
POSTER: Accelerating Encrypted Data Stores
Using Programmable Switches

Carson Kuzniar∗, Miguel Neves†, Israat Haque∗
Dalhousie University∗, UFRGS†

Abstract—This poster presents P4-EncKV, an in-network
proxy for accelerating encrypted data stores using recent pro-
grammable switches. P4-EncKV can perform operations over
encrypted data while reducing query latency and required
bandwidth. As proof-of-concept, we implement a prototype of
P4-EncKV using BMv2 software switch, and show it can speed-
up encrypted queries by 20-25% using basic caching operations.
Our optimized cache design also reduces memory consumption
by 18% compared to the state-of-the-art in-network caching
approach, thanks to a novel hash-based indexing scheme.

I. INTRODUCTION

Cloud computing has become ubiquitous due to its elasticity,
availability, and economies of scale (large cloud providers can
amortize operational costs among multiple tenants). However,
many organizations are still reluctant to use third-party clouds
because often their applications require computations over sen-
sitive data. A rich body of work has been devoted to enabling
cloud applications, and in particular databases (or data stores),
to work transparently on top of ciphertexts, e.g., by using
specialized encryption schemes [1] or trusted execution envi-
ronments [2]. Nevertheless, current approaches either exhibit
significant performance penalties or are limited in terms of
their operations. In common, most of them require routing
queries over a proxy responsible for performing ciphertext
operations (caching, summing or counting) without modifying
traditional database servers (e.g., MongoDB, PostgreSQL) [1],
as shown in Figure 1a.

In this poster, we propose to accelerate encrypted database
queries by leveraging new programmable switches. These
switches can provide flexible traffic processing up to multiple
Tbps and naturally sit between database servers and clients.
We explore their high-speed and flexibility to design an
in-network proxy for encrypted key-value stores, called P4-
EncKV (Figure 1b). Our system can speed-up queries (in
particular read queries) while saving bandwidth capacity and
preserving existing security properties, e.g., bounded informa-
tion leakage. In this preliminary effort, we describe how P4-
EncKV performs caching operations over encrypted data, and
leave a more detailed discussion on how to perform further
processing (e.g., homomorphic addition, oblivious access) as
future work.

Unlike previous in-network caching approaches [3], which
target plaintext key-value stores (though could be adapted
to encrypted ones with some engineering effort), we support

Switch

EncKV
proxy

Internet

Encrypted
data store

(a) Existing encrypted key-value stores.

Switch

P4-EncKV Internet

Encrypted
data store

(b) P4-EncKV

Figure 1: P4-EncKV is a re-design of encrypted data stores.

storing values at any granularity. Together with our novel hash-
based indexing scheme, the P4-EncKV design significantly
reduces the extent of fragmentation on the constrained switch
memory resources. We deploy a prototype of P4-EncKV on
BMv2 software switch [4] and demonstrate that it can accel-
erate encrypted database queries by 20-25% while reducing
memory usage by 18% compared to the state-of-the-art in-
network caching approach.

Related work. There have been many efforts exploiting
programmable switches to accelerate applications. Examples
include spoofed traffic filters [5], coordination services [6],
and plain text database queries [7], [8]. In contrast, we take
the first step toward accelerating encrypted applications (i.e.,
applications that do not require traffic to be decrypted at rest,
processing, or transport).

II. TOWARDS A NETWORK ACCELERATED ENCRYPTED
KEY-VALUE STORE

We deploy an in-network proxy (P4-EncKV) to accelerate
encrypted key-value stores. In this poster, we focus on describ-
ing how P4-EncKV performs encrypted caching operations.
Figure 2 shows our design. It uses a set of register arrays to
store variable-length values, and match-action tables to access
the appropriate index in each array to reconstruct the value
content. For example, the value associated with encrypted key
E(C) is the concatenation of blocks at indexes 2 and 0 (the
blue ones) in arrays 1 and 2, respectively. Unlike previous
work [3], we define register sizes in a power of 2 basis, which978-1-7281-6992-7/20/$31.00 c©2020 IEEE

action process_block(hash_code,
 pkt.key):
 if hash_code == 0:
 idx = hash_0(pkt.key)
 elif hash_code == 1:
 idx = hash_1(pkt.key)
 pkt.value += block[idx]

process_block(hmap[0], pkt.key)

blockmap[0] == 1Match

Action

0 1 2 3 4

0 1 2

0 1
Block 2

(4 bytes)

pkt.key==E(A)Match

Action blockmap=111
hmap=000

E(A)

E(A)

E(A)

E(B) E(C)

E(C)

Block 1
(2 bytes)

Block 0
(1 byte)

pkt.key==E(B)

blockmap=010
hmap=010

pkt.key==E(C)

blockmap=011
hmap=010

process_block(hmap[1], pkt.key)

blockmap[1] == 1Match

Action

process_block(hmap[2], pkt.key)

blockmap[2] == 1Match

Action

Figure 2: Encrypted key-value caching in the data plane.

allows us to serve values at any granularity. Moreover, a
hash-based indexing scheme enables us to have variable-length
arrays (i.e., arrays with different numbers of elements) and
thus save precious memory in the network device by reducing
fragmentation.

