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Abstract—Modern network data planes have enabled new mea-
surement approaches, including efficient sketch-based techniques
with provable trade-offs between memory and accuracy, directly
in the data plane, at line rate. We thus ask the question: can
one leverage this richer measurement plane to improve network
intrusion detection? Our answer is SPID, a push-based, feature-
rich network monitoring approach to assist learning-based attack
detection. SPID switches run a diverse set of measurement
primitives and proactively push measurements to the monitoring
system when relevant changes occur. Network measurements are
then fed as input features to a classifier based on unsupervised
learning to detect ongoing attacks, as they occur. In consequence,
SPID aims to reduce attack detection time, when comparing to
existing solutions present in large scale networks.

Index Terms—NIDS, programmable data planes, sketches

I. INTRODUCTION

To identify malicious network activities, operators resort to
Network Intrusion Detection Systems (NIDS) that capture and
analyze packet flows to detect attacks. Existing NIDS, how-
ever, fall short in responding to an increasingly sophisticated
array of attacks, for at least three reasons.

The first problem is that the most common NIDS in opera-
tion are signature-based, a type that is simple to implement
and effective in identifying known attacks. This class of
NIDS is however incapable of detecting unknown attacks,
given the lack of knowledge of their signatures. Additionally,
the ever-growing sophistication of network attacks makes it
increasingly harder to devise effective signatures for detection.
By contrast, anomaly-based techniques model normal network
behavior, and identify deviations as potential anomalies. They
are based on the hypothesis that the attacker’s behavior differs
from regular traffic patterns, and are thus able to detect new
and evolving attacks. In particular, anomaly-based systems
based on learning and inference approaches, the approach we
follow, have been shown to improve detection accuracy in
several environments [1].

The second problem is the speed of detection. As the
network monitoring tools traditionally employed in NIDS are
based on pull-based approaches, they are unable to capture
transient or short-lived events, often taking several minutes
to detect attacks and therefore failing to respond. The ideal
NIDS should observe changes to traffic and respond promptly
to attacks. Unfortunately, the monitoring tools employed
for statistics collection in NIDS (e.g., NetFlow) produce

highly aggregated statistics at relatively coarse time-scales.
To address this problem, several authors have argued for a
monitoring paradigm shift, from passive to active [2]. An
active monitoring infrastructure should react, in an automated
manner, to special events. We follow this approach, shifting
from pull-based monitoring, where the controller periodically
polls switches for updates, towards a solution where switches
proactively push statistics when a particular data plane event
is triggered (e.g., a counter reaches a predefined threshold).

The third problem of existing NIDS is the quality of
the measurement data available as input to the system. The
measurement primitives used are typically based on sampled
statistics (e.g., sampled NetFlow records), for scalability rea-
sons. As such, they only provide low accuracy, coarse-grained
views of the network, reducing the effectiveness of intrusion
detection. We leverage sketch-based algorithms [3] running
at line rate in switch hardware to complement traditional
packet/byte counters, with the goal of increasing the variety
of features available as input for the detection system.

To assist network operators in overcoming these three
problems we present SPID, our Switch-Powered Intrusion
Detection framework. SPID leverages modern switch data
planes [4] to improve the detection rate of zero-day attacks,
including short-lived attacks that require fast response times.

II. SYSTEM ARCHITECTURE

Fig. 1 presents the architecture of SPID, which follows
a bottom-up approach to intrusion detection, built upon the
typical SDN control and data plane separation.

In the data plane, high-speed switching ASICs compute
and store a diverse set of flow statistics and multiple sketch-
based counters, implemented through a P4 program [5]. SPID
can be configured to monitor specific packet features, from
single packet fields to combinations of multiple fields. The
specific set of active counters can be configured by the operator
at runtime. Each switch’s available memory is dynamically al-
located between all active counters. SPID switches can be used
as regular switches that perform this form of enhanced moni-
toring alongside regular forwarding. Besides simple counting,
each switch performs traffic change detection over short,
configurable time windows. Relevant traffic changes are used
as a trigger to send measurement data to the control plane. This
proactive behavior avoids the coarse time-scales of traditional
polling-based monitoring approaches coordinated by a network978-1-7281-6992-7/20/$31.00 ©2020 IEEE



Fig. 1. SPID’s architecture and operation (with a single switch for simplic-
ity). (1) the packet processing pipeline is programmed with a large set of
measurement primitives; (2) a set of primitives is enabled by a specific run-
time configuration; (3) push-driven measurements collection based on traffic
changes in the data plane; (4) analysis of the collected measurements.

monitor, enabling a faster attack detection. In addition, it
relieves the control plane of the burden of performing periodic
polling, which leads to scalability issues in large networks.

