Poster: Prototype of Configurable Redfish Query
Proxy Module

Chanyoung Park’, Yoonsue Joe, Myounghwan Yoo!, Dongeun Lee®, Kyungtae Kang®
YHanyang University, *XSLAB Inc., $Texas A&M University-Commerce
{chanyoung, suejoe, ktkang} @hanyang.ac.kr, yoo@xslab.co.kr, dongeun.lee @tamuc.edu

Abstract—Redfish is a next-generation API standard for the
management of data center infrastructures. This rich API can
flexibly obtain data using a query string from the client side.
However, this feature is optional and not fully supported by
many services. We implemented a prototype Redfish query
processing module on Nginx, a well-known open source web
server. The Redfish query processing module can run with a
proxy module and work with any server-side or client-side
applications. Additionally, our prototype implementation can be
configured to properly utilize queries, which are supported on a
backend server, and improve performance. Our implementation
was evaluated on an OpenBMC server and a mockup server and
showed potential for performance improvement.

Index Terms—redfish, query, proxy, bmc

I. INTRODUCTION

Distributed Management Task Force (DMTF)’s Redfish is a
standard API that has over 2000 properties and is built using
building blocks that are widely used in modern web services
designed to manage modern data centers. The specification
also includes optional but useful features, such as standardized
client-side queries [1].

Despite its usefulness, the query feature is not well sup-
ported by many services. The feature could be easily supported
by implementing a query translation layer, assuming that the
service uses a single data source with a powerful tool to
process query language, such as a relational database. How-
ever, in the baseboard management controller (BMC) software,
developers must implement query functions independently to
retrieve data from various sources (i.e., sensor daemons). This
is a reason for why many Redfish services selectively support
only the queries required to manage a few target resources.

We propose a web server module that runs with a proxy web
server and handles queries on behalf of the Redfish server. It
can be configured so that the processing of queries is partly
(or entirely) delegated to the backend server if the server can
handle them. In addition, if the proxy is located close to the
Redfish server, a performance improvement can be expected
as the proxy needs to communicate with the Redfish server
repeatedly, in contrast to clients directly sending multiple
requests for query processing.

This work was supported in part by the NRF (National Research Foundation
of Korea) Grant funded by the Korean Government (NRF-2017-Global
Ph.D. Fellowship Program), and in part by the Next-Generation Information
Computing Development Program through the NRF funded by the Ministry
of Science and ICT (No. 2017M3C4A7083676).

978-1-7281-6992-7/20/$31.00 ©2020 IEEE

Redfish Service Proxy Cilent Redfish Service Proxy Cilent

request request

main request o main request
|*“temove query string in req remove unsupported
D query string
\ processing request
parsing and query string
.subveq/uesls main response
/ processing
\ remained query string
\ merging
responses response
reformatting
response

response

(a) Redfish service’s target resource (b) Redfish service’s target resource
handler does not support any query. handler supports $expand query.

Fig. 1. Query processing flow examples.

II. DESIGN AND IMPLEMENTATION

While the Redfish has many schemas (i.e., data tables), they
are all managed by a single BMC. Therefore, processing a
query outside the Redfish service, rather than directly modify-
ing its data layer, would help achieve acceptable performance,
not to mention the benefit expected from the proxy. As such,
we support query processing using a module of the web server
independently from the Redfish service. Utilizing a proxy
server handling Redfish queries on the same machine as or
a machine close to the Redfish service creates the following
three advantages.

1) Any server or client can use this function without
modifying its program, and modules can be added or removed
at any time. 2) It is implemented as a module of a mature
open-source web server; therefore, it is stable and may have
a synergistic effect with many other modules. 3) A perfor-
mance improvement can be expected in comparison to similar
programs on the client side.

Figure 1 shows the query processing flow in our prototype
proxy module. When a request containing a query string is
received from the client, the proxy checks the uniform resource
identifier first and identifies the queries that the target resource
handler (running on the backend server) can take care. If there
are no queries supported by the target resource handler, then
the main request is forwarded to the Redfish service, after
removing the unsupported query string, as shown in Figure 1a.

