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Abstract—RACK for TCP is a loss detection and recovery
algorithm which relies on the notion of time instead of counting
packet losses. The algorithm has been integrated in Microsoft
Windows, Linux and FreeBSD as a full-featured alternative to
the existing TCP loss recovery algorithms. Cheng et al. claim that
the algorithm offers a significant improvement, especially for tail
losses and cases with packet reordering within the network. We
adopted RACK for the SCTP protocol and improved its mech-
anisms by utilizing built-in SCTP specific features. To evaluate
the benefits and drawbacks of RACK and our modifications to
the algorithm, we integrated RACK in the SCTP model of the
OMNeT++/INET simulation environment. Qur simulations show
a positive impact in common networking scenarios regarding loss
recovery and reordering tolerance.

I. INTRODUCTION

The majority of the widely deployed loss detection al-
gorithms for reliable transport protocols use a combination
of counting packet losses and timer based mechanisms. For
example, the specifications of the Stream Control Transmission
Protocol (SCTP) [1] and the Transmission Control Protocol
(TCP) [2] distinguish between timer based and fast retrans-
missions. In 2015, Cheng et al. (from Google) introduced a
new loss detection and recovery approach: "Recent ACKnowl-
edgment” (RACK), published as an IETF draft [3]. Instead of
triggering retransmissions by counting gaps in acknowledged
sequence number spaces or timeouts, RACK uses the notion
of time to detect lost packets. RACK promises a faster loss
detection and less spurious retransmissions caused by network
reordering. It is intended as a full replacement for existing
recovery algorithms. Although RACK has been tailored for
the TCP protocol, its methods can also be applied for other
transport protocols such as Quick UDP Internet Connections
(QUIC) or SCTP. In a first step, we adopted the RACK
algorithm to the SCTP protocol and evaluated its benefit in
certain scenarios using a discrete event simulation framework.
Based on those results, we improved the algorithm by utilizing
built-in SCTP specific features.

II. RACK FOR TCP

The RACK algorithm is meant as a fully featured replace-
ment for existing TCP loss recovery algorithms. It has already
been integrated into the Linux kernel, Microsoft Windows
and FreeBSD. Since the RACK algorithm requires a selective
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acknowledgement of packets, the TCP SACK extension [4] is a
mandatory requirement for the usage with TCP. Beneficial for
its deployment is that the RACK algorithm requires no changes
or additional extensions, apart from SACK at the receiver side.

A. Loss Detection

For every outgoing packet, the sender records the trans-
mission time in the packet’s local meta information storage.
Upon the arrival of a selective acknowledgement (SACK)
from the receiver, the sender picks the most recently delivered
(sent and acknowledged) packet. All outstanding packets,
which have been sent significantly before the most recently
delivered packet, are assumed lost and queued for retrans-
mission. If packets are outstanding but not overdue, RACK
arms a timer to detect lost packets without waiting for a
subsequent acknowledgement. The RACK draft [3] suggests
to calculate the timeout by adding the round trip time of the
most recently delivered packet (RackRTT) and the network
reordering window (ReoWND). The ReoWND is calculated
dynamically in order to compensate for delays caused by
network reordering. An example of the RACK operation is
shown in Figure 1. In this example, the second packet (DATA
#2) is lost and the receiver reports it as missing upon receiving
the third packet. When the sender receives the first SACK,
acknowledging packet (DATA #1), no gap is reported. The
acknowledgement for the third packet (DATA #3) triggers the
retransmission of the lost second packet (DATA #2) since
a subsequently sent packet has been acknowledged and the
ReoWND timeout has been passed.

B. Reordering Window

The cause for gaps in the received sequence number space is
not limited to loss. If packets get reordered within the network,
the receiver will also notice a gap. To avoid spurious retrans-
missions caused by packet reordering, traditional loss recovery
algorithms require multiple gap reports before a retransmission
gets triggered. RACK makes another approach by calculating
a dynamic reordering window, based on the detected network
characteristics. The sender detects the occurrence of network
reordering by recognizing original data packets being delivered
out of order in the sequence number space. This is done by
recording the highest sequence number which got selectively
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Fig. 1. Retransmission triggered by a RACK timer.

