ICNP2020

HDR-Nets Workshop

The 28th IEEE International Conference on Network Protocols (ICNP 2020)
Madrid, Spain, October 13, 2020

© Madrid Destino Cultura Turismo y Negocio
Previous HDR-Nets
Important News
CFP Dates Submission Organizers TPC COVID-19
The submission deadline has been extended to July 31, 2020 11:59pm EDT

The Second IEEE International Workshop on Harnessing the Data Revolution in Networking (HDR-Nets 2020)

Artificial Intelligence (AI) and Machine Learning (ML) technologies have achieved remarkable success nowadays in many application domains, e.g., natural language processing, biometrics, and computer vision. Meanwhile, the ever increasing complexity and scale of today’s networks keep posing new challenges for network measurement and analytics techniques and tools. Advances in the high-performance computing and progress in ML methods—particularly using deep learning—have made ML/AI capable of discovering valuable knowledge from enormous amounts of operational and systems data. Therefore, AI/ML has been effectively used in many critical networking data analytic functions, such as fault isolation, intrusion detection, event correlation, log analysis, capacity planning, and design optimization, just to name a few.

Moreover, networking has recently undergone a huge transformation enabled by new models resulting from softwarization, virtualization, and cloud computing. This has led to a number of novel architectures supported by emerging technologies such as Software-Defined Networking (SDN), Network Function Virtualization (NFV), edge computing, IoT, and 5G. On the other hand, maturing ML techniques, such as reinforcement learning and transfer learning, can potentially serve as a basis for incorporating learning into automated network control. The emergence of enhanced design coupled with the increased complexity in networking systems and protocols has fueled the need for improved network autonomy in agile infrastructures, which can be combined with AI/ML techniques to execute efficient, self-adaptive, rapid, and collaborating network systems.

HDR-Nets 2020 workshop is aligned with the National Science Foundations’ (NSF) Harnessing the Data Revolution (HDR) Big Idea, a national-scale activity to enable new modes of data-driven discovery that will allow new fundamental questions to be addressed at the frontiers of science and engineering, with the focus in computer and communication networks. More specifically, HDR-Nets 2020 workshop is targeting research at the intersection of machine learning and networking by bringing together experts from several research communities spanning communications and networking, machine learning, mobile computing, and big data. The agenda will includes discussions of significant contributions, community interests, new tools and research problems related to the design of intelligent, robust, and adaptive communications and networks with the aid of machine learning, as well as identifying best networking practices and design principles for learning systems.

Topics of Interest

We encourage interdisciplinary contributions of high-quality original technical and survey papers, which have not been published previously, bridging the gap between machine learning, communications, and networking from either a theoretical perspective or a practical point of view. Topics of interest include, but not limited to, the followings:

Workshop Organizers

Steering Co-Chairs

General Co-Chairs

TPC Co-Chairs

Publicity Chair

Web Chair

Important Dates

Paper submission deadline July 17, 2020 11:59pm EDT extended to July 31, 2020 11:59pm EDT (FINAL)
Notification of acceptance August 14, 2020
Camera ready copy due August 24, 2020
Workshop date October 13, 2020

Paper Submission Guidelines

All submissions must be original research not under review at any other venue. Submissions will be evaluated on the basis of technical quality, novelty, potential impact, and clarity. Solicited submissions include both full technical workshop papers and white position papers. Maximum length of such submissions is 6 pages in two-column 10pt IEEE Computer Society format, and if accepted they will be published by IEEE and appear in the IEEE Xplore. Formatting for all submissions (excluding page length) must adhere to the guidelines here. In accordance with the ICNP 2020 Conference, this workshop will adapt the double-blind review policy. All accepted papers must be presented by one of the authors.

Papers must be submitted electronically as PDF files via https://hdrnets20.hotcrp.com.

TPC Members

Zihui Ge (AT&T Labs Research, USA)
Maria Gorlatova (Duke University, USA)
Abhimanyu Gosain (Northeastern University, USA)
Chuanxiong Guo (Bytedance, China)
Carlee Joe-Wong (CMU, USA)
Xin Liu (University of California, Davis, USA)
Ajay Mahimkar (AT&T Labs Research, USA)
Gurkan Solmaz (NEC Laboratories Europe, Germany)
Yongqian Sun (Nankai University, China)
Isaac Triguero (Nottingham University, UK)
Mostafa Uddin (Nokia Bell Labs, USA)
Jun (Jim) Xu (Georgia Institute of Technology, USA)
Kuai Xu (Arizona State University, USA)
Shenglin Zhang (Nankai University, China)

Coronavirus update

If you consider participating in ICNP 2020, are you willing and able to attend the conference in person? Please respond to this poll by July 24. ICNP organizers are closely monitoring the status of the COVID-19 pandemic and its impact on conferences and travel. We also recognize the legitimate concerns of authors and participants regarding their own health and safety. While we prefer to have an in-person conference/workshop to the maximum extent possible, the decision on a particular format for the conference will be decided later based on information available closer to the conference dates. Regardless of the eventual format for the conference, we will allow authors to present their accepted work remotely.