After receiving and analyzing the response for the main re-
quest, the module immediately receives data via the subrequest
function of Nginx to access additional resources. After all the

TABLE I
EXPERIMENTAL SETUP

Server < Network — Proxy < Network — Client Processing OH Network OH
LAN-P/NP OpenBMC’s bmcweb LO, SSL Nginx/- LAN, SSL DMTF’s Redfishtool Exists Low
VPN-P/NP OpenBMC’s bmcweb LO, SSL Nginx/- VPN, SSL DMTF’s Redfishtool Exists High

MOCK-P/NP DMTF’s mockup LO Nginx/- LAN DMTF’s Redfishtool Minimum Low
P: Proxy. NP: No proxy. LO: Loopback. OH: Overhead. LAN: Same subnet, connected with two L2 switches.
Server hardware: 64bit ARM Cortex-A53, 16GB RAM, 1Gbps Ethernet. Client hardware: x86_64 i5-6600, 64GB RAM, 1Gbps Ethernet.
TABLE II X
BX3 LAN-P EZ=3 LAN-NP VPN-P EEH VPN-NP MOCK-P E=8 MOCK-NP
TEST REQUESTS ’
URL Subrequests R 0.2
A /AccountService 0
B /AccountService/Accounts?$expand=. 2
C /AccountService/Roles? 0 or 4
$expand=.&$filter="Members/Id” eq ’Callback”
D /Managers?only 1

received data are merged, the data are reformatted to fit the
query, and the final response is sent back to the client. If there
are query strings that the target resource handler can manage,
then processing of those queries is delegated to the backend
server, as shown in Figure 1b.

All the queries recommended in the specification document,
except the excerpt query, can be processed by combin-
ing subrequests and reformatting their responses. To support
excerpt, the query module must understand the Redfish
service’s schema files. This can be implemented either by dy-
namically analyzing the Redfish’s schema document in module
loading or by statically analyzing it in module compilation.
Currently, we implement the queries $Sexpand, only, and
incomplete $filter as a proof of concept.

III. PRELIMINARY EXPERIMENTAL RESULTS

We evaluated the prototype of the proposed query pro-
cessing proxy module under different processing and network
overheads to observe how they affect performance. Table I
summarizes our experimental setup. The proposed scheme
was implemented in the Nginx module and set up as a
reverse proxy. Two Redfish services were used: the OpenBMC
environment, which retrieves data from the actual data layer,
and the static mockup data server provided by DMTF. The
redfishtool, a command-line tool provided by DMTF,
was used as the client program. Because the Redfish service
is not usually exposed to a WAN, the network environment is
reconfigured into a LAN environment and a VPN environment.

Table II shows the requests used in the experiment and the
number of generated subrequests in processing each original
request. These requests were selected from commands that
exist in the redfishtool and can be reconstructed using
Redfish queries. Since all features have not been imple-
mented yet, those requests are mainly composed of $Sexpand
queries that generate many subrequests. We modified the
/AccountService/Roles resource handler operating in
the backend server to support the $expand query and con-
figured the proxy to acknowledge it. Therefore, in scenario C,
the number of subrequests is 0 and 4 when the query is going
through and bypassing the proxy, respectively. Each of the

Exp. Scenario

174.1

100 200 300 400 500
Response Time (ms)

Fig. 2. Query processing performance.

requests were iteratively processed 10 times, and the average
result in each case was recorded.

Figure 2 shows the average response time versus different
request scenarios for different experimental environments. In
scenario A, which has no subrequests, all non-proxy requests
performed slightly better than proxied requests by 7%—13%.
However, the others having subrequests showed performance
improvement proportional to the number of subrequests or
the network delay. In scenario C, with leveraging of the
query processing by the backend server, LAN-P decreased the
response time by approximately 80% compared with LAN-
NP. In the case of VPN-P and VPN-NP, the response time
was reduced by approximately 76%. Even in the case of
MOCK-P and MOCK-NP, which only transmitted static files,
performance improvement was observed. Therefore, we can
reasonably expect our module to improve performance.

IV. CONCLUSIONS

We proposed a prototype configurable Redfish query pro-
cessing module to run with a proxy server on BMC. It can
fully utilize all the queries supported by the backend server
to improve query processing efficiency. Preliminary evaluation
demonstrated improved system performance in terms of query
response time. We expect our approach to allow many Redfish
services to support the query functions recommended in a
specification document. We will complete this study using a
fully supported query module, and we also plan to support
multiple BMC nodes.

REFERENCES

[1] DMTF, “Redfish Specification.” (2019). Accessed: Aug. 21, 2020.
[Online]. Available: https://www.dmtf.org/sites/default/files/standards/
documents/DSP0266_1.9.0.pdf

