
Poster: Fast Scheduling for Load Migration in
Distributed Network Controllers

Sepehr Abbasi-Zadeh, MohmmadAmin Beiruti, Yashar Ganjali
Department of Computer Science, University of Toronto, Canada

{sepehr, beiruti, yganjali}@cs.toronto.edu

Zhenhua Hu
Huawei Research, Canada

zane.hu@huawei.com

Abstract—As network traffic and conditions change, the load
on different instances of control plane changes. To ensure various
control applications can operate continuously and efficiently, we
need to migrate the load among controller instances. For this, we
need a migration schedule that minimizes the overall migration
time while ensuring the quality of service and controller resource
constraints. In this poster, we show this problem is NP-hard, and
show how a heuristic algorithm performs close to the best existing
solution with orders of magnitude reduction in scheduling time.

I. INTRODUCTION

The performance of a distributed software-defined network
controller is a function of how its load is distributed among
various controller instances. With rapidly changing traffic and
network conditions, we need internal mechanisms to adjust
the load and shift it inside the control plane. Typically, load
migration is performed by changing the master controller
associated with a given switch, thus shifting the traffic away
from the original master, and towards the new master [1], [2].

Unfortunately, even if we assume we know the desired load
distribution for a given network1, we cannot simply shift the
load associated with controller instances by migrating switches
all in parallel. Load migration requires careful scheduling
for two reasons: First, switch migration protocols require
significant processing and memory resources. Migrating many
switches away from or towards a given controller instance can
lead to significant performance reduction in that instance, and
consequently degrade the performance of the entire control
plane. For that reason, we need to respect controller resource
constraints during migration.

Second, during the handover process of a given switch
between two controller instances, there is a short time period
that the control plane pauses processing events related to
that particular switch. These messages are processed after the
handover is complete. In the absence of any coordination and
switch migration scheduling, network services will experience
interruptions that impact the QoS provided to end users. We
call these the QoS constraints.

The load migration problem in the context of SDN con-
trollers has been studied by Beiruti and Ganjali [3] before.
They model the problem as an Integer Linear Programming
(ILP) problem, taking controller resource and QoS constraints

1This can be as simple as distributing load evenly among controller in-
stances, or a more complex function of network load, and network application
requirements.

as input, and generating a schedule with the minimum number
of rounds.

In this poster, we provide a heuristic algorithm for load
migration scheduling. We formulate our problem as a Vector
Bin Packing (VBP) instance, and use fast greedy algorithms to
solve the problem. From the theoretical point of view, we show
that this optimization problem is NP-Hard, and also show the
approximation factor of our solution.

Our experiments show that VBP provides schedules that
are very close to ILP in terms of the number of rounds. In
particular, in 95% of our experiments, VBP and ILP lead to
the same number of rounds, and there is only a difference of
one round between the two in the remaining cases. On the
other hand, VBP has a superior run-time, finishing in only
a few milliseconds, while ILP taking several hours in some
situations (and growing exponentially).

II. PROBLEM FORMULATION

Let us assume that a set of k migrations are planned
as M = {m1,m2, . . . ,mk}. Each migration mi can be
described by a tuple (swi, srci, dsti, wi, Gi), where the first
three components show the switch to be migrated, the switch’s
current controller, and its destination controller, respectively.
The fourth component, i.e., wi, is the assigned weight for
this migration, and it implies the imposed load (e.g., memory
or computational capacity requirements) of the migration
protocol on controller instances2. Finally, Gi is a subset of
G = {g1, g2, . . . , g`}, where each member of G represents a
QoS group in our network. In other words, Gi contains all
the service groups for which switch swi is providing a QoS
guarantee.

As discussed before, we cannot run all migrations in a single
round due to two main constraints. First, every controller
instance cj has resource limitations of aj , which caps the sum
of the weight of simultaneous migrations that the controller
instance can handle. For a set of controllers C, we define the
set Ca as the controller resource constraints.

Similarly, for each QoS group g ∈ G, there is a bound αg
that limits the weight of concurrent migrations in this group.
We refer to the set of αg values as Gα. Now, we are ready to
define the migration problem.

Problem 1: Let G be the set of all QoS groups, and let
Gα be their corresponding QoS constraints. Further, let C be

2We note that this parameter can be a multidimensional weight vector to
capture different resource constraints separately.978-1-7281-6992-7/20/$31.00 ©2020 IEEE

the set of all controllers (as well as their corresponding Ca)
involved in a given set of migrations S = {m1,m2, . . . ,mk}.
Find the minimum integer value R ≤ |S| = k such that there
exists a partitioning of S into R partitions S1, . . . , SR that
does not violate the following constraints:

- Controller constraints:
∀i ∈ [R], ∀cj ∈ C

∑
{m∈Si|srcm=cj∨dstm=cj}

wm ≤ aj .