or cumulatively acknowledged. If an subsequent SACK se-
lectively or cumulatively acknowledges an unacknowledged
and also never retransmitted sequence number below the
number recorded previously, the corresponding packet has
been reordered. This mechanism only works for packets which
have not been retransmitted. Cheng et al. suggest an initial
reordering window of a quarter RTT. A reordering window that
is too small leads to spurious retransmissions, detectable by the
Duplicate Selective Acknowledgement (DSACKSs) extension.
If the sender receives a DSACK notification, the reordering
window can be assumed as being too small. Thus the sender
increases the reordering window by a quarter RTT for every
round trip in which duplicates are reported. Once no more
reordering is detected, the inflated reordering window should
be kept for a period of 16 loss recoveries before being reset to
its initial value of a quarter RTT. If the sender has not detected
any reordering for the particular connection, the reordering
window is set to zero during the loss recovery operation.
Lowering the reordering window to zero lets RACK behave
even more aggressively than the regular recovery algorithm,
specified in RFC6675 [5]. RACK’s dupthresh approach con-
siders all outstanding packets lost, which have been sent before
an acknowledged packet, even if they have not been reported
missing by three gap reports.

C. Tail Loss Probing

In addition to the passive loss detection algorithm, RACK
introduces active tail loss probing (TLP). Tail loss occurs if
either the last payload segment(s) or the last acknowledge-
ments of a transmission are lost. Since no subsequent packets
are transmitted, lost packets can not be detected by hitting the
dupthresh limit or a RACK timeout. According to Google [6],
tail loss is a common problem for traffic that follows a
request/response style pattern. Google also reports that 70%
of the losses on their google.com search engine are recovered
by retransmission timeout (RTO). RACK’s TLP mechanism
addresses this issue by introducing a probing timeout (PTO)
timer. Whenever new data gets transmitted or a SACK cumu-
latively acknowledges data, RACK schedules a probing timer.
In case the PTO timer fires, RACK sends out a probing packet

to trigger an acknowledgement from the receiver. The probing
packet contains unsent data or, if not available, retransmits
the most recently sent packet. The RACK draft [3] suggests
to schedule the probing timer in relation to the smoothed
round trip time (SRTT) and the amount of data in flight. In
case a SRTT value is available, the probing timeout is two
times the SRTT plus an additional delay. If only a single
packet is outstanding, the additional delay is set to worst case
delayed ack timer (WCDelAckT = 200ms), otherwise it is
set to two milliseconds. The RACK draft [3] suggests to set
the WCDelAckT value to 200 milliseconds, it represents a
potential long delayed ACK timer at the receiver. In case a
SRTT value is not available yet, the probing timer is set to
one second.

ITI. RACK FOR SCTP

SCTP is a reliable, connection oriented transport protocol.
Even though originally designed for the transmission of small
signaling messages in the Signaling System No. 7 (SS7),
SCTP has evolved into a universal transport protocol over
the last years. Additionally to the usage in SS7, SCTP has
become widely deployed as the underlying transport protocol
for Data-Channels, which are a fundamental part of Web Real-
Time Communication (WebRTC). Both SCTP peers transmit
application data by using streams within the association, each
stream gets identified by a unique 16 bit stream identifier.
Payload data is transmitted using DATA chunks which be-
long to a particular stream and are identified by a unique
Transmission Sequence Number (TSN). If a SCTP packet
containing one or more DATA chunks arrives, the receiver
acknowledges the related TSNs, cumulatively or selectively,
by using a SACK chunk. While RACK for TCP requires
additional extensions to be supported by both peers, SCTP
already provides the underlying mechanisms for RACK in
its basic RFC4960 [1] specification. We adopted RACK for
the SCTP protocol and developed additional improvements by
using built-in SCTP specific functionalities as well as by using
optional extensions. In contrast to the RACK specification,
our SCTP implementation maintains the meta information
per DATA chunk and not per packet. Also, SCTP reports
missing packets as well as duplicate packets by default without
additional extensions.

IV. PERFORMANCE EVALUATION

We implemented RACK in the SCTP model of the INET
framework [7] for the OMNeT++ simulation environment [8]
to validate the adoption and our modifications to the RACK
algorithms by comparing them to SCTP’s default mecha-
nisms. By using the discrete event simulation framework, we
are able to precisely evaluate the internal mechanisms in a
highly flexible and deterministic environment. Since a key
part of RACK is the robustness against packet reordering,
we extended the INET model by a mechanism to simulate
a variety of reordering patterns within the network. We sim-
ulate packet reordering by delaying SCTP packets leaving
the SCTP module. The delay is determined for every single



