
Poster: Novel Opportunities in Design of Efficient
Deep Packet Inspection Engines

Anton Chekashev
ITMO University

Vitalii Demianiuk
Ariel University

Kirill Kogan
Ariel University

Abstract—Deep Packet Inspection (DPI) is an essential building
block implementing various services on data plane [5]. Usually,
DPI engines are centered around efficient implementation of reg-
ular expressions both from the required memory and lookup time
perspectives. In this paper, we explore and generalize original
approaches used for packet classifiers [7] to regular expressions.
Our preliminary results establish a promising direction for the
efficient implementation of DPI engines.

I. INTRODUCTION AND MOTIVATION

Deep packet inspection (DPI) is a fundamental infrastruc-
ture in security network services detecting pathological traffic
patterns in the network. DPI for network security combines
early IDS (intrusion detection system) and latter IPS (intrusion
prevention system). IDS detects threats and triggers alerts.
IPS takes measurements to prevent possible threats (e.g., by
terminating suspicious connections). Snort [11] is widely used
open-source IDS and IPS, Bro [6] is widely used open-
source IDS. An additional application of DPI is data loss
prevention (DLP) [2] focusing on sensitive data leaving an
intranet. Also there are other applications of DPI as bandwidth
management [3], copyright enforcement [9], etc. The central
part of DPI engines is an implementation of the lookup
mechanism finding a matched pattern for incoming traffic.
Usually, patterns in DPI are represented by regular expressions
whose efficiency should be deterministic and independent of
traffic arrivals; otherwise, performance gap can be used for
DDOS attacks [1]. For instance, Bro [6] and Snort [11] are
both vulnerable to this kind of attacks [8]. Hence, lookup in
DPI engines should be implemented at line rate.

One possible representation of looked up patterns is a com-
bined deterministic finite automaton (DFA) of multiple regular
expressions representing pathological patterns. In this case,
to find matched regular expressions, it is sufficient to make
one traversal over a looked-up input string. Unfortunately,
such representations can be infeasible since the size of such
combined DFA can be exponential on the total number of
represented regular expressions. To reduce memory require-
ments for representations of regular expressions, one can
consider usage of non-deterministic automatons (NFA) since
the number of states in a representing NFA is proportional to
the sum of lengths of all given regular expressions. In this
case, during a lookup, we have to maintain a set of all active
states that can be reached by the current prefix of a looked-up
input string; during character processing, we should apply state
transitions for all these active states. Hence, the lookup time

heavily depends on the number of all active states, which in the
worst case can be equal to the number of states in the whole
representing NFA that make representations based on NFAs
also infeasible. To address limitations of representations based
on DFAs and NFAs, [4] proposed a Hybrid-FA representation
combining advantages of both DFA and NFA reprsentations.
Unfortunately, the number of active states can be still big
even for Hybrid-FAs that can be a reason for significant
perfomance degradation of the lookup time. Moreover [1]
introduced algorithmic complexity attacks on Hybrid-FA.

II. PROPOSED SOLUTION

Design principles of DPI engines that mitigate lookup time
and required memory is still an intriguing open problem. We
explore novel representations of multiple regular expressions
addressing a fundamental tradeoff between required memory
and lookup time. Based on these principals, someone can
develop DPI engines with the following characteristics:

• High-speed processing. An incoming string is looked up
into a constant number of DFAs that guarantees efficient
lookup time both in average and worst cases since each
match to DFA is a single traversal along an input string.

• Low-memory cost. All constructed DFAs will consist
of a small number of states confirming feasibility of the
proposed representation supporting scalable number of
pathological patterns.

There are two types of regular expressions representing
pathological patterns. The regular expressions of the first
type check if an input string s matches represented patterns;
expressions of the second type check if s has a substring
matching a represented pattern. In this paper, we are mostly
focusing on the first type of regular expressions; in real
scenarios, they correspond to small DFAs. The major problem
is how to support a big number of such patterns in small
memory and with moderate lookup time.

In DPI engines (like Snort [11]) most regular expressions
of the first type are value-disjoint, i.e cannot match the same
input string. We exploit this property and design efficient
DPI engines based on the proposed below design principles.
Actually, we generalize the original ideas that we used in
our SIGCOMM paper [7] to represent value-disjoint packet
classifiers. In this case, we can split processing into two
consecutive stages: (1) find a “potentially” matched regular
expression r representing a single pathological pattern; (2)
perform a false-positive check verifying if a found r matches
an incoming input string.978-1-7281-6992-7/20/$31.00 ©2020 IEEE

s1

Ac 1

Ac 2

a

b c a
b

d

b

d
d

s1

Ac 1

Ac 2

c

d

a

b

(a) combined incomplete DFA (b) combined seDFA
Fig. 1. Combined representations of the two regular expressions: ˆabca and
ˆab*d; AC 1 is a terminal state for ˆabca, AC 2 is a terminal state for ˆab*d.

