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Abstract—This paper proposes Adaptive Batch Sizing (ABS)
for online federated learning. ABS is an iteration process-efficient
solution that adaptively adjusts batch size of the training process
at edge nodes. Preliminary results show that ABS maintains
training efficiency and accuracy, compared with existing iteration
round-efficient solutions.

I. INTRODUCTION

Federated Learning (FL) is a machine learning paradigm
that employs distributed devices to assist machine learning
training tasks. It outperforms cloud-based centralized machine
learning by saving precious bandwidth resource among user
devices and the cloud and protecting user privacy [1]. Parame-
ter Server (PS) [2], which consists of workers and servers, is a
popular structure for FL. During individual training iteration,
each worker retrieves its collected training data, trains machine
learning model using parameters received from servers, and
returns its updated gradients to servers. Each server updates
the global model based on the gradients received from different
workers and forwards the updated model to workers for next
round training. In FL, workers are usually distributed edge
nodes while servers reside in the cloud.

Existing FL solutions (e.g., FederatedAveraging [1]) are
usually iteration round-efficient solutions, which aim to reduce
the round of training iterations by forcing each worker to use
all data at each training iteration. These FL studies implicitly
assume that the training data is collected offline, and each
worker uses its assigned data for its training. However, in
real world, the data are generated and collected from user
devices in a real-time manner, and the volume and distri-
bution of data in each worker exhibit temporal and spatial
fluctuations [3]. We call the FL using real-time generated data
the online federated learning. For online federated learning,
existing solutions suffer from two issues: (1) the fluctuation of
training data batch size led by the varying data receiving rate;
(2) heterogeneous iteration processing time among workers,
resulting in low utilization of the computing resource.

In this paper, we propose Adaptive Batch Sizing (ABS), an
iteration process-efficient solution for online federated learn-
ing to achieve high training efficiency and fast convergence
under severe data fluctuations. Based on our observation,
ABS chooses the training data size of each worker adaptively
considering three key factors: processing rate, training model,
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Figure 1. Comparison of iteration round-efficient solution and iteration
process-efficient solution. In the iteration round-efficient solution, waiting
for the slow worker’s parameter transmission slows down the whole training
process. Iteration process-efficient solution stores part of the data in the buffer,
and the training process does not decrease the process efficiency.

and training data generation speed. Additionally, ABS also
stores or retrieves training data from a training data buffer in
each worker based on network conditions. Thus, the fluctuation
of the training batch size can be avoided, and the training
process is accelerated.

Figure 1 uses an example of an individual training iteration
to illustrate the differences between existing iteration round-
efficient solutions and ABS in online federated learning. In
the example, the FL consists of three workers and one server.
Each worker receives 4 normalized units of training data, and
the normalized data processing rate of workers A, B, and C
are 3, 2, and 1 units per iteration, respectively. In Figure 1(a),
worker C processes more slowly than the other two workers,
and the server has to wait for the result of worker C before
updating its global model. In Figure 1(b), ABS considers the
processing rate to configure the batch size of workers A, B,
and C to 3, 2, and 1, respectively. Thus, three workers can
complete training at the same time, and the training efficiency
is improved.

Preliminary simulation results show that ABS outperforms
existing iteration round-efficient solutions. Under the same
number of training iterations, ABS achieves good training
accuracy and reduces training loss by about 20%; ABS ac-
celerates the training process by about 30% when reaching
the similar training accuracy and loss.

II. SYSTEM DESIGN

A. Observation

Training batch sizing is an important factor for training
process. We conducted several experiments using CNN and
CIFAR10 to evaluate the impact of different batch sizes on
training loss and accuracy. Figure 2 shows the results. In
Figure 2(a) and (b), increasing the batch size can accelerate978-1-7281-6992-7/20/$31.00 ©2020 IEEE



(a) Training loss in the case of in-
creased batch size.

(b) Accuracy in the case of increased
batch size.

(c) Training loss in the case of de-
creased batch size.

(d) Accuracy in the case of de-
creased batch size.

Figure 2. Impact of training batch sizing on training loss and accuracy. Case
1 uses a fixed batch size of 32, and Cases 2 and 3 respectively increase
the batch size from 32 to 64 and 128 at the inflection point. In Case 4, we
maintain the batch size at 128, and in Cases 5 and 6, we decrease the batch
size from 128 to 64 and 32, respectively, at the inflection point.

the training process. In contrast, Figure 2(c) and (d) show that
the decrease of the batch size can slow down the training. Note
that the extreme small batch size will have a serious negative
effect and lead to a long training process duration.

B. System Design

Figure 3 shows the structure of ABS, which includes two
phases: warm-up phase and processing phase. The warm-up
phase includes the component of Batch size bound decision.
The component decides the upper and lower bound of the
batch size based on warm-up experiments. The server sets a
default iteration duration and then decides the lower and upper
bound of batch size in this duration. The upper bound ensures
that the maximum iteration duration can fall in a certain
range. Specifically, we set an iteration duration at first. In
each worker, the maximum batch size, which can be processed
within this duration, will be set as the upper bound. We set
the lower bound to maintain high utilization of the training
data. We first collect a certain amount of training data and
then train the model with different batch sizes on the training
data within one iteration. The batch size with the best training
result will be set as the lower bound.

The processing phase consists of three components. (1)
Training data selection: To prevent frequent batch size
fluctuations, workers choose only C% of the data in the buffer
during each iteration. A smaller C% results in shorter iteration
duration while a large C reduces iteration rounds. (2) Batch
size selection: This component ensures the size of selected
data falls in the range of lower bound and upper bound, which
are determined during the warm-up phase. (3) Batch size
bound update: To avoid the training performance degradation
resulted from data fluctuation, workers check the batch size in
the past K iterations. If the batch size is larger than the lower
bound consecutively, the lower bound should be increased at
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Figure 3. ABS structure.
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Figure 4. Simulation results.

the end of this iteration. A small K will cause the upper
and lower bound to overlap rapidly and reduce the source
utilization while a large K will fail to alleviate the fluctuate
of the batch size.

III. EVALUATION

In our evaluation, we use CIFAR10 as the training dataset
and Resnet18 as the training model. Our PS structure consists
of one server and two workers with different processing rates.
We use a traffic dataset with 36 files from Kaggle [4]. Each file
records the traffic used for time series traffic flow prediction.
We use two files as the amount of training data received by
two workers. To simulate varying data receiving rates, each
worker reads a data amount from its file every 0.06 second
and puts the training data, which is generated by randomly
selecting the corresponding amount of data from CIFAR10, in
the buffer. We set C to 1 and K to 120. We adjust the last
full connection layer to fit the dataset. FederatedAveraging is
the typical iteration round-efficient solution. We compare ABS
with FederatedAveraging, in which each worker’s training
batch size is the size of all the data on it. In this experiment,
we assume no network congestion occurs, and each node can
complete data transmission within 0.1 second. Figure 4 shows
the result. In this figure, ABS outperforms FederatedAveraging
in terms of training efficiency and performance. In other
words, data fluctuation has a relatively slight impact on the
training process of ABS.

IV. CONCLUSION AND FUTURE WORK
In this paper, we propose ABS to maintain training ef-

ficiency and performance for edge-assisted online federated
learning. In future, we will consider other factors (e.g., trans-
mission delay, training data collection) to improve our design.
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