- QoS constraints:
∀i ∈ [R], ∀g ∈ G

∑
{m∈Si|g∈Gm}

wm ≤ αg.

III. PROPOSED SOLUTION

In this section, we first show that migration scheduling
problem is an NP-Hard problem. Then, we propose a formu-
lation of the problem that enables us to solve the migration
scheduling problem efficiently using a fast heuristic algorithm.
In the following section, we show this algorithms runs orders
of magnitude faster than existing solution with similar results.
Complexity. The first question that we are interested in, is the
complexity of our problem on hand. By a way of reduction,
we can show that any instance of the Bin Packing problem
can be cast as a migration scheduling problem, and therefore,
as the Bin Packing problem is known to be NP-Hard, the
migration scheduling problem is also inherently NP-Hard. For
this reduction we relax the QoS constraints in our formulation
and view each item of the Bin Packing problem as a migration
from a dummy controller to another controller instance. Any
solution to the migration scheduling problem results in a
solution to the original Bin Packing problem.
New Solution. As mentioned earlier, each migration mi can
be described as a tuple (swi, srci, dsti, wi, Gi). For each
mi, we assign a migration vector of length |C| + |G|. Each
component of this vector either represents a controller in C,
or a QoS group in G. We set all the elements of this vector
to 0, except the fields that correspond to srci, dsti, and all
the QoS groups that belong to Gi. For these elements, we
simply use the weight wi (or in a more general form, if
wi is a vector, we decompose it to single elements and fill
the appropriate resource elements in the migration vector).
Similarly, we construct a constraint vector representing the
available resources. With these two main sets of vectors, we
can simply run the FIRSTFIT algorithm to obtain the final
schedule of the migrations, as explained next.

The FIRSTFIT algorithm (which we refer to as GREEDY as
well) is one of the classic solutions for the Vector Bin Packing
(VBP) problem and it works as follows. Initially, we allocate
a free bin and iterate over the set of all items in an arbitrary
order. For each item, we go through the list of existing bins,
and add the item to the first bin that can fit. If the item does
not fit in any of the existing bins, we create a new bin for this
item, and continue with the next item in the list.

As a generalization of the normal Bin Packing, VBP is
harder, and in fact it is APX-Hard even for the case d = 2.
Interestingly, the FIRSTFIT algorithm is known to produce
a (|C| + |G| + 1)-approximation for the problem, i.e., the
total number of the rounds (or bins in the Bin Packing
terminology) that this algorithm produces is not larger than

Fig. 1. Comparison of the migration scheduling time.

(|C| + |G| + 1) × OPT , where OPT is the optimal number
of the required rounds.

This approximation factor is the best we have achieved
for the current VBP formulation of our scheduling problem.
An interesting problem is to determine whether there are
any simplifying/system-specific assumptions that make our
problem simpler than the general VBP problem. We might
be able to achieve better approximation algorithms for our
migration scheduling problem in that case. We leave this as a
future work.

IV. EXPERIMENTS

To evaluate our new approach, we use the ILP solution pre-
sented in [3] as the baseline. We generate 100 sets of random
migration plans, each consisting of 30 switch migrations. We
assume that there are 5 destination controllers and 20 QoS
groups in total in our system. For each switch migration, we
randomly choose its destination controller as well as a subset
of size d from the QoS groups, where d ∼ N (6, 6). The
other weights and limitations are also chosen randomly from
proper normal distributions with the constraint that none of
the weights can surpass the resource limitations.

We measure the run-time of the scheduling algorithm, and
the number of rounds generated by the algorithm as our evalu-
ation metrics. Interestingly, the performance of our solution is
similar to ILP, i.e., it generates schedules that match the ILP
solution 95% of the time. For the remaining experiments, our
solution is off by only 1 round.

Figure 1 shows the running time of the ILP solution (left)
and our GREEDY VBP solution (right) in logarithmic scale
as the number of migrations changes from 10 to 30. We also
set a timeout as ILP solution sometimes take hours to finish,
especially as the number of migrations grows. Throughout the
experiments, our solution finishes in a few milliseconds and
the growth seems to be linear with the number of migrations.

REFERENCES

[1] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
“ElastiCon; an elastic distributed SDN controller,” in 2014 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). New York, NY, USA: IEEE, 2014, pp. 17–27.

[2] M. A. Beiruti and Y. Ganjali, “Load migration in distributed sdn
controllers,” in NOMS 2020-2020 IEEE/IFIP Network Operations and
Management Symposium. IEEE, 2020, pp. 1–9.

[3] ——, “Migration scheduling in distributed sdn controllers,” in 2019 IEEE
27th International Conference on Network Protocols (ICNP). IEEE,
2019, pp. 1–2.

