.

In summary, we have achieved the route lookup of New IP
addresses through the above method of combining BCAMs
and TCAMs. But TCAMs consume a lot of power, which is
proportional to the number of memory cells. We need to reduce
the consumption of TCAM storage space as much as possible
to save costs.

B. Long Address Shorten

Since the lengths of the New IP addresses have a wide
range, using TCAMs that can accommodate the maximum
length of the New IP address prefix to store all the entries
will result in a great waste of TCAM storage space. Our
initial idea is to use two TCAMs. If the length of the binary
label address converted by a New IP address prefix does not
exceed the width of the first TCAM (called TCAM,), it will
be stored directly in TCAM;. If the length exceeds the width
of TCAM;, we can use another wider TCAM (called TCAM5)
to store these long prefix entries separately. When the length
of the destination label address is not greater than the width of
TCAM;, only TCAM; needs to be queried. Otherwise, both
of the them need to be queried to ensure that the destination
address can match the prefix entry with any length in the
routing table. Obviously, the length of all prefixes in TCAM3
is larger than that of TCAM;. Therefore, if there is a matching
prefix in TCAM,, the prefix is the LPM result. Otherwise, the
matching prefix of TCAM; is output.

This method reduces the use of TCAM storage space to a
certain extent, but it can be further optimized for TCAMs.
Considering that the number of these long addresses will not
be very large, we can use an appropriate hash function to
calculate the portion of the label address that does not exceed

the width of TCAM; into a short value. Then this value is
concatenated as the previous part with the excess part of the
label address and stored in TCAM,.

When the destination address in a data packet is converted
into a binary label address and the length does not exceed
the width of TCAM;, only TCAM; needs to be queried.
Otherwise, we split out the part of the destination label address
that does not exceed the width of TCAM; to query TCAM;.
At the same time, the destination label address is processed
based on the same method as the long address prefix, and is
queried in TCAM,. If TCAM; has no matching result, the
LPM result is the matching result of TCAM;. Otherwise it is
the matching result of TCAM,.

Label, | Label, Label, ., Labely,, Label, | *

Label,

Store

H, Label,,; | Labely, Label, | *

TCAM,

Fig. 5. Long address prefixes storage.

Suppose the width of TCAM; is represented by W;, and
the width of TCAM, is represented by Ws. The ¢-th segment
of the label address is represented by Label;, and the length
of Label; is represented by L;. As shown in Fig. 5, for a n-
segment prefix that has been converted into a label address,
assume that the sum of the lengths of the first k(k<n)
segments is less than or equal to W; and the sum of the lengths
of the first £k + 1 segments is greater than W;. Formulated as:

S on<w, Y Lew,

We hash the entire first k£ segments label address into a
shorter binary label Hy, splice Labely, to Label, in the
latter part, and store it in TCAMy. TCAM; only stores prefix
entries with a number of segments less than or equal to k.

For a destination label address with m(m>k) segments as
shown in Fig. 6, it can also be determined that the sum of
the lengths of the first k£ segments is less than W; because
the length of each segment label address is fixed. We hash the
first k& segments into Hy, in the same way as above, and splice
Labelyg41 to Label,, behind Hy to be queried in TCAM,.
In this way, the destination address can be compared with all
prefixes in the routing table whose number of segments is
greater than k. Simultaneously, we split out the label address
Labely to Labely,. And it is queried in TCAM; to be compared
with all prefixes whose number of segments is less than or
equal to k. Obviously, the number of prefix segments stored
in TCAM; must be greater than that of TCAM;. If there is
a matching result in TCAM,, it is output as the LPM result.
Otherwise the result of TCAM; is output.

Lookup
Label, | Label, Label, > TCAM,
Label, | Label, Label, | Label,., | Label,., Label,,
Lookup
H, Label,,, | Labely,, Label,, > TCAM,

Fig. 6. Long addresses lookup.

IV. EVALUATION

In this section, we evaluate the performance of the proposed
New IP route lookup mechanism from two perspectives:
lookup latency and TCAM storage space consumption.

A. Lookup Latency

The basic unit of lookup latency here is the clock cycle,
which is the duration from the beginning of entering a key
into a CAM to the end by returning a matching result. For
normal addresses lookup, it takes one clock cycle to lookup in
BCAMs getting the label address, and another one for lookup
in the TCAM to obtain the LPM result. The lookup latency
should be equal to two clock cycles. It is worth mentioning that
our lookup method can apply pipeline technology. Therefore,
the New IP route lookup mechanism can obtain a LPM result
every single clock cycle.

As for long addresses lookup, the time of hash calculation
needs to be added on the basis of two clock cycles. The hash
calculation can be realized by hardware, so it will not take
much time [16]. Since the long address is only a small part,
it can be ignored.

B. TCAM Storage Space Consumption

We estimate the relationship between the size of the routing
table and the width of TCAMs. The previous work introducing
New IP proposed that the number of address prefix segments of
a subnet represents the level of the network domain where the
subnet is located [4]. The network domain can be determined
according to the geographical administrative level. For exam-
ple, there are 8 levels based on continent, country, province,
city, county (district), street (town), building, and room. The
first segment of a New IP address indicates the number of
a continent. The second segment indicates the number of a
country within the continent represented by the first segment,
and so on. Therefore, we can assume that the number of
segments of most New IP addresses is less than 8. We do
not exclude that there are some addresses with more than 8

segments, but we think these long addresses are very few.
Taking into account the actual situation, the expansion factors
from the first level to the eighth level are 8, 64, 32, 16, 16, 32,
1024, and 512 respectively. The expansion factor represents
the number of network domains of the next level expanded
from a network domain. The number of subnets that can be
allocated is 8 %64 % 32% 16 % 16 %32 1024 %512 4 8 % 64 % 32 %
16 * 16 * 32 % 1024 + ... + 8 =~ 246, The number of IPs that
can be allocated is 246 x A ~ 250 (X is the average number of
devices in each subnet), far exceeding the IP demand today.