packet, based on a configurable reordering pattern. At the
IETF 102 conference, Google presented statistics showing
that 9.4% of their server-to-client connections and 5.4%
of their client-to-server connections are facing reordering [9].
Previous evaluations have also shown that reordering is a
common issue in modern networks [10] [11] [12]. Our scenario
represents a common client-to-server model in which the
client transfers data to the server. To analyze the benefits and
downsides of RACK and our modifications to the algorithm,
we focused on the application-to-application delay, the amount
of time until a missing packet is retransmitted, the ratio of
spurious to valid retransmissions and the goodput. If loss
occurs within the network, the application-to-application delay
indicates how quickly lost packets are detected and recovered
by the sender’s loss recovery algorithm, since data is delivered
to the application reliably and in order. The ratio of spurious
retransmissions to valid retransmissions indicates how well
the algorithm distinguishes between loss and reordering. A
falsely detected loss has a negative impact on the congestion
control and will lead to a decreased goodput rate. A good
recovery algorithm retransmits lost packets very quickly, while
keeping the ratio of spurious retransmissions as low as pos-
sible. From the perspective of an application, the application-
to-application delay and the goodput are the most relevant
indications. Especially request-response protocols like HTTP/1
and HTTP/2 suffer from head of line blocking (HOL) and gain
a large benefit from a quick error recovery. Our simulation
scenario consists of four hosts and two routers. The routers are
connected via a bottleneck link, having a capacity of 10 Mbit/s
and a RTT of 50 milliseconds. The hosts are connected to the
routers via lossless one Gbit/s links without a delay. To get
a reasonable amount of randomness, the UDP client sends a
small amount of random background traffic to the UDP server,
competing with the SCTP traffic on the bottleneck link. The
background traffic leads to a small amount of jitter and, if
congesting the bottleneck queue, to a small amount of packet
loss. The UDP client sends packets having a payload between
100 and 1000 bytes every 25 - 100 milliseconds.

A. Signaling Traffic

We started our evaluation by simulating a signaling connec-
tion. The client sends 100,000 SCTP messages at a constant
rate to the server, each message has a payload of 50 bytes. The
bottleneck link is configured to drop one percent of all packets.
We measured the time span between the initial transmission
and the retransmission of every lost packet, hereinafter referred
to as the recovery time. Each experiment has been repeated ten
times. Figure 2 shows the relation between the recovery time
and the send interval. A recovery time of 50 milliseconds is
near the theoretical lower limit of a single RTT. The lower the
sending rate becomes, the better the RACK algorithm performs
in comparison to the dupthresh mechanism. At a sending
interval of 50 milliseconds, the dupthresh algorithm takes more
than twice as long to trigger a retransmission, compared to the
RACK algorithm. Especially for signaling connections with
lower sending rates, RACK provides a huge benefit. In order
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Fig. 2. Recovery time in relation to the sending rate at 1% packet loss.

to analyze RACK’s robustness against packet reordering, we
configured the bottleneck link as a lossless connection only
facing packet reordering. We set the reordering probability
to five percent. The degree of reordering is represented by
an exponential distribution at ten milliseconds mean. This
means that five percent of all packets are delayed by ten
milliseconds mean. As shown in Figure 3, RACK provides a
much better robustness against spurious retransmissions. Even
for high degrees of reordering, RACK performs quite well
while the dupthresh algorithm spuriously retransmits every
second packet. At a send interval of 10 milliseconds and
100.000 transmitted packets, RACK spuriously retransmits 40
packets while the dupthresh algorithm retransmits 236. This
ratio increases for lower send intervals where RACK keeps
it at a low level while the dupthresh algorithm retransmits
about 3,300 packets. Since RACK performs better than the
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Fig. 3. Amount of spurious retransmissions in relation to the send interval.

dupthresh algorithm in both experiments, we evaluated a
combination of loss and reordering. We have configured the
bottleneck link at one percent packet loss and a probability
for packet reordering of one percent, having a reordering
degree of ten milliseconds mean. The reordering degree is
still represented by an exponential distribution. As shown in
Figure 4, a small degree of reordering makes no difference
for the dupthresh algorithm. Since the connection faces a
constant level of reordering, the RACK algorithm calculates
a reordering window of a single RTT and does not use its



dupthresh algorithm. This results in a recovery time of at least

two RTTs. We can summarize that in case of a low sending
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Fig. 4. Recovery time in relation to the send interval at one percent packet
loss and reordering.

rate or a high degree of reordering, RACK shows a clear
advantage over the dupthresh algorithm. If the sending rate
exceeds twelve packets per RTT and the connection does not
face any reordering, RACK shows no benefit since it also uses
a three strikes dupthresh algorithm.