In the control plane, at every switch notification the col-
lected measurements are fed to a machine learning (ML)-based
anomaly detection pipeline. A preprocessing stage is executed
for data normalization. Afterwards, a classification stage is
performed over the resulting features through a clustering
algorithm, aiming to aggregate related flows according to their
characteristics. Finally, the anomaly detection stage analyzes
the obtained results and identifies potential anomalies, rep-
resented as new clusters or as outliers. Depending on the
operator’s intent, suspicious traffic can then be dropped or
steered to a defense system for further inspection.

III. EVALUATION

The goal of the preliminary evaluation of our prototype is to
obtain initial empirical evidence of the three main arguments
for SPID. This evaluation, based on real traffic traces with
labelled attacks [6], used the P4 software reference switch on
a virtualized environment.

Detection of unknown attacks. We tested the ability of
SPID to detect four attacks of which the system had no
previous knowledge: TCP Syn Flood, UDP Fraggle, Ping-of-
Death, Smurf. We compare SPID with two other approaches,
1Sk and Smp, which respectively use only one Count-Min
sketch and only packet/byte counters for sampled data. Across
our tests, SPID always detects more attacks (higher True
Positives percentage) than the other baseline NIDS. Regarding
TCP SYN flood, Smp is not even able to detect the attack.
Although our preliminary results also show that SPID does not
yet have the accuracy and precision required by a NIDS, the
main take-away is that a combination of multiple measurement
primitives is always much better than any single metric.

Stream-based over sample-based. In our simulation of
a sampling-based NIDS (Smp) we set the sampling rate at

TABLE I
SPID DETECTION RESULTS.

TP FP TN FN Acc. Precision Recall
TCP SPID 40 66 99.5 0.4 67.8 37.7 99.0

1Sk 30 69.7 99.4 0.4 64.9 30.1 98.6
Smp 0 100 95.1 4.9 47.5 0 0

UDP SPID 50 18.6 99.6 0.4 88.8 72.9 99.2
1Sk 40 54.7 99.5 0.5 71.7 42.3 98.8
Smp 30 83.5 98.6 1.4 60.2 26.4 95.4

PoD SPID 93.3 44.8 99.9 0.1 81.1 67.5 99.9
1Sk 30 94.2 99.4 0.6 57.7 24.2 98.2
Smp 46.7 68.4 97.2 2.8 66.9 40.6 94.4

Smurf SPID 90 52 99.9 0.1 78.4 63.3 99.9
1Sk 60 83.5 99.6 0.4 65.5 41.8 99.3
Smp 60 84 98.5 1.5 64.9 41.6 87.5

TP/FP: True/False Positives; TN/FN: True/False Negatives; Acc.: Accuracy

1:500. Across all tested attacks, the detection rate with Smp
is considerably lower (True Positive rate 20 to 50 percentage
points lower) than the detection with SPID. These results
confirm previous research that reported on the limitations of
sampling-based approaches for attack detection.

Detection time. We performed experiments to showcase
that a push-driven approach offers a fast detection of ongoing
attacks. While the detection time of a sampling-based NIDS
is inherently constrained by the sampling frequency, SPID
detects anomalous patterns as soon as they happen in the data
plane. The average triggering time, specifically, the difference
between the time the attack actually starts and the time the
switch pushes the related measurements to the control plane,
is nearly always on the order of the hundreds of milliseconds.

IV. CONCLUSION

We presented SPID, a framework that leverages pro-
grammable data planes to speed up the detection of network
attacks. On the data plane, we are currently exploring the
integration of other sketching algorithms to improve the mea-
surement plane within the constraints of programmable net-
working hardware. On the control plane, we are investigating
other anomaly detection approaches to improve the precision
of SPID to the level required by NIDS environments.
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