Algorithm 1 STATESHRINK(R)
Input: a set of regular expressions R
Output: seDFA D representing R

1: N ← a set of all NFAs representing regular expression in R
2: combine all NFAs in N into a single incomplete DFA D
3: for every state s ∈ D do
4: if only one terminal t ∈ D is reacheable from s then
5: remove all transitions outgoing from s
6: shrink s and t
7: repeat
8: was merge = False
9: for every pair of states u, v ∈ D,u 6= v do

10: if every pair of transitions outgoing from u and v by the
same symbol lead to the same state then

11: shrink u and v
12: was merge = True
13: until was merge = False

To implement the first phase, we introduce a notion of a
semi-equivalent automaton (seDFA) which is an incomplete
DFA1 with the following properties: (1) each represented
regular expression has a separate terminal state in seDFA; (2)
if an input string s is matched by a regular expression x, s
leads to the terminal state corresponding to x in seDFA. If
an input string s is not matched by any represented regular
expression, the lookup result of s in D can be anything. To
find a matching regular expression for an input string s, we
need to lookup s in seDFA followed by the false-positive check
with the regular expression corresponding to the terminal state
in seDFA matching s. The false-positive check can be imple-
mented by DFA, NFA or any other representation satisfying
memory and lookup time constraints. Due to value-disjointness
only a single pattern can be matched false-positively and this
is a reason why an additional lookup will be required to verify
this single matched pattern.

In practice, the size of seDFA is significantly smaller than
the size of the corresponding combined incomplete DFA. The
intuition behind this that a lot of space is required to guarantee
correct results for unmatched strings. For instance, in Figure 1,
the number of states in seDFA is smaller than the number
of states in the combined incomplete DFA by 4 states since
existence of c or d in an input string is sufficient to determine
the regular expression for a false-positive check.

Problem 1. For a given set of regular expressions, construct
seDFA minimizing the number of states in seDFA.

The main idea of seDFA representations is similar to the

1A DFA D is incomplete if for some states and symbols corresponding
transitions may be undefined. If during lookup in D, there is no transition for
a current symbol of an input string, the lookup terminates.

0 100 200 300 400 500
0

1

2

3

4

5
·104

No. of rules

N
o.

of
st

at
es DFA

seDFA

Fig. 2. The number of states in the combined representation as a function of
the number of represented order-independent regular expressions.

representations proposed in [7]. However, minimizing the sizes
of these representations are completely different problems:
[7] finds subsets of classification fields preserving order inde-
pendence, and we construct seDFA. In the preliminary study,
we propose STATESHRINK heuristic solving Problem 1 (see
Algorithm 1). First, STATESHRINK combines all NFAs repre-
senting given regular expressions into a common incomplete
DFA D using the powerset construction [10] (line 2). Then,
STATESHRINK shrinks every non-terminal state s into terminal
t if t is a unique terminal in D that is reachable from s (lines
4-9). Finally, STATESHRINK iteratively shrinks pairs of states
in D while possible as shown in lines 10-18 of Algorithm 1.

Theorem 1. STATESHRINK constructs a valid seDFA.

Even such simple heuristics construct efficient seDFA for
real-world regular expressions from a Snort database: in Fig-
ure 2, the number of states in seDFA representing 500 value-
disjoint rules is 5 time smaller than the number of states
in the corresponding combined DFA. In the future study,
we propose more efficient heuristics constructing combined
seDFA and semi-equivalent representations in the case when
not all regular expressions are value-disjoint.

Acknowledgments: This work was supported by the Ariel
Cyber Innovation Center in conjunction with the Israel Na-
tional Cyber directorate in the Prime Minister’s Office.

REFERENCES

[1] Y. Afek, A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral. Making
dpi engines resilient to algorithmic complexity attacks. IEEE/ACM
Transactions on Networking, 24(6):3262–3275, December 2016.

[2] S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy. A survey on
data leakage prevention systems. J. Netw. Comput. Appl., 62(C):137–
152, Feb. 2016.

[3] H. Asghari, M. Eeten, J. Bauer, and M. Mueller. Deep packet inspection:
Effects of regulation on its deployment by internet providers. SSRN
Electronic Journal, 01 2013.

[4] M. Becchi and P. Crowley. A hybrid finite automaton for practical deep
packet inspection. In CoNEXT, pages 1:1–1:12, 2007.

[5] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral. Deep packet
inspection as a service. CoNEXT ’14, page 271–282, 2014.

[6] The Bro network security monitor. http://www.bro.org.
[7] K. Kogan, S. I. Nikolenko, O. Rottenstreich, W. Culhane, and P. T.

Eugster. Exploiting order independence for scalable and expressive
packet classification. Trans. Networking, 24(2):1251–1264, 2016.

[8] W. Lee, J. B. D. Cabrera, A. Thomas, N. Balwalli, S. Saluja, and
Y. Zhang. Performance adaptation in real-time intrusion detection
systems. In Recent Advances in Intrusion Detection, 2002.

[9] M. Mueller, A. Kuehn, and S. Santoso. Policing the network: Using dpi
for copyright enforcement. Surveillance & Society, 9, 06 2012.

[10] M. O. Rabin and D. S. Scott. Finite automata and their decision
problems. IBM J. Res. Dev., 3(2):114–125, 1959.

[11] Snort: The open source network intrusion detection system.
http://www.snort.org.