We use an additional lookup table to match the encrypted
key and generate two bitmaps (i.e., metadata). A block map
indicating the arrays containing blocks that are part of the
desired value and a hash map (hmap) that encodes a hash
function to find an index inside a given array. In this case, we
are neither limited to storing all blocks of a given value on the
same index, nor need a list of indexes to find the right position
for each array. Different hash functions can be used to avoid
collisions, and the length of the hash map is proportional to
the number of hash functions used.

III. PRELIMINARY RESULTS

We prototype P4-EncKV using the BMv2 software switch
[4]. The prototype extends NetCache implementation [3] by
adding a hash map for each encrypted key and adopting
variable-sized register blocks. We use Mininet (version 2.3.0)
and the ZeroDB encrypted database (version 0.98.0) [2] to
test our solution. ZeroDB enables clients to encrypt data and
their indexes before outsourcing both to an untrusted server.
This process ensures that the server never knows the content
of data objects or which objects belong to a given index. The
server stores indexes in an encrypted B-Tree that clients need
to traverse over a series of round trips to retrieve the requested
encrypted records (each round trip corresponds to the next
level in the B-Tree). We use P4-EncKV to cache ZeroDB
indexes, so on a cache hit the information is retrieved from the
switch instead of a complete round trip to the server. Because
all traffic passes through the switch, on a cache miss there is
no impact on performance.

Our experiments consider a database filled with 5K records
(random integer numbers), and we use a Python controller to
populate our key-value store with the most frequent indexes
(top levels of the B-Tree). Our results show that P4-EncKV can
achieve 20-25% improvements in the total number of round
trips for equality queries (Figure 3). In addition, P4-EncKV
reduces memory usage by 18% compared to NetCache (Table

 200

 400

 600

 800

 1000

 1200

10 20 30 40

N
u

m
b

er
 o

f
R

o
u

n
d

 T
ri

p
s

Number of queries

ZeroDB
ZeroDB + P4-EncKV

23.9%

24.6%

20.7%

21.6%

Figure 3: Total number of round trips when varying the number
of queries. Values on top show the percentage gains of P4-
EncKV relative to traditional ZeroDB.

P4-EncKV NetCache

Memory (Kbytes) 1.64 2.00

Table I: Switch resource usage to cache top layers of ZeroDB
index tree. Maximum size for cached values is set to 400 bytes.

I), as it minimizes the fragmentation issue originated from the
NetCache register indexing scheme.

IV. CONCLUSION AND FUTURE WORK

In this poster, we begin to explore the potential for pro-
grammable switches to speed up queries over encrypted data
stores. We propose P4-EncKV, an in-network proxy that can
reduce query latency and bandwidth while preserving existing
security properties. Our proof-of-concept prototype shows it
is possible to reduce query latency by 20-25% with simple
caching operations. As ongoing work, we are extending P4-
EncKV to support more complex operations such as oblivious
access and homomorphic encryption arithmetic. Future efforts
also include evaluating our system on hardware switches.

REFERENCES

[1] R. Poddar, T. Boelter, and R. A. Popa, “Arx: An encrypted database using
semantically secure encryption,” Proc. VLDB Endow., vol. 12, no. 11, p.
1664–1678, Jul. 2019.

[2] M. Egorov and M. Wilkison, “Zerodb white paper,” 2016.
[3] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,

“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the 26th Symposium on Operating Systems Principles, ser.
SOSP ’17, 2017, p. 121–136.

[4] P. L. Consortium, P4 Behavioral Model, 2015. [Online]. Available:
https://github.com/p4lang/behavioral-model

[5] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan, “Nethcf:
Enabling line-rate and adaptive spoofed ip traffic filtering,” in 2019 IEEE
27th International Conference on Network Protocols (ICNP), 2019, pp.
1–12.

[6] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“Netchain: Scale-free sub-rtt coordination,” in 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18), 2018, pp.
35–49.

[7] M. Tirmazi, R. Ben Basat, J. Gao, and M. Yu, “Cheetah: Accelerating
database queries with switch pruning,” in Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’20, 2020, p. 2407–2422.

[8] A. Lerner, R. Hussein, and P. Cudré-Mauroux, “The case for network
accelerated query processing,” in CIDR, 2019.