According to the data released by CIDR Report [5], the
number of BGP routing table entries for IPv4 in the backbone
router is approximately 900,000, and the number of entries
for IPv6 is approximately 100,000. We randomly generate
1,000,000 New IP address prefixes with different number of
segments as routing table entries. Each segment of a prefix
is randomly generated from O to the expansion factor of the
segment. As the generated prefixes gradually increase, we
calculate the width of the TCAM; required to store them.
The storage space of TCAMs is negligible due to its small
number of entries. In this way, an image between the number
of routing table entries and the width of the TCAM; is drawn.
The TCAM width used by the algorithm in [15] is constant
at 64, and the width required for IPv6 route lookup is always
128, which is not shown in the figure.

48

46 - >
44 A

9%
(=)

1 2 5 10 20 50 100 200
Number of routing table entries (x1000)

500 1,000

Fig. 7. Storage space consumption of TCAMs.

From the Fig. 7, we can conclude that the router can choose
appropriate TCAM width based on the size of its routing table.
In addition, the New IP routing table can be aggregated on a
much larger scale than IPv4 because the New IP address adopts
a structured design and the address allocation is on the basis
of the geographical location.

V. CONCLUSION

In this paper, we propose a high speed New IP route lookup
mechanism to achieve LPM using a hybrid configuration of
BCAMs and TCAMs. BCAMs are used to convert structured
New IP addresses into flat label addresses. TCAMs can

perform the LPM of label addresses efficiently. We combine
the hash scheme and CAMs matching scheme to shorten
the extremely long address and reduce TCAM storage space
consumption. Our lookup mechanism can be pipelined so that
only one clock cycle is needed to complete a LPM. Analysis
and the experiment result show that when the number of New
IP that can be allocated far exceeds the current IP demand,
only a small TCAM storage space is needed to store the
routing table of the backbone router.

ACKNOWLEDGMENT

This work was supported in part by the National Key R&D
Program of China under Grant 2019YFB1802603 and in part
by the National Natural Science Foundation of China under
Grant 61802024.

REFERENCES

[1] 2011. Free Pool of IPv4 Address Space
Available:https://www.nro.net/ipv4-free-pool-depleted/.

[2] X. Zheng, S. Jiang, and C. Wang, “NewIP:new connectivity and capa-
bilities of upgrading future data network,” Telecommunications Science,
2019, 35(9): 2-11.

[3] Z. Chen, C. Wang, G. Li, Z. Lou, S. Jiang and A. Galis, “NEW IP
Framework and Protocol for Future Applications,” NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium, Budapest,
Hungary, 2020, pp. 1-5.

[4] J. Tang, W. Zhang, X. Gong, G. Li, D. Yu, Y. Tian, B. Liu, and L. Zhao,
“A flexible hierarchical network architecture with Variable-Length IP
address,” in 2020 IEEE INFOCOM WKSHPS: New IP: The Next Step,
Toronto, Canada, Jul. 2020.

[5] CIDR-Report. Available:https://www.cidr-report.org/as2.0/.

[6] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66-73, 2014.

[71 Y. Wang, H. Dai, J. Jiang, K. He, W. Meng and B. Liu, “Paralle] Name
Lookup for Named Data Networking,” 2011 IEEE Global Telecommuni-
cations Conference (GLOBECOM), Houston, TX, USA, 2011, pp. 1-5.

[8] D. Li, J. Li and Z. Du, “An improved trie-based name lookup scheme
for Named Data Networking,” 2016 IEEE Symposium on Computers
and Communication (ISCC), Messina, 2016, pp. 1294-1296.

[9] S. Ren, D. Yu, G. Li, S. Hu, Y. Tian, X. Gong, and R. Moskowitz,

“Routing and addressing with length variable ip address,” in Proceedings

of the ACM SIGCOMM 2019 Workshop on Networking for Emerging

Applications and Technologies. ACM, 2019, pp. 43—48.

W. So, A. Narayanan and D. Oran, “Named data networking on a router:

Fast and DoS-resistant forwarding with hash tables,” Architectures for

Networking and Communications Systems, San Jose, CA, 2013, pp.

215-225.

H. Yuan and P. Crowley, “Reliably scalable name prefix lookup,”

2015 ACM/IEEE Symposium on Architectures for Networking and

Communications Systems (ANCS), Oakland, CA, 2015, pp. 111-121.

Y. Wang, B. Xu, D. Tai, J. Lu, T. Zhang, H. Dai, B. Zhang, and B.

Liu, “Fast name lookup for Named Data Networking,” 2014 IEEE 22nd

International Symposium of Quality of Service (IWQoS), Hong Kong,

2014, pp. 198-207.

H. Noda et al., “A cost-efficient high-performance dynamic TCAM with

pipelined hierarchical searching and shift redundancy architecture,” in

IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 245-253, Jan.

2005.

Y. Sun and M. S. Kim, “A Hybrid Approach to CAM-Based Longest

Prefix Matching for IP Route Lookup,” 2010 IEEE Global Telecommu-

nications Conference (GLOBECOM), Miami, FL, 2010, pp. 1-5.

Y. Sun, N. Egi, G. Shi, and J. Wu, “Content-based route lookup using

CAMs,” 2012 IEEE Global Communications Conference (GLOBE-

COM), Anaheim, CA, 2012, pp. 2677-2682.

F. Yamaguchi and H. Nishi, “Hardware-based hash functions for network

applications,” 2013 19th IEEE International Conference on Networks

(ICON), Singapore, 2013, pp. 1-6.

Depleted.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

