
Poster: Application-Aware Load Migration
Protocols for Network Controllers

Sepehr Abbasi-Zadeh, MohmmadAmin Beiruti, Yashar Ganjali
Department of Computer Science, University of Toronto, Canada

{sepehr, beiruti, yganjali}@cs.toronto.edu

Zhenhua Hu
Huawei Research, Canada

zane.hu@huawei.com

Abstract—Load migration protocols have been used for load
balancing in network controllers. In this poster, we argue that
other network applications (e.g., power saving, network security,
failure recovery, etc.) have properties that might require different
load migration protocols. We introduce four new load migration
protocols and show how they might match different application
requirements better. We present preliminary experimental results
for one of these protocols that show more than 20% − 30%
speedup in the total load migration time.

I. INTRODUCTION

Decoupling control and data planes has led to agile and flex-
ible network control and management solutions in Software-
Defined Networking (SDN). Various distributed control plat-
forms (e.g., [1]) are introduced in the last few years to address
well-known reliability and scalability issues associated with
physically centralized network controllers.
Load Migration in SDN Controllers. A direct consequence
of moving towards distributed controllers is the need for
distributing network control load amongst different controller
instances. This is usually achieved by migrating the controller
load as the network traffic and conditions change.

Load balancing in distributed systems is a classic problem,
and has also been studied in the context of SDN controllers
(e.g., [2], [3]). The solutions in this domain, mainly focus
on efficient protocols for moving the load away from highly
loaded controller instances towards lightly loaded instances.
These solutions exchange the master and slave controller
instances associated with a given switch, which results in
shifting the load away from the initial master controller
and towards the final master (or the initial slave controller
associated with the switch). More specifically, let us consider
a switch S with a master controller instance C1, and a slave
controller instance C2. If the load of C1 is higher than C2, we
can exchange the role of master and slave controller instances,
turning C1 into a slave, and C2 to the master. Since slave
mode controller instances do not receive and respond to all
messages from S, this will result in a load reduction in C1

(and an increased load in C2).
Other Applications for Controller Load Migration. Load
balancing is an important network control application, but it is
not the only application that requires shifting controller load.
Many control applications—such as power saving, network
security, failure recovery, network monitoring, and controller

updates—require load migration as a building block. Each of
these applications, however, has a different set of requirements
when it comes to switch migration compared to load balanc-
ing. For example, power saving requires shifting traffic away
from lightly loaded controller instances, so that we can turn
off these instances and save power. This is the opposite of
what load balancing solutions try to do. Or, for faster failure
recovery, network operators may decide to bring up several
controller instances in equal mode, ready to serve when a given
master fails.
New Protocols. In this poster, we argue that exchanging
master and slave controller instances of a given switch are
not sufficient, and we need other protocols that match other
network control applications. In particular, we propose four
new protocols (in addition to the existing master and slave
exchange protocol) for switch migration that we believe cover
a range of network applications.

As a proof of concept, we simulate a migration scenario
under various load settings for one of these protocols and show
how this application-based view of migration protocols can
outperform existing solutions.

II. NEW PROTOCOLS

In this section we introduce four different migration proto-
cols as well as some of their potential use cases. We note
that all these protocols satisfy the five required properties
of liveness, serializability, safety, consistency, and failure
resiliency as described in [3]. Due to space limitations, we
only present the full specifications of the first two protocols
and leave the others for the final poster.

• Protocol 1: initial master controller demotes itself to
equal mode and another controller in slave mode changes
its role to master (Figure 1). This scenario does not
change the load of the master but leads to a new equal
mode controller instance. It can be used for resource
optimization, and can be used to enhance the resiliency
of the control plane to failures.

• Protocol 2: symmetric role exchange between an equal
mode controller and another controller in slave mode
(Figure 2). In other words, initial equal controller changes
to slave mode, and another slave controller turns to
equal mode. Since the master controller instance is not
touched, we can use this protocol to shift traffic away978-1-7281-6992-7/20/$31.00 ©2020 IEEE

Fig. 1. Protocol 1: a master controller demotes to an equal and another slave
controller becomes the master.

from one controller instance to another without impacting
the normal operation of the switch.

• Protocol 3: initial master controller changes its role to
slave and another equal controller takes the responsibility
of master role. This is a perfect building block for quick
shifting of the load away from the master. Since we turn
an equal mode controller into master, which is relatively
fast, the network can resume its normal operation faster.

• Protocol 4: initial master controller downgrades itself
to equal mode and another controller in equal mode
becomes master. This does not have a major impact on
load balance, but can be very helpful when we need to
update controllers, deal with failures quickly, or even
security applications.

To illustrate the need for and the applications of these new
protocols, let us consider two switches S1 and S2, as well as
two controller instances C1 and C2. We assume C1 and C2

are in equal and slave mode for switch S1, and in master and
slave mode for S2. If our goal is to reduce the load on C1,
we can use traditional load migration protocols that change
the master and slave associated with S2 (i.e. C1 will become
a new slave, and C2 will be the new master for S2). However,
that would lead to interruptions in network operations as the
master controller will be paused during the handover process.

Alternatively, we can achieve the same goal of reducing the
load on C1 by switching C1 to an slave for S1 and turning
C2 to an equal. This will not lead to any interruptions as the
master for S1 remains operational. This is the main advantage
of Protocol 2 (illustrated in Figure 2) over previously known
load migration protocols.

III. EXPERIMENTS

In this section, we simulate the scenario described in the
previous section to compare the performance of our new
proposed protocol with existing protocols ERC [3] and 4-
phase [2]. We measure the handover time from the time
that the start signal is issued, until the time that the initial
slave is ready to start processing messages buffered during
migration. Since none of the previous protocols can handle the
required role change directly, we make some modifications to

Fig. 2. Protocol 2: a slave controller takes the responsibilities from an equal
controller, and this equal controller turns to its slave mode.

provide an apple-to-apple comparison of the protocols. For
the ERC protocol, we can simply interchange the “initial
master” (source controller) role with an equal in the protocol’s
description. However, for the “final master” in that protocol
description, the only required change is to send “equal”
ROLE_REQUEST rather than “master” request. For the 4-
phase protocol, we make similar role changes in its fourth
phase, and completely ignore the first phase.

The simulation environment is implemented using Mininet
and we use D-ITG as our traffic generator. We assume that
each switch generates the same amount of load, and vary the
load on C1 by increasing the number of switches associated
with it (denoted by n), from 10 to 50 switches. There is always
a single switch connected to C2. We repeat each experiment
20 times and report the average running time of each setting.

Fig. 3. Running-time comparison of migration protocols under different loads.

As expected, by increasing the load on C1, we see an
increase in the total running time of all the protocols. Having
said that, the newly proposed protocol consistently outper-
forms the 4-phase and ERC protocols by an average of 20%
and 31%, respectively, with higher improvements at higher
loads.

REFERENCES

[1] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, and W. Snow, “ONOS: towards
an open, distributed SDN OS,” in Proceedings of the third workshop on
Hot topics in software defined networking. New York, NY, USA: ACM,
2014, pp. 1–6.

[2] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
“ElastiCon; an elastic distributed SDN controller,” in 2014 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). New York, NY, USA: IEEE, 2014, pp. 17–27.

[3] M. A. Beiruti and Y. Ganjali, “Load migration in distributed sdn
controllers,” in NOMS 2020-2020 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2020, pp. 1–9.