B. Saturated connection

Our second scenario analyzes a bulk data transfer from
the client to the server, where the client sends full sized
frames at wire speed for 60 seconds. In case the connection
does not face any packet reordering, both algorithms utilize
the link and do not trigger any spurious retransmissions. We
increased the link’s rate of packet loss and observed a reduced
goodput for both algorithms, the results shown in Figure 5.
The numbers match our expectations of a similar performance
for both algorithms. Figure 6 shows the impact of packet
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Fig. 5. Goodput in relation to packet loss for a bulk transfer.

reordering on the goodput for a bulk transfer. The connection
does not face any loss but a fixed one percent probability of
reordering. We increased the mean value of the distribution and
measured the goodput. The graph shows the negative impact
of spurious retransmissions to the goodput for bandwidth
oriented transmissions. Due to RACK’s reordering window

mechanism, the goodput is up to two times higher compared
to the dupthresh mechanism. Figure 7 shows the impact to the
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Fig. 6. Goodput in relation to packet reordering degree at 1% probability.

goodput by applying a combination of reordering and loss.
We configured a static one percent probability of reordering.
The degree of reordering is modeled using an exponential
distribution with five milliseconds mean. We increased the
loss rate and observed a reduced goodput for both algorithms.
The measurements have shown a positive impact on signaling
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Fig. 7. Goodput in relation to packet loss and a static reordering degree.

traffic as well as on bulk data transfers for the SCTP protocol
under certain conditions.

V. MODIFICATIONS AND IMPROVEMENTS

Our evaluations also revealed some flaws and requirements
regarding the usage with SCTP. Therefore, we have made
some modifications and improvements which provide a better
performance in certain scenarios.

A. Burst Mitigation

The RACK algorithm tends to mark large blocks of payload
as lost, which is scheduled for retransmission. This behavior is
in particular caused by RACK’s modified dupthresh algorithm
and Tail Loss Probing (TLP). In case the tail of a transmission
is lost, the sender triggers a loss probe as described previously.
If the peer acknowledges the loss probe, RACK assumes all
previously sent but unacknowledged packets as lost. Even if



the loss event reduces the congestion window, the sender will
push a large burst of packets into the network because no
packets are assumed to be in flight anymore. Since bursts tend
to cause additional packet loss by overflowing router queues, a
burst mitigation mechanism is desireable. Cheng et al. suggest
implementing Proportional Rate Reduction (PRR) in order
to mitigate this issue. Since SCTP already includes a burst
mitigation algorithm, we have not implemented PRR in favor
of optimizing the builtin mechanism. First, we have evaluated
the impact of TLP caused bursts without a burst mitigation
technique. For this evaluation, we still used the same clien-
t/server scenario as described in the last section, having a ten
Mbit/s bottleneck and a 50 milliseconds RTT. The bottleneck
router is configured with a drop tail queue, providing a frame
capacity of ten packets for the SCTP and UDP connection.
The sender transmits 2,000 packets at a constant rate of one
packet per millisecond, each packet carries 1,000 bytes of
payload. The network drops a tail of 100 packets, affecting
DATA chunk TSNs 1,901 - 2,000. Figure 8 illustrates this tail

Fig. 8. Missing burst mitigation causes additional losses.

loss, magnified in the lower part. The loss begins at [t=6.9].
The lost packets are drawn in light grey. The TLP timer has
been armed at [t=7.0], right after the last segment has been
transmitted by the sender. Since the RTT is 50 milliseconds,
the sender has not detected any reordering, and more than a
single packet is in flight, the probing timer is armed to fire
after 102 milliseconds (2 * SRTT + 2 milliseconds artificial
delay). Since no new transmissions have been triggered and no
SACKs arrived, the timer fires at [t=7.1] and sends TSN 2,000
as a tail loss probe. 50 milliseconds later, the sender receives
a SACK from the receiver which acknowledges the TLP. The

sender now marks all outstanding packets in flight as lost and
schedules their retransmission. Since no burst mitigation is
applied, this leads to a burst of more than 70 packets only
limited by the congestion window. The burst is too large for the
bottleneck router queue, resulting in a large number of dropped
packets. As shown at [t=7.2], the first block of the burst
gets cumulatively acknowledged, but most of the subsequent
packets get lost. The RACK algorithm detects those losses
which leads to additional losses of the same pattern, see
[t=7,25] and [t=7.35]. In a next step, we applied SCTP’s
default burst limitation algorithm to the TLP mechanism. By
default, the algorithm limits the size of each burst to four
times the maximum transmission unit (MTU). As shown in
Figure 9 at [t=7.15], the sender bursts only four packets to the
network upon receiving the acknowledgement for the tail loss
probe. Since the receiver still has gaps in its TSN sequence
number space, every received packet gets acknowledged by
a separate SACK. Each of these received SACKSs trigger the
sender to transmit four additional data packets, resulting in 16
subsequent payload packets, as shown at [t=7.2]. As shown
in the magnified part, the 16 packets are not sent at once
but at the arrival speed of the SACKs. This behavior repeats
after another round trip at [t=7.25]. SCTP’s default burst
mitigation strategy still results in subsequent packet loss, albeit
at a lower level. While SCTP’s burst mitigation works well
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Fig. 9. Mitigated TLP burst due to SCTP burst mitigation, limit set to 4.

during normal operation, it behaves much more aggressive
during recovery. In normal operation, i.e. no gaps have been
detected, the receiver tends to acknowledge only every second
packet. A burst size of four then results in four new packets
for every two acknowledged packets. If the receiver detects a
gap in the sequence number space, every received packet is
acknowledged by a SACK chunk until the gap is filled. This
results in four new packets for every acknowledged packet.
We have evaluated multiple networking scenarios to optimize
SCTP’s burst mitigation during tail loss recovery. To illustrate
the issue, we are using the same bottleneck scenario, having
a tail loss of 100 packets. Considering full sized frames, this
is in the magnitude of a bandwidth-delay product of a 100
Mbit/s connection having a 10 milliseconds RTT. Figure 10
shows the required amount of retransmissions in relation to
the bottleneck queue capacity for multiple max burst values.
Even for larger queueing capacities, SCTP’s default burst limit



of four packets is too high. Due to the additional packet
loss, reducing the burst limit from four to three reduces the
recovery time by more than a half in case of a shallow buffer.
Considering these results, an optimal burst limit depends on
the network conditions, which make a static value unsuitable.
Therefore, we have developed an adaptive burst limit algorithm
to overcome this issue. Initially, SCTP’s default burst limit of
four MTUs is applied and kept during the first RTT. For all
subsequent transmissions during the tail loss recovery, the limit
is set to two MTUs per burst. This behavior is similar to the
slow start mechanism of congestion controls, having an initial
window of four and doubling the amount of in-flight data every
RTT. In case the sender detects subsequent packet loss during
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Fig. 10. Number of retransmissions to recover a tail loss of 100 packets in
relation to bottleneck capacity and max burst limit.

the recovery operation, the burst limit is reduced. If the loss
affects packets which have been retransmitted during the first
recovery round trip, the initial burst size is assumed as too
high and will be reduced by a single MTU until a minimum
of two MTUs. If the lost packets have been transmitted during
a subsequent round trip period, the increasing rate is too
high and will be reduced by 0.25 until a minimum of 1.25.
As soon as the sender has performed 16 tail loss recovery
operations without additional packet loss, the burst limit is
reset to its initial values [4/2]. This mechanism lets the sender
dynamically react to changing network conditions, especially
shallow bottleneck buffers.

B. Active RTT Measurement

Since RACK heavily relies on RTT values, precise and
actual RTT estimations are indispensable. The first RTT es-
timation is available right after finishing the four-way SCTP
handshake, but this estimation may not be very precise.
Especially signaling connections following a request/response
style traffic pattern may face long idle periods without trans-
missions. If the network conditions change in the meantime,
the RTT measurements can become invalid. If a connection
is idle, SCTP sends heartbeats periodically to monitor the
reachability of the peer. These heartbeats do not only ensure a
vital connection, they also provide a handy RTT measurement
mechanism. Additionally to the periodic heartbeats, an SCTP
peer can actively trigger RTT measurements by sending heart-
beat chunks. The receiver will instantly reflect the heartbeat

chunk, allowing an RTT measurement without transmitting
any payload. By default, an SCTP peer sends a heartbeat per
path every 30 seconds of being idle.

VI. CONCLUSION AND OUTLOOK

We have successfully adopted Google’s alternative loss
recovery mechanism for the SCTP protocol and improved
its mechanisms by utilizing the SCTP specific feature set.
To verify our adaptation and to evaluate our SCTP specific
improvements to the RACK algorithm, we implemented the
algorithm in the SCTP model of the OMNeT++/INET sim-
ulation framework. The RACK algorithm shows a significant
improvement over the dupthresh algorithm, especially for non-
saturated connections and in the event of tail loss. The benefits
are not limited to loss. RACK is also much more resilient
against packet reordering in the network. By utilizing SCTP
specific features, we were able to further improve the RACK
algorithm in common cases. Our future work will focus on
implementing RACK in the FreeBSD kernel stack and the
widely used user space SCTP library. Additionally, we are
considering if and how our improvements can be applied for
other protocols such as TCP.
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